同态和同构定义设GG是两个群G上oG上
- 格式:ppt
- 大小:131.00 KB
- 文档页数:14
群同态与同构的基本理论与应用在代数学的研究领域中,群同态和同构是具有重要意义的概念。
群同态是指将一个群的结构映射到另一个群的结构的映射,而同构是指具有双射性质的群同态。
本文将介绍群同态与同构的基本理论,并探讨它们在代数学以及其他领域中的应用。
一、群同态的定义与性质一个群同态是指将一个群的元素映射到另一个群中的函数,满足保持群运算的性质。
设有两个群$G$和$G'$,它们的运算分别为$*$和$*$',那么一个群同态$\phi: G \rightarrow G'$需要满足以下条件:1. 保持群运算:对于任意的$x, y \in G$,有$\phi(x * y) = \phi(x) *'\phi(y)$;2. 保持单位元:有$\phi(e_G) = e_{G'}$,其中$e_G$和$e_{G'}$分别是$G$和$G'$的单位元;3. 保持逆元:对于任意的$x \in G$,有$\phi(x^{-1}) = \phi(x)^{-1}$。
上述条件保证了群运算在映射之后的群中仍然成立,即保持了群的结构。
群同态的一个重要性质是,对于同一个群$G$,我们可以定义自身到自身的恒等同态$id: G \rightarrow G$,它满足$id(x) = x$,对于任意的$x \in G$。
二、群同构的定义与性质如果一个群同态是双射的,那么它就是一个群同构。
群同构保持了群元素之间的一一对应关系,从而保持了群的结构。
设有两个群$G$和$G'$,它们的运算分别为$*$和$*$',一个群同构$\phi: G \rightarrowG'$需要满足以下条件:1. 双射性:对于任意的$x, y \in G$,如果$\phi(x) = \phi(y)$,那么$x = y$,并且对于任意的$x' \in G'$,存在唯一的$x \in G$,使得$\phi(x) = x'$;2. 保持群运算:同群同态的条件一样,对于任意的$x, y \in G$,有$\phi(x * y) = \phi(x) *' \phi(y)$;3. 保持单位元和逆元:同群同态的条件一样,有$\phi(e_G) =e_{G'}$,并且对于任意的$x \in G$,有$\phi(x^{-1}) = \phi(x)^{-1}$。
群环域论中的同态与同构群环域论是数学中的一个重要分支,研究群与环域之间的关系及其性质。
在群环域论中,同态与同构是两个重要的概念。
本文将从同态和同构的定义、性质以及应用等方面进行探讨。
一、同态的定义与性质同态是指保持代数结构之间运算相容性的映射。
对于群与环域,同态具体的定义如下:(一)群同态:设G和H是两个群,如果存在一个映射f:G→H,满足对于任意的a,b∈G都有f(a•b)=f(a)•f(b),则称f为从G到H的一个群同态。
(二)环域同态:设R和S是两个环域,如果存在一个映射f:R→S,满足对于任意的a,b∈R都有f(a+b)=f(a)+f(b)和f(a•b)=f(a)•f(b),则称f为从R到S的一个环域同态。
同态具有以下性质:(一)同态保持单位元:对于群同态,有f(eG)=eH,其中eG和eH分别是群G和H的单位元。
(二)同态保持逆元:对于群同态,有f(a^(-1))=f(a)^(-1),其中a^(-1)是a的逆元。
(三)同态保持加法和乘法运算:对于环域同态,有f(a+b)=f(a)+f(b)和f(a•b)=f(a)•f(b)。
二、同构的定义与性质同构是指两个代数结构之间存在一个双射,使得这个映射保持运算性质。
对于群与环域,同构具体的定义如下:(一)群同构:设G和H是两个群,如果存在一个双射f:G→H,且对于任意的a,b∈G都有f(a•b)=f(a)•f(b),则称G和H是同构的,f为从G到H的一个群同构映射。
(二)环域同构:设R和S是两个环域,如果存在一个双射f:R→S,且对于任意的a,b∈R都有f(a+b)=f(a)+f(b)和f(a•b)=f(a)•f(b),则称R和S是同构的,f为从R到S的一个环域同构映射。
同构具有以下性质:(一)同构保持单位元和逆元:对于群同构,有f(eG)=eH和f(a^(-1))=f(a)^(-1),其中eG和eH分别是群G和H的单位元,a^(-1)是a的逆元。
群论是数学的一门重要分支,研究的是群这一抽象代数结构的性质和性质间的关系。
在群论中,群同态和群同构是两个基本概念。
首先,我们来讨论群同态。
群同态是指一种映射,它保持群的结构。
具体来说,设有两个群G和H,群同态是一个映射f: G -> H,它满足以下两个性质:1.f(x * y) = f(x) * f(y),对于所有的x, y ∈ G;2.f(e) = e’,其中e是G的单位元,e’是H的单位元。
