高考数学100个高频考点
- 格式:doc
- 大小:543.00 KB
- 文档页数:15
高考数学100个高频考点1.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;2.四种命题的形式及相互关系:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
3.函数的性质(1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。
(4)函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.4.二次函数的解析式的三种形式 ①一般式f (x )=ax 2+bx +c (a ≠0); ②顶点式f (x )=a (x -h )2+k (a ≠0); ③零点式f (x )=a (x -x 1)(x -x 2)(a ≠0)。
5.设x 1,x 2∈[a ,b ],x 1≠x 2 那么⇔>--⇔>--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是增函数;⇔<--⇔<--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是减函数。
高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高考数学108个知识点数学作为高考科目之一,对于广大考生来说是一道相当重要的门槛。
高考数学试卷中涵盖了大量的知识点,考生需要深入了解和掌握这些知识点,才能在考试中取得好成绩。
在这篇文章中,我们将细致地梳理高考数学的108个知识点,并给出相应的解析和例题。
一. 代数与函数1. 复数与复数基本运算:复数的概念与表示方法,复数的四则运算。
2. 幂的运算:定义、性质及应用,实指数幂与零指数幂。
3. 根式与分式的性质:根式的概念与性质,分式的概念与性质。
4. 分式的四则运算:分式的加减乘除,简化分式。
5. 线性方程组与解的性质:线性方程组的定义、解的存在唯一性以及解的性质。
6. 二次函数与一元二次方程:二次函数的概念、性质以及图像,一元二次方程的定义解的判别式。
二. 三角函数7. 角的概念与运算:弧度制与角度制的转换,三角函数的概念、性质以及应用。
8. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像、性质以及周期性。
9. 三角函数的基本关系式:正弦函数、余弦函数、正切函数之间的基本关系。
10. 三角函数的合并与拆分:任意两个三角函数的合并与拆分。
11. 三角函数的方程与恒等式:三角方程的定义、基础解法以及特解法。
三. 解析几何12. 平面直角坐标系与平面向量:平面直角坐标系的概念、性质以及应用,平面向量的概念、基本运算以及性质。
13. 直线与圆的方程:直线的方程、性质以及相关定理,圆的方程、性质以及相关定理。
14. 二次曲线的方程:椭圆、双曲线、抛物线的方程、性质以及相关定理。
15. 空间几何与立体几何:空间直角坐标系的概念、性质以及应用,空间向量的概念、基本运算以及性质。
四. 数量关系16. 空间图形的投影与旋转:平行投影、垂直投影、投影的比例与相似性,图形绕一定轴线的旋转。
17. 总和与平均数:总和与平均数的概念、计算方法以及应用。
18. 线性规划:线性规划的定义、基本模型以及解法。
19. 组合与排列:组合与排列的定义、性质以及计算方法。
高考数学高频考点99个果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。
高考数学常考的100个基础知识点
一、数据处理
1、用直线和曲线表示简单的函数关系;
2、求方程的根,包括一元二次方程、一元三次方程;
3、极限的概念及求极限的方法;
4、利用大致数量关系求微分;
5、抽样定理及其推广;
二、几何
1、角的三种度数制;
2、角平分线的性质;
3、对称中心及其对称性;
4、多边形几何关系;
5、曲线的斜率;
6、空间几何关系;
7、证明的方法;
三、排列组合数
1、概念及其性质;
2、组合数的运算;
3、二项式定理及其推广;
4、抽屉原理;
5、幂集的运算;
四、计算
1、分数的运算;
2、两次方程的求解;
3、直角坐标系的使用;
4、根式的运算及其化简;
5、三次根式的求解;
6、不等式的解法;
7、指数函数及其运用;
五、三角函数
1、三角函数的基本性质;
2、正弦定理及其运用;
3、余弦定理及其换元;
4、正切定理及其反函数;
5、正余弦的平面坐标表示;
六、统计
1、概率的概念及性质;
2、离散随机变量的计算;
