静电场高斯定理、环路定理
- 格式:ppt
- 大小:1.94 MB
- 文档页数:29
关于静电场的高斯定理和静电场的环路定理静电场的高斯定理和静电场的环路定理是库仑定律的推论,所以称之为定理。
由于库仑定律是静电场的基本规律,适用于静电场,所以库仑定律的推论也适用于静电场。
电场有许多种:静电场(由静止电荷激发)、恒定电场(由运动然而空间分布不随时间改变的电荷体系激发的电场)、位电场(可以在其中建立电位函数的电场,位电场的电场强度等于电位的负梯度,分为恒定的与时变的,静电场和恒定电场就属于恒定的位电场)、涡旋电场。
静电场的高斯定理的文字表述是:静电场中,电场强度穿出闭合曲面的通量等于该闭合曲面所包围的总电量除以真空电容率。
静电场的高斯定理的数学表述式是:in 0d i S qE S ε⋅=∑⎰ 。
英国著名物理学家麦克斯韦首先假设静电场的高斯定理的数学表示式in 0d i S q E S ε⋅=∑⎰ 适用于一切电场,也就是说,实际的电场强度(即总电场强度)穿出闭合曲面的通量等于闭合曲面内的总电量除以真空电容率。
这个假设后来被实验证实了。
正因为这个原因,数学表示式in 0d i S qE S ε⋅=∑⎰ 也叫做高斯定律。
由于德国数学家高斯根据库仑定律推出的这个静电场规律的数学表示式是普遍适用的,这让高斯在电磁学中享有很高的声誉。
in 0d i S q E S ε⋅=∑⎰ 有好几个称谓:高斯定理、高斯通量定理、电场的高斯定理、电场的高斯通量定理、高斯定律、高斯通量定律、电场的高斯定律、电场的高斯通量定律。
对于静电场,这个规律叫做静电场的高斯定理,或者静电场的高斯通量定理。
高斯在数学方面有一项重要成就,叫做高斯公式(也可以叫做高斯通量公式或者高斯散度公式)。
高斯公式的数学表示式是d d S Vf S f V ⋅=∇⋅⎰⎰ 。
其含义是:矢量场穿出闭合曲面的通量等于矢量场的散度在闭合曲面所包围的空间区域内的体积分。
高斯定理是电(磁)学规律,高斯公式是纯粹数学规律,两者截然不同。
但是把两者结合起来,就可以推出0E ρε∇⋅= 。
高斯定理和环路定理高斯定理和环路定理是电磁学中两个重要的基本定律。
它们描述了电场和磁场的分布和变化规律,是理解电磁现象的基础。
本文将对高斯定理和环路定理进行详细介绍。
一、高斯定理高斯定理又称为高斯电场定理,它是描述电场分布的基本原理之一。
高斯定理表明,电场通过一个闭合曲面的通量等于该曲面内部电荷的代数和与真空介电常数的乘积。
具体来说,如果一个闭合曲面内部有正电荷和负电荷,那么通过这个曲面的电场通量将等于正电荷和负电荷的代数和除以真空介电常数。
高斯定理的数学表达式为:∮E·dA = Q/ε0其中,∮E·dA表示曲面上的电场通量,Q表示曲面内部的电荷总量,ε0为真空介电常数。
高斯定理的应用非常广泛。
例如,在计算电场分布时,可以通过选择适当的高斯曲面来简化计算。
通过高斯定理,可以快速得到电场在各个位置的大小和方向。
高斯定理也被用于推导其他电场分布的公式,如电偶极子和球壳电场的公式。
二、环路定理环路定理又称为安培环路定理,它是描述磁场分布的基本原理之一。
环路定理表明,磁场沿着一个闭合回路的线积分等于该回路内部电流的代数和乘以真空磁导率。
具体来说,如果一个闭合回路内部有电流通过,那么沿着这个回路的磁场线积分将等于电流的代数和除以真空磁导率。
环路定理的数学表达式为:∮B·dl = μ0I其中,∮B·dl表示回路上的磁场线积分,μ0为真空磁导率,I表示回路内部的电流。
环路定理的应用也非常广泛。
例如,在计算磁场分布时,可以通过选择适当的环路来简化计算。
通过环路定理,可以快速得到磁场在各个位置的大小和方向。
环路定理也被用于推导其他磁场分布的公式,如长直导线和环形线圈的磁场公式。
三、高斯定理与环路定理的关系高斯定理和环路定理是电磁学中两个基本定理,它们描述了电场和磁场的分布与变化规律。
虽然它们描述的是不同的物理量,但在某些情况下,它们是相互关联的。
例如,在静电场中,高斯定理可以推导出库仑定律,即电荷间的相互作用力与它们之间的距离成反比。
第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。
2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。