第一个性质保证了同态映射将群的乘法运算保持不变,第二个性质确保了同态映射将单位元映射到单位元。
群同态的一个重要应用是在简化问题的复杂性方面。
通过将一个较大的群映射到一个较小的群,我们可以研究原问题的较小版本,并利用较小群的性质来推导有关于原问题的结论。
接下来,我们谈论群同构。
群同构是指两个群之间存在双射的同态映射。
具体来说,如果存在一个双射f: G -> H,并且f满足同态的两个性质,那么我们称G和H是同构的,记作G ≅ H。
同构意味着两个群具有相同的抽象结构,虽然它们的元素和操作可能看起来不同。
例如,考虑整数加法群(Z,+)和整数乘法群(Z,*)。
尽管整数加法群和整数乘法群的运算看起来不同,但它们具有相同的结构,因此我们可以说这两个群是同构的。
同构的两个群之间有一些重要的性质如下:1.同构是一种等价关系。
即对于任意的群G,它与自身同构,即G ≅ G。
2.若G ≅ H,那么H ≅ G。
同构满足交换性。
3.若G ≅ H且H ≅ K,那么G ≅ K。
同构满足传递性。
群同构在研究群的性质和计算中发挥着重要的作用。
通过将一个群与一个已知的同构群进行比较,我们可以轻松地推导出这个群的一些性质。
同时,群同构也为群的计算提供了便利。
如果两个群是同构的,我们可以在计算一个群的过程中,使用另一个同构群的性质来简化计算。
总结来说,群同态和群同构是群论中非常重要的概念。
群同态是保持群结构的映射,而群同构则是保持群结构并具有一一对应关系的映射。
400浅谈代数系统上的同态与同构何东东(陕西理工学院数学与计算机科学学院数教专业11级1班,陕西 汉中 723000)指导教师:郑红梅[摘要] 同态与同构是代数学中最重要,最基本的概念之一.本文通过总结同态与同构在各个代数系统上的一些应用,说明它们在代数学中的重要性.[关键词] 半群;群;环;格;同态;同构1 预备知识同态、同构是代数学中的重要概念,它们是研究群、环等代数系统的重要手段.同态是保持代数系统结构的映射,同态是同构的推广.同态与同构是代数学中最重要,最基本的概念之一.本文通过总结同态与同构在各个代数系统上的一些应用,说明它们在代数学中的重要性.下面首先对同态与同构的相关概念进行简单介绍.定义1.1]1[设集合A 到A 各有代数运算 和 ,且ϕ是A 到A 的一个映射.如果ϕ保持运算,即对A 中任意元素a ,b ,在ϕ之下由a a →,b b →总可得b a b a →,亦即b a b a =或)()()(b a b a ϕϕϕ =,则称ϕ为代数系统A 到A 的一个同态映射,若ϕ又是满射,则称ϕ为同态满射.如果A 到A 存在同态满射,则简称A 与A 同态,记为A A ~.定义 1.2]1[设ϕ是A 到A 的一个(关于代数运算 及 )同态满射.如果ϕ又是单射(即ϕ是双射),则称ϕ是A 到A 的一个同构映射.如果A 到A 存在同构映射,就说A 与A 同构,记为A A ≅.否则,即若A 到A 不存在任何同构映射,则称A 与A 不同构.A 到自身的同态映射,称为A 的自同态映射,简称A 的自同态.同样,A 到自身的同构映射,叫做A 的自同构映射,简称A 的自同构.定义1.3]2[设(S ,≤)是序列集,S T ⊆.如果存在S u ∈,使得)(T t u t ∈∀≤,则称u 为T 的一个上界.如果T 的一个上界u 具有如下的性质:对于T 的任一上界u ',都有u u '≤,则称u 为T 的一个最小上界,记为lub T .如果存在S l ∈使得)(T t T l ∈∀≤,则称l 为T 的一个下界.如果T 的一个下界l 具有以下性质:对于T 的任一个下界l ',都有l l ≤',则称l 为T 的一个最大下界,记为glb T .S 的上界和下界(如果存在,显然唯一)分别称为幺元和零元,记为1和0.由偏序的反对称性可知:偏序集中任意指定的两个元素的最小上界和最大下界有唯一性(如果它们存在).设),(≤L 是一个偏序集,如果L 中的任意两个元素都有最小上界和最大下界,则称),(≤L 是一个格.只含有有限多个元素的格称为有限格,否则称为无限格.定义 1.4]2[设R 是幺环,M 是一个交换群,如果映射(称R 在M 上的作用)M M R →⨯,ax x a ),(.满足下列条件:(1);,,,)(M y x R a ay ax y x a ∈∈∀+=+(2);,,,)(M x R b a bx ax x b a ∈∈∀+=+(3);,,),()(M x R b a bx a x ab ∈∈∀=(4),,1M x x x ∈∀=则称M 为环R 上的一个左模,或左R 模.如果将(3)改为;,,),()(R b a M x ax b x ab ∈∈∀=其余条件不变,则称M 为环R 上的一个右模,或右R 模.理论上讲,右模和左模没有本质的区别.