3、独立性及独立性的性质;
4、条件概率与期望;
5、相关与相关系数;
七、函数
1、函数的定义及其性质;
2、函数的图形表示;
3、函数的单调性;
4、函数的综合应用;
5、函数的最值及其导数;
八、数列
1、数列的极限及性质;
2、常用数列的求和;
3、等差、等比数列的性质;
4、数列的通项公式;。
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
高考数学知识点大全一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集、真子集、相等集合的定义与判断。
- 集合的运算:交集、并集、补集的定义、性质及运算规律。
例如:A∩B={xx∈ A且x∈ B},A∪ B = {xx∈ A或x∈ B}。
2. 常用逻辑用语。
- 命题:命题的概念,真命题、假命题的判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系,互为逆否命题的真假性相同。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充分必要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义及命题真假的判断。
例如:p∧ q为真当且仅当p,q都为真;p∨ q为真当且仅当p,q至少一个为真;¬ p与p真假相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
求函数定义域的常见情况,如分式分母不为零,偶次根式被开方数非负等。
- 函数的表示方法:解析法、图象法、列表法。
2. 函数的基本性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1 < x_2时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)=f(x)(偶函数)或f(-x)= - f(x)(奇函数)。
高考数学高频必背知识点(把握)数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,下面我给大家带来高考数学高频必背知识点,期望大家宠爱!高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
高考数学知识点总结及公式大全免费高考数学重要知识点( 一 ) 导数第一定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x(x0+△x 也在该邻域内 ) 时,相应地函数取得增量△y=f(x0+△x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第一定义( 二 ) 导数第二定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x(x-x0 也在该邻域内 ) 时,相应地函数变化△y=f(x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第二定义( 三 ) 导函数与导数如果函数 y=f(x) 在开区间 I 内每一点都可导,就称函数 f(x) 在区间 I 内可导。
这时函数 y=f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y=f(x) 的导函数,记作y',f'(x),dy/dx,df(x)/dx 。
导函数简称导数。
( 四 ) 单调性及其应用1. 利用导数研究多项式函数单调性的一般步骤(1) 求 f ¢ (x)(2) 确定 f ¢ (x) 在 (a , b) 内符号 (3) 若 f ¢ (x)0 在 (a , b) 上恒成立,则 f(x) 在 (a , b) 上是增函数 ; 若 f ¢ (x)0 在 (a , b) 上恒成立,则f(x) 在 (a , b) 上是减函数2. 用导数求多项式函数单调区间的一般步骤(1) 求 f ¢ (x)(2)f ¢ (x)0 的解集与定义域的交集的对应区间为增区间 ;f ¢ (x)0 的解集与定义域的交集的对应区间为减区间全国卷高考数学知识点必修一: 1 、集合与函数的概念 ( 这部分知识抽象,较难理解 )2 、基本的初等函数 ( 指数函数、对数函数 )3 、函数的性质及应用 ( 比较抽象,较难理解 ) 必修二: 1 、立体几何 (1) 、证明:垂直 ( 多考查面面垂直 ) 、平行 (2) 、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