二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。
Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E v ⊥表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04q U rπε=2)均匀带电球面(球面半径R )的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。
4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。
二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场。
q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E ⊥表表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。
3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。
静电场的高斯定理和环路定理
静电场是指电荷分布静止不动的情况下所产生的电场。
在静电场中,高斯定理和环路定理是两个非常重要的定理。
高斯定理是描述电场通量的定理,它表明:在任何闭合曲面内,电场的通量等于该曲面内的电荷总量除以介质常数。
即:ΦE = ∫E · dS = Q/ε0
其中,ΦE表示电场的通量,E表示电场强度,dS表示曲面元素的面积,Q表示该曲面内的电荷总量,ε0表示真空中的介电常数。
环路定理则是描述电场中电势的变化的定理,它表明:沿着任意闭合回路的线积分等于该回路内的电荷的代数和除以电容。
即:∮Edl = 0
其中,∮Edl表示沿着回路的电场强度的线积分,E表示电场强度,dl表示回路的微元长度,如果回路内有电荷则其代数和为Q。
电容则是电荷和电势之间的比值。
高斯定理和环路定理是静电学中的基本定理,对于研究静电场的性质和计算电场强度、电势等都具有重要的意义。
- 1 -。
静电场一个基本定律和一个叠加原理:库伦定律和电场强度叠加原理两个重要定理:高斯定理和静电场环路定理两个基本计算:电场强度和电势计算两个计算思路:定义式计算和特定情况下的简捷计算(高斯定理)一.知识点1. 库伦定律2. 静电场叠加原理3. 电偶极矩定义4. 电通量定义及其计算5. 高斯定理6. 静电场环路定理7. 电场力是保守力电势能概念掌握电场力做功和电势能的关系电势差8. 电势的定义及其含义二.基本计算1.电场强度计算1)根据静电场叠加原理,可以计算任意形状的带电体在空间激发的电场(1)点电荷点电荷系(2)连续带电体:1维、2维和3维体系熟悉简单带电体系在空间电场的分布电偶极子:均匀带点细棒:荷电圆环:荷电圆盘:2) 通过高斯定理,可以求解电荷分布对称体系的电场强度分布,如:均匀带电的无限长细棒:均匀带电球面:均匀带电球体:均匀带电的无限大平面薄板:均匀带电的无限长圆柱体:2. 电通量的计算,功、电势能的计算3. 电势的计算1)根据定义,可直接计算,计算中注意:积分上限为势能零点点电荷电势:点电荷系电势:均匀带正电圆环轴线上电势:2)如已知电场强度,可以通过电场强度对选择路径的积分得到均匀带电球体电场中的电势:均匀带电的无限长圆柱体:均匀带电的球面重点掌握利用高斯定理求解对称带电体系的电场强度分布,并进一步会计算电势。
注:以上知识点涉及到的例题和习题是复习重点。
三. 练习题1. 点电荷在真空中的分布如图所示,图中S 为闭合曲面,则通过闭合曲面的电通量⎰⋅sS d E = ,式中E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是 。
题1图 题2图2. 如图所示,在场强为E 的均匀电场中,A,B 两点距离为d ,AB 连线方向与E方向一致,从A 点经任意路径到B 点的场强线积分l d E AB⋅⎰= 。
3. 有4个点电荷,电量都是Q ,分别放在边长为a 的正方形的四个顶点上,在中心放一点电荷q 0 ,当q 0= 时,各点电荷都处于平衡。