如果M 为环R 上的一个右模,令R '为R 的反同构的环,则M 构成R '上的左模,当然,若R 是交换环,则R 上的左模和右模没有区别.定理1.1]3[设代数系统),( A 和)( ,A 同态,则(1)若 适合结合律, 也适合结合律;(2)若适合交换律, 也适合交换律.定理 1.2]3[设⊗,⊕为集合A 的代数运算,⊗,⊕为集合A 的代数运算,且存在A 到A 的满射φ,使得A 与A 对于代数运算⊗,⊗来说同态,对于代数运算⊕,⊕来说也同态,那么(1)若⊗,⊕适合第一分配律,⊗,⊕也适合左分配律;(2)若⊗,⊕适合右分配律,⊗,⊕也适合右分配律. 2 主要内容下面将分别讨论群,环,格,模上同态同构在其中的应用以及比较它们在同态同构中的不同.2.1 群同态与同构定义2.1.1]4[设G 是一个非空集合, 是它的一个代数运算,如果满足以下条件:(1)结合律成立,即对G 中任意元素c b a ,,都有)()(c b a c b a =;(2)G 中有元素e ,叫做G 的左单位元,它对G 中每一个元素a 都有a a e = ;(3)对G 中每一个元素a ,在G 中都有元素1-a ,叫做a 的左逆元,使e a a =- 1;则称G 对代数运算 为一个群.定义 2.1.2]4[设G 和1G 是群,映射1:G G →ϕ称为由G 到1G 的群同态,如果ϕ保持群运算,即∀G b a ∈,,都有)()()(b a ab ϕϕϕ=.如果ϕ为单(满)射,则称ϕ为单(满)同态.定义 2.1.3]4[既单又满的同态称为同构.如果存在由G 到1G 的一个同构,则称G 同构于1G ,也说G 和1G 是同构的,记为1G G ≅.群G 到自身的同态及同构具有重要的意义,称之为群G 的自同态和自同构.)(End G 表示G 的全体自同态构成的集合,)(Aut G 表示G 的全体自同构构成的集合.对于映射的乘法,)(End G 构成一个有幺元的半群,而)(Aut G 构成一个群,称为G 的自同构群.定义2.1.4]4[像通常的映射一样,)(G ϕ称为ϕ的像,记为ϕim .又将1e 的原像称为ϕ的核,记为ϕker ,即})(|{ker 1e a G a =∈=ϕϕ.定理2.1.1]4[设1:G G →ϕ是群同态.则ϕϕim G ≅ker /.证明 记H =ϕker ,定义映射,im /:ϕψ→H G ).(a aH ϕ验证ψ是良定义的,即)(aH ψ与陪集代表a 的选取无关.如果bH aH =,即aH b ∈,则存在H h ∈使得ah b =.故)()()()()()()(aH a h a ah b bH ψϕϕϕϕϕψ=====,即ψ良定义.下面证明ψ是群同构,也就是证明ψ是单射,并且ψ也是满射.)()()()()()()))(((bH aH b a ab abH bH aH ψψϕϕϕψψ====,所以ψ是群同态.又设1)(e aH =ψ(1G 的幺元),即1)(e a =ϕ,故H a ∈,即)/(的幺元H G H aH =,所以ψ是单射.最后设ϕim g ∈,则存在G a ∈使得g a =)(ϕ.于是g a aH ==)()(ϕψ,这说明ψ必是满射.所以ψ同构.定理 2.1.2]3[设G 是一个群,G 是一个代数运算(也称为乘法)的集合.如果G G ~,那么G 也是一个群.证明 因为G G ~,G 是群,其乘法满足结合律,故由定理1.1得,G 的乘法也满足结合律.设e 是群G 的单位元,a 是G 的任一元素,又设ϕ是G 到G 的满同态,且在ϕ之下e e →,a a → 于是a a e =,但是a ea =,故a a e = ,即e 是G 的单位元.又设1-a →1-a,则a a a a 11--→.但是e a a =-1,故e a a =-1,即1-a 是a 的逆元.因此,G 也是一个群. 本定理的意义在于,要验证一个集合G 对所指的代数运算作成群时,可找到一个已知群,并通过同态来实现.定理 2.1.3]4[设ϕ是群G 到群G 的一个同态映射(不一定是满射),则群G 的单位元的像是群G 的单位元,G 的元素a 的逆元的像是a 的像的逆元,即11--=a a 或11)()(--=a a ϕϕ.应该注意,如果集合G 与G 各有一个代数运算,且G G ~,则当G 为群时,G 却不一定是群.例 1 令G ={全体正负奇数},代数运算为数的普通乘法;又}1,1{-=G 关于数的普通乘法作成群,令ϕ:正奇数1→,负奇数-1→.则易知ϕ是G 到G 的一个同态满射,故G G ~.G 是群,但G 却不是群.当然,若G 与G 为各有一个代数运算的代数系统,且G G ≅,则当G 与G 中有一个是群时,另一个必然是群.例2 设G 是一个群,N 是G 的正规子群.令G a aN a f ∈∀=,)(.显然f 是群G 到商群N G 的满同态,这个满同态称为群G 到商群N G 的自然同态.