高考数学100个常考高频考点高考数学100个常考高频考点数学是高考中必考科目之一,也是许多学生最头疼的科目之一。
为了帮助广大考生高效备考,总结了高考数学100个常考高频考点,希望能对你有所帮助。
一、数与式1.常用数学符号及代表意义2.整数、有理数、无理数、实数3.绝对值及其性质4.分式及其基本性质5.分式运算6.带分数与假分数及其互化7.指数及其运算法则8.对数及其运算法则二、函数9.函数初步10.函数图像的基本性质11.函数的对称性及奇、偶性12.函数的单调性13.函数的零点、极值及其应用14.幂函数、指数函数、对数函数及其图像与性质15.三角函数、反三角函数及其性质16.常用函数的图像及其简单变换17.函数的综合应用问题三、三角函数18.任意角及其弧度制19.三角函数的基本关系20.简单三角函数的图像与性质21.三角函数的单调性22.三角函数的周期性及其性质23.三角函数的和差化积公式24.三角函数的倍角公式、半角公式25.三角函数的化简与求值四、数列与数学归纳法26.数列的基本概念27.等差数列的通项公式及其应用28.等比数列及其通项公式及其应用29.递推数列及递推公式30.数学归纳法及其应用五、平面向量31.向量及其基本概念32.向量的加、减、夹角公式33.向量的数量积及其应用34.向量的叉积及其应用35.平面向量的坐标表示法及其应用六、解析几何36.平面直角坐标系及其应用37.直线的垂直、平行及斜率公式38.直线的方程及其应用39.周长、面积的坐标公式40.圆的标准方程、一般方程及其性质41.直线与圆的位置关系、圆的切线方程42.抛物线、双曲线、椭圆的基本概念与方程43.二次函数的图像与性质44.二次函数的拐点、零点、极小值、极大值、客观题解七、立体几何45.空间几何体的基本概念46.空间向量的基本概念47.空间直线及其方程48.空间平面及其方程49.球的基本性质及其方程50.空间几何体的表面积与体积及其应用八、三角学51.三角形的基本概念、基本性质52.直角三角形及其基本性质53.三角形的内心、外心、垂心、重心及其性质54.三角形的中线、中位线、高及其性质55.相似三角形及其性质56.勾股定理、正弦定理、余弦定理57.解三角形、三角形综合应用九、导数与微积分58.导数的概念、性质、计算方法59.常用函数的导数60.利用导数研究函数的性质61.函数的最值、单调性及其应用62.微分的概念、定义及其应用63.中值定理及其应用十、集合与概率64.集合及其表示法、基本概念及其运算65.概率的基本概念、事件的合并与交66.等可能概型的概率问题67.条件概率及其应用68.互不相容事件、全概率公式和贝叶斯公式69.离散型随机变量及其分布律70.随机事件、概率分布函数、数学期望的概念及其计算方法十一、数理统计71.统计调查的设计方法72.总体、样本、参数及其估计73.频率分布和样本均值、方差的计算74.区间估计75.假设检验的基本概念76.一类、二类错误和检验水平77.正态分布、χ²分布、t分布的概念及其应用78.方差分析、回归分析及其应用79.抽样、分层抽样、整群抽样的基本概念十二、数学模型80.数学建模的基本概念81.数学建模的基本步骤82.常见的数学模型类型83.模型的求解、分析和优化84.数学模型的应用实例以上是高考数学100个常考高频考点的总结,相信通过有效的学习和练习,一定可以在考场上取得好成绩,希望对你有所帮助!。
高考数学99个高频考点大汇总!高中三年都有用!21春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。
高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。
高考数学一百个知识点数学,作为一门重要的学科,常常是许多学生的噩梦之一。
然而,在高考中,数学却扮演着至关重要的角色。
为了帮助考生更好地备考高考数学,本文将介绍一百个高考数学的知识点,涵盖了高三数学全年的内容。
希望这些知识点能够帮助考生加深对数学知识的理解,提高应试能力。
