刚体转动实验
- 格式:docx
- 大小:48.87 KB
- 文档页数:5
实验名称:刚体转动的研究一、实验目的:研究刚体转动时合外力矩与刚体转动的角加速度之间的关系二、实验仪器刚体转动试验仪、秒表、游标卡尺、砝码、细线。
三、实验原理:根据刚体转动定律,转动的系统所受的合外力矩合M 与刚体的转动惯量I 还有其角加速度β有如下关系βI M =合○1合外力矩的计算:在刚体转动过程中其合外力矩是由细线的拉力矩和摩擦力矩所提供的,即 βI M M =摩拉- ○2由于在实验过程中摩擦力的力矩可以近似忽略所以 βI M =拉○3所以只需要找出拉力矩和角加速度之间的关系即可,因为在忽略摩擦力的情况下有mg F =拉,则M mgr =拉,其中m 是砝码的质量,r 是滑轮的半径。
在测量过程中可测得转轴的直径D 即 2DM mg =合 ○4角加速度的测定:假定砝码静止下落为h 的距离所用的时间为t ,平均速度thv =,落到地面的瞬时速度v v 2=,下落的加速度t v a =,则角加速度ra=β,所以24hDt β=○5 所以根据实验原理找出○4和○5之间的关系就为合外力矩和角加速度的关系。
作出M 与β的图。
四、实验主要步骤:1、检查实验仪器是否完好,找出实验中的需要用到的实验仪器。
2、按照实验原理组装实验仪器。
3、测量转轴的直径,测量砝码盒的质量,规定砝码下落的高度。
4、让砝码自由下落用秒表测量砝码下落时的时间。
5、计算刚体的合外力矩和角加速度,作出M β-的图找出其中的线性关系。
五、实验数据的记录与处理:砝码的下落高度h = 1.46m ,空盒的质量0m = 8.72g ,钢环的质量1m = 1.40kg表1 绕线轴直径i D (mm)50.24 50.26 50.22 50.26表2 不同转台时不同砝码的质量下的下落时间i m (g )1 2 3 4 5 6 /t s 空28.724.804.794.844.784.834.814.81由表一可得:4111(50.2450.2650.2250.26)50.2544i i D D mm ===+++=∑()0.01A U D mm ==()0.01B U D mm ===()0.01C U D mm ==所以 (50.250.01)D mm =±由 2DM mg=合 和24h Dt β= 计算得到M 、β计算如下表;其中i i M y =i ix β=在空转台下时的最小二乘法的计算与线性拟合如下:22()82.0300xx i i S x x =-=∑∑0.1139xy i i i i S x y x y n =-=∑∑∑22()0.0002yy i i S y y =-=∑∑0.0014xy xx b S S ==0.0016i i a y b x n y bx =-=-=∑∑0.9749xy S r ==0.0020S ==0.0002a b S S =⋅=0.00003b b S r=⋅=在加上钢环时是最小二乘法的计算与线性拟合如下:22()0.8432xx ii S x x n =-=∑∑0.0117xy i i i i S x y x y n =-=∑∑∑22()0.0002yy ii S y y =-=∑∑0.0139xy xx b S S ==0.0009i ia yb x n y bx =-=-=∑∑0.9896xy S r ==0.0013S ==0.0001a b S S =⋅=0.0002b b S r=⋅=实验结论:经过实验数据的处理分析得出了以上两个图,第一个是在刚体转动仪没有加钢环的时候的, 第二个是在外加了钢环以后的到的图,两个图都满足y kx b =+的形式,即M 与β满足直线关系,即M 与β存在一定的比例关系。
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
刚体转动惯量实验结论总结一、实验目的二、实验原理1. 刚体转动惯量的概念2. 转动惯量的计算方法3. 受力情况下刚体的运动方程三、实验器材和仪器四、实验步骤及数据处理方法1. 实验步骤2. 数据处理方法五、实验结果分析与讨论1. 实验结果分析2. 讨论与误差分析六、结论总结一、实验目的本次实验旨在通过测量不同形状物体的转动惯量,掌握刚体转动惯量的测量方法,以及了解不同形状物体的转动惯量与其几何形状之间的关系。