定理2.1.4]4[设是G 到G 的同态映射(不一定是满映射),则1)当G H ≤时,有G H ≤)(ϕ且H ~)(H ϕ;2)当G H ≤时,有ϕG H ≤)(-1ϕ,且在ϕ之下诱导出)(-1H ϕ到H 的一个同态映射. 证明 1)任取a ,b )(H ϕ∈且在ϕ之下令a a →,b b →.其中H b a ∈,.由于G H ≤,故H ab ∈,且b a ab →. 从而)(H b a ϕ∈,即)(H ϕ对G 的乘法封闭,且 )(~H H ϕ.但H 是子群,从而)(H ϕ也是群且是G 的子群.2)当G H ≤时,由于)(-1H ϕ显然非空,任取)(,1H b a -∈ϕ,且在ϕ之下令a a →,b b →则11--→b a ab ,其中,H b a ∈,.而G H ≤,故H b a ∈-1,从而1-b a )(-1H ϕ→,即G H ≤)(-1ϕ且显然ϕ诱导出)(-1H ϕ到H 的一个同态映射.定理2.1.5]3[群G 到群G 的同态映射ϕ是单射的充要条件,群G 的单位元e 的逆象只有e .证明 必要性显然,下证充分性.设ϕ是群G 到群G 的任一同态映射,且在ϕ之下e 的逆象只有e .又设在ϕ之下a a →,b b →,当b a ≠时,必有b a ≠:又若b a =,则由于e b a ab =→--11,故b a e ab ==-,1,矛盾.因此,ϕ是单射. 定理 2.1.6]3[设f 是群G 到G '的一个满同态.若N 是G 的正规子群,则)(N f 是G '的正规子群.证明 设N 是G 的正规子群,可得,)(N f 是G '的子群.对于任意的)(N f n ∈'和任意的G a '∈',去N n ∈和G a ∈,使得n n f '=)(,a a f '=)(. 于是,有 )()())()(()()(111N f ana f a f n f a f a n a ∈=='''---,所以)(N f 是G '的正规子群.性质1]4[任何群G 与自身同构;证明 首先,对于任何群G ,单位变换G I 就是G 到自身的一个同构,因此G G ≅.所以性质成立.性质2]4[若群1G 与群2G 同构,则群2G 与群1G 同构;证明 1G 和2G 是两个群,并且1G 2G ≅,我们有b a b a f f ''=''-))((1,b a b f f a f f b f a f f ''=''=''----))(())(())()((1111,从而)()()(111b f a f b a f ''=''---.因此1-f是群2G 到群1G 的同构,从而12G G ≅,所以性质成立.性质3]4[若群1G 与群2G 同构,群2G 与群3G 同构,则群1G 与群3G 同构;证明 假设1G ,2G 和3G 都是群,并且21G G ≅,32G G ≅,不妨设f 是群1G 到2G 的同构,g 是群2G 到3G 的同构.容易验证,gf 是群1G 到3G 的同构,因此31G G ≅,所以性质成立.定理2.1.7]2[设G 是一个群,N 是G 的正规子群.(1) 若H 是G 的子群,则 N HN N H H )()(≅ .(2) 若H 是G 的正规子群且H N ⊆,则H G N H H G ≅)()(.推论2.1.8]4[设1:G G →ϕ是群同态,则ϕϕim G ≅ker /.定理2.1.9]4[(Cayley 定理)任何一个群都与某个变换群同构.证明 设G 是群.对与每一个G a ∈,定义G 的变换a σ如下: G x ax x a ∈∀=,)(σ.显而易见,a σ是G 的一一变换. 令{}G a G a ∈='σ.下面我们来阐明G '是G 上的一个变换群. 事实上,显然,我们有G I e G '∈=σ.此外对于任意的a σ,G b '∈σ,我们有)())((x abx x ab b a σσσ==,)())((11x I x x aa x G a a ===--σσ, )())((11x I x ax a x G a a ===--σσ,G x ∈∀,从而,G ab b a '∈=σσσ,G a a a a I ==--σσσσ11,所以,G '是G 上的一个变换群.现在考察由下式定义的G 到G '的映射fa a f σ=)(,G a ∈∀.显而易见,f 是满射.对于任意的G b a ∈,我们有b a b f a f σσ=⇒=)()( b a e e b a =⇒=⇒)()(σσ.因此f 是单射,从而,f 是双射.此外,我们有)()()(b f a f ab f b a ab ===σσσ,G b a ∈∀,.所以f 是G 到G '的同构,从而G G '≅.推论2.1.10]4[任何一个有限群都与某个置换群同构.2.2 环同态与同构由于环是有加,乘两种运算的代数系统,因此,定义同态映射时必须同时保持加,乘的同态性.