一、代数知识点1. 二次函数的概念及性质2. 一元二次方程的解法3. 利用配方法进行因式分解4. 绝对值不等式的求解方法5. 对数函数的定义及性质6. 三角函数的定义、基本关系式和性质7. 复数的定义、运算法则及应用8. 二项式定理及其应用9. 等比数列的定义、通项公式及其求和公式二、数论知识点10. 整数的概念及性质11. 常用的整数性质12. 最大公因数与最小公倍数的求法三、平面几何知识点13. 平面几何基本概念14. 直线与平面的交点及其相关性质15. 圆的基本性质和圆心角的性质16. 弦与切线的关系及性质17. 相似三角形的判定与性质18. 各种三角形的面积和海伦公式的应用19. 平行线与平行四边形的性质20. 三角形周长与面积的计算21. 三角函数在平面几何中的应用四、空间几何知识点22. 空间几何基本概念23. 线面垂直交角的判定24. 点、线、面的投影及性质25. 线面垂直于平行线的判定26. 空间向量的定义、运算及应用27. 球的基本性质及切线的性质28. 空间几何等距映射的性质五、概率与统计知识点29. 随机事件及其概率的计算30. 概率的加法定理与乘法定理31. 排列与组合的计算32. 正态分布的概念及其性质33. 统计图表的读取与分析34. 两个随机变量的线性相关性及其相关系数六、立体几何知识点35. 二面角的定义及性质36. 柱、锥、球的表面积和体积的计算37. 空间图形的投影与截面38. 球台与球切线的性质39. 空间几何折叠七、导数知识点40. 导数的定义、运算法则及分段函数的导数41. 导数的几何意义及其应用42. 高阶导数的计算43. 求极值的方法及其应用44. 泰勒公式的应用八、积分知识点45. 积分的定义及其性质46. 定积分的计算方法47. 反常积分的概念及其计算方法48. 曲线的弧长与曲线下面积49. 平面图形的重心与质心九、数列与函数知识点50. 数列的概念及其分类51. 数列的极限的计算方法52. 数列极限的性质及其应用53. 函数的概念及分类54. 函数的极限的定义与计算方法55. 函数极限的性质与无穷小56. 函数极限的插值与夹逼定理57. 函数的连续性与间断点的判定58. 函数的单调性及其应用59. 函数的导数与求导法则60. 函数的导数与函数图象的几何关系61. 函数的微分与泰勒公式的推广62. 函数的最值与最值判定的方法63. 函数的周期性与对称性十、立体几何知识点64. 空间几何的基本概念及性质65. 程量可构性的判定与证明66. 凸体的概念及其特征67. 三视图、一视图与前、后投影的关系68. 空间向量与叉积的运算及其在几何中的应用69. 空间平面与空间直线的相交关系70. 球的截面与球冠体的体积的计算71. 空间旋转体的性质与体积的计算十一、数形结合知识点72. 根据问题进行几何图形的构造73. 利用等量变换思想解决实际问题74. 利用正态分布解决问题75. 几何图形的坐标表示与计算76. 利用向量图形解决问题77. 利用平面向量解决平面几何问题78. 运用计算器解决问题79. 利用几何关系解决问题80. 利用概率计算问题81. 运用分类讨论方法解决问题82. 利用导数解析几何问题十二、统计与概率知识点83. 随机事件与概率计算84. 事件间的关系及其组合计算85. 概率的计算规则86. 排列与组合的计算87. 离散型随机变量的分布律计算88. 二项分布、几何分布、泊松分布的计算十三、解析几何知识点89. 平面直角坐标系与极坐标系90. 点、线、面的方程及其相互关系91. 几何图形的变换及其性质92. 直线、圆与曲线的解析性质93. 平面与空间的距离计算94. 向量的概念及其运算规则95. 平面方程的应用96. 二次曲线方程的应用十四、数学推理与证明知识点97. 数列的递推关系的确定与证明98. 几何问题的证明与推理99. 联立方程的解法与证明100. 数论问题的证明与推理以上这些知识点是高考数学中的常见考点,希望考生能够结合实际情况,有针对性地进行复习和巩固。
高考数学99个高频考点大汇总!高中三年都有用!春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密,布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发,威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿,出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的,景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳,绚丽多彩五彩缤纷草绿草如,标准答案一、填空题。
高考数学100个高频考点1.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;2.四种命题的形式及相互关系:原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
3.函数的性质(1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。