二、实验原理1. 刚体转动惯量的概念刚体转动惯量是描述刚体绕某个轴旋转难易程度大小的物理量,用符号I表示。
在确定某个轴时,一个物体对于这个轴有一个特定的转动惯量。
单位是千克·米²(kg·m²)。
2. 转动惯量的计算方法对于简单几何形状,可以通过公式计算出其转动惯量:(1)圆环的转动惯量:I = MR²(2)圆柱的转动惯量:I = ½MR²(3)球体的转动惯量:I = ⅖MR²(4)长方体的转动惯量:I = ⅓ML²其中,M为物体质量,R为物体到旋转轴的距离,L为物体在旋转轴上的长度。
对于复杂几何形状,可以通过测量不同角速度下物体绕轴旋转的时间以及物体质量、长度等参数计算出其转动惯量。
3. 受力情况下刚体的运动方程当刚体受到外力作用时,根据牛顿第二定律可以得到刚体在运动过程中所满足的运动方程:Στ=Iα其中,Στ是刚体受到所有外力所产生的合力矩,α是刚体角加速度。
根据这个公式可以求出物体在受到一定力矩作用下所产生的角加速度。
三、实验器材和仪器本实验所需器材和仪器有:1. 转动惯量测量装置2. 数字示波器3. 计时器4. 直尺、卡尺等测量工具四、实验步骤及数据处理方法1. 实验步骤(1)将待测物体放置在转动惯量测量装置上,调整装置使其能够绕水平轴旋转。
(2)将数字示波器接在装置上,通过示波器观察物体绕轴旋转的角度和时间。
刚体转动惯量的测定实验结论是:根据实验结果可以得出,刚体的转动惯量与其质量分布和形状有关。
具体而言,当刚体绕过质心轴旋转时,它的转动惯量可以表示为:
I = Σmr²
其中,I表示刚体的转动惯量,Σ表示对所有质点求和,m表示每个质点的质量,r表示每个质点相对于旋转轴的距离。
在实验中,通常会采用不同的方法来测定刚体的转动惯量。
以下是几种常见的实验方法和相应的结论:
1. 旋转法:通过将刚体悬挂在一个旋转轴上,测定刚体在旋转过程中的角加速度和悬挂质量等参数,计算得到转动惯量。
实验结果表明,转动惯量与刚体的质量和悬挂点的位置有关。
2. 挂轴法:将刚体固定在一个水平轴上,并允许其进行摆动。
通过测定刚体的周期和摆动轴的长度等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和摆动轴的长度有关。
3. 转动台法:将刚体放置在一个转动台上,通过测定转动台的角加速度、刚体质量和转动台半径等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和转动台半径有关。
需要注意的是,不同形状和质量分布的刚体的转动惯量会有所不同。
通过实验测定转动惯量可以帮助我们了解刚体的特性,并在物理学和工程学等领域中应用于相关计算和分析中。
一、实验目的1. 理解并掌握根据转动定律测转动惯量的方法;2. 熟悉电子毫秒计的使用;3. 通过实验验证转动惯量的基本概念和规律。
二、实验原理转动惯量是物体转动惯性的量度,表示物体绕某轴转动时,其质量分布对转动的影响程度。
转动惯量越大,物体转动越困难。
转动惯量的大小与物体的质量、质量分布和转轴的位置有关。
根据转动定律,刚体绕固定轴转动时,所受合外力矩等于刚体的转动惯量与角加速度的乘积。
即:M = Iα其中,M为外力矩,I为转动惯量,α为角加速度。
本实验采用恒力矩法测量刚体的转动惯量。
恒力矩法是通过测量刚体绕固定轴转动时的角加速度,然后根据转动定律计算转动惯量。
三、实验仪器1. 刚体转动惯量实验仪2. 通用电脑式毫秒计3. 砝码4. 水平仪四、实验步骤1. 将刚体转动惯量实验仪放置在水平桌面上,使用水平仪调整实验仪的水平状态;2. 将砝码挂在实验仪的挂钩上,确保砝码与实验仪的旋转轴平行;3. 使用电子毫秒计测量砝码从静止开始下落至接触刚体所需的时间t1;4. 改变砝码的位置,重复步骤3,测量不同位置下砝码下落时间t2、t3、...、tn;5. 计算每次实验中砝码下落过程中所受的平均力F;6. 根据转动定律,计算刚体的转动惯量I。