定义2.2.1]5[设R 是一个环,S 是有加法和乘法的两种运算的代数系统,称R 到S 中的一个映射σ是环R 到S 中的一个同态映射,如果 )()()(b a b a σσσ+=+,)()()(b a ab σσσ=.若R 到R '上有一个同态映射,则称R 到R '同态,记为R ~R '.定义 2.2.2]5[如果σ是环R 到R '的一个同态映射,并且σ又是双射时,则称σ为环R 到R '的一个同构映射,当R 与R '之间存在同构映射时,称环R 与R '同构,记为R R ≅,特别的,当R R =时,称σ为环的一个自同构.定理2.2.1]5[设R 是一个环,S 是一个有加法和乘法的运算系统,若σ是R 到S 中的同态映射,则)(R R σ='也是一个环;)0(σ为R '的零元0';)()(a a σσ-=-;若R 有幺元而R '不止有一个元素,则R '有幺元且,σ(1)就是R '的壹1';若R a ∈可逆,则)(a σ在R '中可逆而且)(1-a σ就是1)(-a σ.设σ是R 到R '上的同态映射,R '的零0'的逆映像)0(1'-σ叫σ的核.定理2.2.2]5[(环同态基本定理)设R 和R 是两个环,且R R ~.则1)这个同态的核N ,即零元的全体逆像,是R 的一个理想;2)R N R ≅/证明 设ϕ是环R 到环R 的一个同态满射.1)易知,核N 首先是环R 的一个子加群;其次,设R r N a ∈∈,,则r r a →→,0.于是在ϕ之下有00,00=→=→r ar r ra ,故N ar ra ∈,,即N 是R 的理想.2)令)(:a N a ϕσ→+,则由群同态基本定理知,作为加群,σ是N R /到R 的一个同构映射.又由于N ab N b N a +=++))((,而)()()(b a ab ϕϕϕ=,因此σ是N R /到环R 的一个同构映射,从而R N R ≅/.此定理表明,在同构意义下,每个环能而且只能与商环同态.推论2.2.3]6[设1:R R →ϕ是环同态,则1ker /R R ≅ϕ.定理 2.2.4]6[同态映射σ的核N 是R 的理想,设a '是R '的任意元素,则a '的逆映像})({)(1a a R a a '=∈='-σσ是N 的一个剩余类.证明 因为σ是R 的加法群到R '的加法群上面的一个同态映射,所以σ的核)0(1'=-σN 是R的一个子群,且a '的逆映象)(1a '-σ是模N 的一个剩余类.现在再证N 做成理想.即证:若N a ∈,R x ∈,则N ax ∈,N xa ∈,事实上,0)()()('==x a ax σσσ,故N ax ∈,同样可证N xa ∈.对于R 的任意理想N ,是否有一个环R '而且有R 到R '的一个同态映射σ使N 刚好就是σ的核呢?答案也是肯定的.由群中已证的结果,模N 的所有剩余类按照剩余类的加法作成一个加法群,就是R 对于N 的商群N R ,规定N a a +=)(σ,即N a a +→:σ这样规定的σ便是群R 到群N R 上的一个同态映射,其核为N .规定剩余类的乘法,以使σ成为环R 到系统N R 上的同态映射.设A ,B 是N 的两个剩余类,任取A a ∈,B b ∈,规定包含ab 的剩余类N ab C +=为A 与B 的积,而AB C =,))((N b N a N ab ++=+.若另取A a ∈',B b ∈',则包含a 'b '的剩余类和包含ab 的剩余类是一样的,可见上面的乘法规定由A ,B 完全确定,与b a ,的选择无关.由σ的定义,N a a +=)(σ,N b b +=)(σ,N ab ab +=)(σ.但由上面的剩余类乘法的定义,))((N b N a N ab ++=+,故)()()(b a ab σσσ=.所以,σ是环R 到运算系统N R 上的一个同态映射.因此,N R 是一个环,于是有:定理 2.2.5]7[按照上述剩余类的加法和乘法,R 对于理想N 的所有剩余类的集合N R 是一个环,规定N a a +=)(σ,则σ是R 到N R 上的一个同态映射,其核为N .N R 叫做R 对于N 的剩余环,前面定理所说的加法和乘法的同态性,其实是说剩余环N R 中的加法和乘法运算可由剩余类中的任意元素来确定,剩余类的运算与其中元素的特殊选择无关.剩余环N R 有了这加法和乘法两种运算,就与环R 同态.定理 2.2.6]7[(第一同构定理)设R 是环,是R 的理想,则在自然同态I R R /:→π,I r r + .下,(1)R 的包含I 的子环与I R /的子环一一对应.(2)在此对应下,理想对应理想.(3)若J 是R 的理想且I J ⊇,则)/)(/(/I J I R J R ≅.定理 2.2.7]7[(第二同构定理)设R 是环,I 是R 的理想,S 是R 的子环,则(1)I S ⋂是S 的理想.(2))(/)(I S S I S I ⋂≅+.