(4)函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.4.二次函数的解析式的三种形式 ①一般式f (x )=ax 2+bx +c (a ≠0); ②顶点式f (x )=a (x -h )2+k (a ≠0); ③零点式f (x )=a (x -x 1)(x -x 2)(a ≠0)。
5.设x 1,x 2∈[a ,b ],x 1≠x 2 那么⇔>--⇔>--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是增函数;⇔<--⇔<--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是减函数。
设函数y = f (x )在某个区间内可导,如果f ′(x ) > 0 ,则f (x ) 为增函数;如果f ′(x ) <0 ,则f (x ) 为减函数。
6.函数y = f (x ) 的图象的对称性: ① 函数y = f (x ) 的图象关于直线x = a 对称⇔ f (a +x )= f (a -x )⇔f (2a -x )= f (x )。
7.两个函数图象的对称性:(1)函数y = f (x )与函数y = f (-x )的图象关于直线x = 0(即y 轴)对称。
(2)函数y = f (x ) 和y = f -1 (x ) 的图象关于直线y =x 对称。
8.分数指数幂nmnm aa1=-(a >0,m ,n ∈N*,且n >1)。
分数指数幂nm nm a1a=-(a >0,m ,n ∈N*,且n >1)。
9.log a N=b ⇔a b =N (a >0,a ≠1,N>0) 10.对数的换底公式a N N m m a log log log =,推论b mnb a n a m log log =11.⎩⎨⎧≥-==-2111n s s n s a n n n ,,− ≥( 数列{ a n } 的前n 项的和为S n =a 1+a 2 +…+a n )。
(注意此公式第 2 行顺推与逆推的应用,这是递推数列的常用公式,可以达到不同的目的)12.等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d (n ∈N *)*其前n 项和公式n d a n d d n n na a a n S n n )21(22)1(2)(1211-+=-+=+=13.等比数列的通项公式)(·1*11N n q qa q a a nn n ∈=-=; 其前n 项的和公式⎪⎩⎪⎨⎧=≠--=1,1,1)1(11q na q q q a S n n 或⎪⎩⎪⎨⎧=≠--=1,1,1)11q na q q q a a S n n n(小心:解答题利用错位相减法时要特别注意讨论q=1的情况) 14.同角三角函数的基本关系式 s i n 2θ+ cos 2θ=1,tan θ=1cot ·tan ,cos sin =θ⋅θθθ15.和角与差角公式s i n (α±β)=s i n αcos β±cos αs i n β; cos (α±β)=cos αcos βμs i n αs i n β; tan (α±β)βαβ±α=tan tan 1tan tan μ。
α-α=β-αβ+α22sin sin )sin()sin((平方正弦公式);cos (α+β)cos (α−β)=cos2α−s i n2β(平方余弦公式);)sin(cos sin 22ϕ+α+=α+αb a b a (辅助角ϕ所在象限由点(a ,b )的象限决定,abtan =ϕ)。
(建议利用ϕ的正弦和余弦来确定其位于哪个象限,这样比较好理解) 16.二倍角公式s i n 2α = 2s i n α·cos α。
α-α=α⋅α-=-α=α-α=α22222tan 1tan 22tan sin 211cos 2sin cos 2cos 。
17.三角函数的周期公式 函数y =s i n (ωx +ϕ),x ∈R 及函数y = cos (ωx +ϕ),x∈R (A ,ω,ϕ为常数,且A ≠0,ω>0)的周期ωπ=2T ;函数)x tan(y ϕ+ω=,Z k 2k x ∈π+π≠,(A ,ω,ϕ为常数,且A ≠0,0>ω)的周期ωπ=T 。
(注意ω小于0的函数周期的求法)18.正弦定理R 2Csin cB sin b A sin a ===。
(学会利用后面的2R ) 19.余弦定理a 2=b 2+c 2−2bc cosA ;b 2=c 2+a 2−2ca cosB ;c 2=a 2+b 2−2ab cosC 。
(注意其变形公式) 20.面积定理(1)c b a ch 21bh 21ah 21S ===(c b a h h h 、、分别表示a 、b 、c 边上的高)。
(2)B sin ca 21A sin bc 21C sin ab 21S ===。