五、数据处理1. 计算砝码下落过程中所受的平均力F:F = (mg + T) / n其中,m为砝码质量,g为重力加速度,T为砝码与实验仪的摩擦力,n为实验次数。
2. 计算刚体的转动惯量I:I = F t / (n α)其中,t为砝码下落时间,α为角加速度。
六、实验结果与分析1. 通过实验测量,得到不同砝码位置下砝码下落时间t1、t2、t3、...、tn;2. 计算砝码下落过程中所受的平均力F;3. 根据转动定律,计算刚体的转动惯量I;4. 对实验数据进行处理,分析转动惯量与砝码位置的关系。
七、实验结论1. 通过实验验证了转动定律的正确性;2. 确定了刚体的转动惯量与其质量、质量分布和转轴位置的关系;3. 熟练掌握了电子毫秒计的使用方法。
刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
刚体转动实验实验报告一、实验目的1、学习使用刚体转动实验仪测量刚体的转动惯量。
2、验证刚体转动定律和转动惯量的平行轴定理。
3、掌握数据处理和误差分析的方法。
二、实验原理1、刚体的转动惯量刚体绕固定轴转动时的转动惯量 I 等于刚体中各质点的质量 mi 与它们各自到转轴距离 ri 的平方的乘积之和,即:I =Σ mi ri²2、刚体转动定律刚体绕定轴转动时,刚体所受的合外力矩 M 等于刚体的转动惯量 I 与角加速度β的乘积,即:M =Iβ3、转动惯量的平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,对与该轴平行且相距为d 的另一轴的转动惯量为 Ip,则有:Ip = Ic + md²三、实验仪器刚体转动实验仪、秒表、砝码、游标卡尺、米尺等。
四、实验步骤1、调节刚体转动实验仪将实验仪调至水平状态,通过调节底座的螺丝,使实验仪上的气泡位于水准仪的中心。
调整塔轮和定滑轮之间的细线,使其处于紧绷状态,且与转轴垂直。
2、测量塔轮半径 R 和绕线轴半径 r使用游标卡尺分别测量塔轮的外半径 R1、内半径 R2,取平均值得到塔轮半径 R。
同样用游标卡尺测量绕线轴的半径 r。
3、测量刚体的质量 M 和形状尺寸用天平称出刚体的质量 M。
用米尺测量刚体的几何尺寸,如圆盘的直径、圆柱的长度和直径等。
4、测量空载时刚体的转动惯量在刚体上不添加砝码,轻轻转动刚体,使其在摩擦力矩的作用下做匀减速转动。
用秒表记录刚体转过一定角度θ所需的时间 t1。
5、测量加载砝码时刚体的转动惯量在绕线轴上逐渐添加砝码,使刚体在重力矩的作用下做匀加速转动。
用秒表记录刚体转过相同角度θ所需的时间 t2。
6、验证转动惯量的平行轴定理将两个相同的圆柱体对称地放置在刚体上,使其质心与转轴的距离分别为 d1 和 d2。
测量刚体在这种情况下转过相同角度θ所需的时间 t3。
五、实验数据记录与处理1、实验数据记录|实验次数|塔轮半径 R (cm) |绕线轴半径 r (cm) |刚体质量 M (kg) |空载时间 t1 (s) |加载时间 t2 (s) |平行轴时间 t3 (s) |||||||||| 1 |______ |______ |______ |______ |______ |______ || 2 |______ |______ |______ |______ |______ |______ || 3 |______ |______ |______ |______ |______ |______ |2、数据处理(1)计算塔轮半径 R 和绕线轴半径 r 的平均值:R =(R1 + R2) / 2r =(r1 + r2) / 2(2)计算空载时刚体的角加速度β1:β1 =θ / t1²(3)计算加载砝码时刚体的角加速度β2:β2 =θ / t2²(4)计算空载时刚体的转动惯量 I1:I1 =(M (R r)²) /(β1 g)(5)计算加载砝码时刚体的转动惯量 I2:I2 =(M (R r)²+ mgr) /(β2 g)(6)计算平行轴定理验证时刚体的转动惯量 I3:I3 =(M (R r)²+ 2m(d1²+ d2²))/(β3 g)3、误差分析(1)测量仪器的误差:游标卡尺和秒表的精度有限,可能导致测量结果存在一定的误差。