定理 2.2.8]8[若σ是环R 到R '上的一个同态映射,其核为N ,则R '与N R 同构:R '≅N R .证明 设a '是R '的任意元素,则)(-1a 'σ是N 的一个剩余类A .规定R '的a '和这个N R 的A对应.这样,我们规定了R '到N R 上的一个一对一映射τ,τ:N R R /→',a ' A .下面证明τ是同构,即证明:若R b a '∈'',,则)()()(b a b a '+'='+'τττ,)()()(b a b a ''=''τττ. 事实上,若A a =')(σ,B b =')(τ,即N a A a +=='-)(1τ,N b B b +=='-)(1σ,其中,A a ∈B b ∈,则因b a b a '+'=+)(σ,b a ab ''=)(σ,故 N b a b a ++='+'-)(1σ,N ab b a +=''-)(1σ,B A b a +='+'-)(1σ,AB b a =''-)(1σ.于是)()()(b a B A b a '+'=+=''ττσ,)()()(b a AB b a ''==''τττ.故τ是R '到N R 上的一个同构对应.定理 2.2.9]8[设环R 同态于R ':R R '~于是R 与N 间的子环与R '的子环一一对应,大环对应大环,小环对应小环,理想对应理想.2.3 其他代数系统上的同态与同构定义 2.3.1]9[(模同态与同构)设M 和T 都是R 模,T M →:ϕ是映射.如果ϕ满足下述两个条件:(1)M y x y x y x ∈∀+=+,),()()(ϕϕϕ.(2)M x R a x a ax ∈∈∀=,),()(ϕϕ.则称ϕ为M 到T 的一个R 模同态.如果ϕ又是单(满)射,则称ϕ为R 模的单(满)同态.定义 2.3.2]9[如果,ϕ既单又满,则称ϕ为模同构.此时,也称为M 和T 是同构的,记作T M ≅,由M 到T 的所有R 模同态构成的集合记为),(Ho m T M R ;如果M T =,记),(Hom T M R 为)(End M R ,其元素称为M 的自同态.定义 2.3.3]10[(格同态与同构)设21:L L f →,1,L y x ∈∀有)()()(y f x f y x f ∧=∧,)()()(y f x f y x f ∨=∨则称f 为1L 到2L 的同态.如果f 是双射的,就称f 是1L <,1∨,>∧1到>∧∨<222,,L 的格同构,也称格>≤<11,L 和>≤<22,L 同构. 定理2.3.4]9[(同态基本定理)设T M →:ϕ是模同态.ϕϕim ker /→M ,)(x x ϕ是模同构,其中ϕker +=x x 是x 所代表的陪集.定理2.3.5]9[(第一同构定理)设N 为M 的子模,N M M /:→π是典范同态,则在π下的包含N 的子模与N M /一一对应,对于M 的包含N 的子模H ,有同构 )//()/(/N H N M H M →,)/()(N H x H x ++π .定理2.3.6]9[(第二同构定理)设H 和N 为M 的子模,则有同构)(/)(N H H N N H ⋂→+,)()(N H h N n h ⋂+++ ),(N n H h ∈∈∀.可以想象:环上的模的性质依赖与环的性质.环的性质越丰富,其上的模的结构就越简单.定理2.3.7]10[f 是格1L 到2L 的同态,则1,L b a ∈,)()(b f a f b a ≤⇒≤.证明 b a ≤)()()()()()()(b f a f a f b f a f a f b a f a b a ≤⇒=∧⇒=∧⇒=∧⇒.注意 )()(b f a f ≤不一定推出b a ≤.定理3.2.8]10[f 为双射.f 为格1L 到2L 的同构当且仅当)()(,,1b f a f b a L b a ≤⇔≤∈∀. 证明 必要性:)()(b f a f b a ≤⇒≤显然成立,若)()(b f a f ≤成立,则)()()(a f b f a f =∧,因为f 是同构,有)()(a f b a f =∧,由单射性a b a =∧,所以b a ≤.充分性:只须证明f 是同态映射,即:)()()(b a f b f a f ∧=∧,)()()(b a f b f a f ∨=∨.b a b b a a ∨≤∨≤,)()(),()(a f b f b a f a f ≤∨≤⇒)()()(b a f b f a f ∨≤∨⇒,2)()(L b f a f ∈∨))()()((1b f a f d f L d ∨=∈∃⇒,d b d a d f b f d f a f ≤≤⇒≤≤,)()(),()()()()(b f a f b a f d b a ∨≤∨⇒≤∨⇒)()()(b a f b f a f ∨=∨∴同理)()()(b a f b f a f ∧=∧.3 小结同态只保持两个代数系统的部分性质,而同构却能使两个代数系统的结构完全相同.