21.三角形内角和定理 在△ABC 中,有)B A (22C 22B A 22C )B A (C C B A +-π=⇔+-π=⇔+-π=⇔π=++。
(很多与三角形有关的恒等变形或者纯粹解三角形的题目中会用到这些关系) 22.平面两点间的距离公式212212)()(||y y x x AB AB AB d BA -+-=→⋅→=→=,(A (11y x ,),B (22y x ,))。
23.向量的平行与垂直 设)()(2211y x b y x a ,,,==,且b ≠0,则0)0(0//21211221=+⇔=⋅⇔≠⊥=-⇔λ=⇔y y x x b a a b a y x y x a b b a24.线段的定比分公式 设)()()(222111y x P y x P y x P ,,,,,是线段P 1P 2的分点,λ是实数,且→→λ=21PP P P ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x (这个公式很重要,不要记错!)25.三角形的重心坐标公式△ABC 三个顶点的坐标分别为)()(2211y x B y x A ,、,、)(33y x C ,,则△ABC 的重心的坐标是)33(321321y y y x x x G ++++,。
26.点的平移公式→+→=→⇔⎩⎨⎧-=-=⇔⎩⎨⎧+=+=''''''PP OP OP ky y hx x k y y h x x (图形F 上的任意一点P(x ,y )在平移后图形'F 上的对应点为)''('y x P ,,且→'PP 的坐标为(h ,k ))。
(要注意区别新坐标、旧坐标,区别新方程和旧方程,不要混淆,解答题务必要体现以上公式的使用过程,关键步骤不要省) 27.常用不等式:(1)a ,b ∈R ⇒a 2+b 2≥2ab (当且仅当a =b 时取“=”号)。
(2)a ,b ∈R+ab2ba ≥+⇒(当且仅当a =b 时取“=”号)。
(3)a 3+b 3+c 3≥3abc (a >0,b >0,c >0)。
(4)柯西不等式R d c b a bd ac d c b a ∈+≥++,,,,22222)())((。
(建议:了解一下,尝试用向量数量积的方法证明之) (5)||||||||||b a b a b a +≤+≤-28.极值定理 已知x ,y 都是正数,则有(1)如果积xy 是定值p ,那么当x =y 时和x +y 有最小值p 2; (2)如果和x +y 是定值s ,那么当x =y 时积xy 有最大值2s 41。
29.一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2−4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2 + bx + c 异号,则其解集在两根之间。
简言之:同号两根之外,异号两根之间。
)(0)(21121x x x x x x x <<-⇔<<;1x x <,或)(0))((21212x x x x x x x x <>--⇔>(这类问题一般可以借助于韦达定理或者结合图象特点寻找约束条件就可以解决问题)30.含有绝对值的不等式当a > 0时,有a x a a x a x <<-⇔<⇔<22|| a x a x a x >⇔>⇔>22||或a x -<。
31.无理不等式(1)⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f(2)⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 (3)⎪⎩⎪⎨⎧<>≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f 32.指数不等式与对数不等式 (1)当a >1时,)()()()(x g x f a a x g x f >⇔>;⎪⎩⎪⎨⎧>>>⇔>)()(0)(0)()(log )(log x g x f x g x f x g x f a a(2)当0<a <1时,)()()()(x g x f a a x g x f <⇔>;⎪⎩⎪⎨⎧<>>⇔>)()(0)(0)()(log )(log x g x f x g x f x g x f a a33.斜率公式 ))()((2221111212y x P y x P x x y y k ,、,--=(很多代数问题可以利用这个公式转化为几何问题,简化解题过程,这是数型结合思想的重要体现) 34.直线的四种方程(1)点斜式 )(11x x k y y -=-(直线l 过点)y x (P 111,,且斜率为k )。