但同态关系比同构易建立.虽然同态比起同构有其不足,但它的确是比同构应用更广泛也更灵活的一种研究代数系统的有效方法.在我们学习的过程中应该加强它们之间的联系与区别,这对于技术人员,工程人员,高等理工科院校本科生,研究生是必不可少的基础数学知识,有着重要的学习意义以及应用价值.参考文献[1].杨子胥.近世代数[M].北京:高等教育出版社.2011.21-107.[2].赵春来,徐明曜.抽象代数Ⅰ[M].北京:北京大学出版社.2008.143-153.[3].张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978.31-48.[4] 崔亚琼.浅谈同构在代数中的应用[J].大同职业技术学院学报,2005,1(19):75-76.[5].杨子胥.近世代数(第二版)[M].北京:高等教育出版社.2003.81-105.[6].张禾瑞,郝炳新.近世代数基础[M].高等教育出版社.1988.30-42.[7].刘绍学.近世代数基础[M].北京:高等教育出版社.1999.45-52.[8] 杨树生.代数系统的同态与同构[J].内蒙古民族大学学报,2004,6(19):1-2.[9] J.M.Howie:An Introduction to semigroup theory[M].London:Published for the London Mathematical Society by Academic prees Inc,1975.1-156.[10] 崔亚琼.浅谈同构在代数中的应用[J].大同职业技术学院学报,2005,1(19):75-76.A T entative Discussion on the Homomorphism and Isomorphism of the Algebraic SystemDongdong He(Grade11,Class1, Major in Mathematics Education Speciality, School of Mathematics and ComputerScience, Shaanxi University of Technology, Hanzhong 723000,Shaanxi)Tutor: Hongmei ZhengAbstract : One of the most important and elementary concept in algebra is homomorphism and isomorphism.The application of the homomorphism and isomorphism on several algebraic systems is summarized in this paper,which shows the importance on the algebra.Key words: Semigroup; Group; Ring; Lattic; Homomorphism; Isomorphism。
群论中的同态与同构理论群论是数学中的一个重要分支,研究群的性质和结构。
在群论中,同态和同构是两个基本概念,它们对于理解群的性质和群之间的关系非常重要。
一、同态的定义和性质在群论中,同态是指两个群之间的映射,它保持了群运算的结构。
具体来说,设有两个群G和H,如果存在一个映射φ:G→H,对于任意的x、y∈G,有φ(xy)=φ(x)φ(y),那么φ就是一个从G到H的同态。
同态具有以下性质:1. 同态保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。
2. 同态保持单位元:对于任意的eG∈G,有φ(eG)=eH。
3. 同态保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。
二、同构的定义和性质同构是指两个群之间的一种特殊的同态映射,它是一种双射,并且保持了群运算和群结构。
具体来说,设有两个群G和H,如果存在一个映射φ:G→H,满足以下条件:1. φ是一个双射,即φ是一个一一对应的映射。
2. φ保持群运算,即对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。
那么φ就是一个从G到H的同构。
同构具有以下性质:1. 同构保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。
2. 同构保持单位元:对于任意的eG∈G,有φ(eG)=eH。
3. 同构保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。
三、同态和同构的应用同态和同构在群论中有着广泛的应用。
它们可以帮助我们研究群的性质和结构,以及群之间的关系。
1. 同态的应用:同态可以用来研究群之间的映射关系。
通过同态,我们可以将一个复杂的群映射到一个简单的群,从而简化问题的研究。
同态还可以用来刻画群的性质,例如同态核和同态像等。
2. 同构的应用:同构可以将一个群与另一个群进行一一对应,从而帮助我们找到两个群之间的相似之处。
同构还可以用来研究群的结构,例如分类群的同构分类问题。
四、同态与同构的例子为了更好地理解同态和同构的概念,我们来看几个具体的例子。
群同态定义,单、满同态,同构群同态定义,单、满同态,同构群与关于其不变子群的商群之间有某种联系,这种联系从代数角度来说,就是它们之间有某种相互联系的代数性质,或者可以建立某种对应关系.本节将介绍群与群之间的对应关系,这种对应关系保持某种代数性质.定义1 设是两个群,如果存在映射保持代数运算,即称是到的一个同态;如果同态还是满射,称是满同态; 如果同态还是单射,称是单同态;既是满同态又是单同态的同态称为同构,这时也称群与同构,记为,需要强调这个同构映射时,可记作;当时,同态映射称为自同态,同构映射称为自同构.需要说明的是:根据同态定义,在保持运算的等式中,左边式子的“?”是按照中的运算,而右边式子中的“?”是按照中的运算. 例1 设是两个群,是的单位元,令则0是到的一个同态,称其为零同态,这个同态在任意两个群之间都存在. 例2 设是虚数单位,令则是到的同态.例3 设是虚数单位,令.则按数的乘法构成一个群,并且是到的同态,(请读者验证) 是满同态. 例4设令注意是一般线性群,是到的同态,(请读者验证) 是单同态.今后,常用表示.例5 设是群,是的一个不变子群,由上节是关于的商群.令则是到的同态,并且是满同态.这个同态称为到其商群的自然同态,这是一个非常重要的同态,今后经常用到.例6 设是所有次单位根构成的群,其中是次本原单位根,令则是到模剩余类加群的同构映射,因此.我们知道,若是集合到的映射,是到的映射,则映射合成是到的映射. 这个事实对于群也同样成立.命题1 设是群到的同态,是群到的同态,则作为映射合成的是到的同态.证明:是到的映射, 又,故是到的同态.实际上我们还有如下性质:命题2(1)设是群到的单同态,是群到的单同态,则作为映射合成的是到的单同态;(2)设是群到的满同态,是群到的满同态,则作为映射合成的是到的满同态;(3)设是群到的同构,是群到的同构,则作为映射合成的是到的同构.命题3 设是群到群的同态,则(1) 的单位元在下的像是单位元;(2) 中元素的逆元在下的像;(3) 的子群在下的像是的子群,并且如果是限制在上的映射,则是到上的满同态.证明:(1) 故.(2)所以。
§3.3 群的同态基本定理1.定义;设,G G 是两个群,如果映射:G Gϕ→满足,,a b G ∀∈ 都有()()(),ab a b ϕϕϕ=则ϕ称是G 到G 的一个同态。
若ϕ分别是单射、满射、双射,则称ϕ是单同态,满同态和同构。
用GG≅表示G 到G 的同构。
定理1 设,NG 则GG N。
证明 在G 与G N 之间建立映射如下::GG Nτ→,()a aN τ=,a G ∀∈。
则显然τ是G 到G N 的一个满射。
又,a b G ∀∈,都有 ()()()()()()ab ab N aN bN a b τττ==⋅=, 即τ是G 到G N 的一个同态映射。
所以G G N 。
注:以后将上面的同态映射τ称为G 到G N 的自然同态。
核与像:设ϕ是群G 到群G 的一个同态映射,称 ker {|,()},Na a G a e ϕϕ==∈=为ϕ的核,其中e 为G 的单位元;称Im {()|}a a G ϕϕ=∀∈ 为ϕ的像。
定理2 (同态基本定理) 设ϕ是群G 到群G 的一个同态满射,则ker ,.GN G G Nϕ=≅ 且证明 首先,{}e G ,由上一节定理2有{}1ker -=N e G ϕϕ= 。
其次,在G N 与G 之间建立映射如下: :GGN σ→,()()aN aa σϕ==,a G ∀∈。
(1)设aNbN=,则1a b N -∈,于是1()a b e ϕ-=,即11()()a b a b e ϕϕ--==,从而ab=,即G N 中的每个赔集在σ下的像唯一,因此σ确为G N 到G 的一个映射。
(2)a G ∀∈,因为ϕ是满射,所以存在a G ∈,使得()a a ϕ=, 从而存在G aN N ∈,使得()aN a σ=,即σ是满射。
(3)设()()aN bN σσ=,即11()()()()()a b a b e a b eϕϕϕϕϕ--=⇒=⇒=,所以1ker a b N ϕ-∈=,从而aNbN=,即σ是单射。