离散数学——二元关系习题讲解
- 格式:ppt
- 大小:380.50 KB
- 文档页数:5
第四章二元关系例1 设A={0,1},B={a,b},求A⨯B ,B⨯A,A⨯A 。
解:A⨯B={<0,a>,<0,b>,<1,a>,<1,b>}B⨯A={<a,0>,<b,0>,<a,1>,<b,1>}A⨯A={<0,0>,<0,1>,<1,0>,<1,1>}可见A×B≠B×A例2、关于笛卡尔乘积的几个证明1)如果A、B都是有限集,且|A|=m, |B|=n,则|A⨯B |=mn.证明:由笛卡尔积的定义及排列组合中的乘法原理,直接推得此定理。
2) A⨯Φ=Φ⨯B=Φ3) ⨯对∪和∩满足分配律。
设A,B,C是任意集合,则⑴A⨯(B∪C)= (A⨯B)∪(A⨯C);⑵A⨯(B∩C)= (A⨯B)∩(A⨯C);⑶(A∪B)⨯C= (A⨯C)∪(B⨯C);⑷(A∩B)⨯C= (A⨯C)∩(B⨯C)证明⑴:任取<x,y>∈A⨯(B∪C)⇔x∈A ∧y∈B∪C ⇔x∈A ∧(y∈B∨y∈C)⇔( x∈A ∧y∈B)∨(x∈A∧y∈C)⇔<x,y>∈A⨯B∨<x,y>∈A⨯C⇔<x,y>∈(A⨯B)∪(A⨯C) 所以⑴式成立。
4)若C≠Φ,,则A⊆B⇔(A⨯C⊆B⨯C) ⇔(C⨯A⊆C⨯B).证明: 必要性:设A⊆B,求证A⨯C⊆B⨯C任取<x,y>∈A⨯C ⇔x∈A∧y∈C⇒x∈B∧y∈C (因A⊆B)⇔<x,y>∈B⨯C 所以, A⨯C⊆B⨯C.充分性:若CΦ≠, 由A⨯C⊆B⨯C 求证A⊆B取C中元素y, 任取x∈A⇒x∈A∧y∈C⇔<x,y>∈A⨯C⇒<x,y>∈B⨯C (由A⨯C⊆B⨯C )⇔x∈B∧y∈C⇒ x∈B 所以, A⊆B.所以A⊆B⇔(A⨯C⊆B⨯C)类似可以证明A⊆B ⇔(C⨯A⊆C⨯B).5) 设A、B、C、D为非空集合,则A⨯B⊆C⨯D⇔A⊆C∧B⊆D.证明: 首先,由A⨯B⊆C⨯D 证明A⊆C∧B⊆D.任取x∈A,任取y∈B,所以x∈A∧y∈B⇔<x,y>∈A×B⇒<x,y>∈C×D (由A⨯B⊆C⨯D )⇔x∈C∧y∈D 所以, A⊆C∧B⊆D.其次, 由A⊆C,B⊆D. 证明A⨯B⊆C⨯D任取<x,y>∈A×B<x,y>∈A×B ⇔ x∈A∧y∈B⇒ x∈C∧y∈D (由A⊆C,B⊆D)⇔<x,y>∈C×D 所以, A⨯B⊆C⨯D 证毕.例3、令A={1,2,3}给定A上八个关系如下:可见这八个关系中R1、R3、R4是自反的。
第二章二元关系习题2.11.a)R = {<0, 0>, <0, 2>, <2, 0>, <2, 2>}b)R = {<1, 1>, <4, 2>}2.R1⋃ R2 = {<1, 2>, <2, 4>, <3, 3>, <1, 3>, <4, 2>}R1⋂ R2 = {<2, 4>}dom R1= {1, 2, 3}dom R2= {1, 2, 4}ran R1= {2, 3, 4}ran R2= {2, 3, 4}dom (R1⋃ R2) = {1, 2, 3, 4}ran (R1⋂ R2) = {4}3.证明:(根据定义域和值域的定义进行证明)因为x ∈ dom (R1⋃ R2) 当且仅当有y ∈ B使得<x, y> ∈ (R1⋃ R2)当且仅当有y ∈ B使得<x, y> ∈ R1或<x, y> ∈ R2当且仅当有y ∈ B使得<x, y> ∈ R1或有y ∈ B使得<x, y> ∈ R2当且仅当x ∈ dom (R1) 或x ∈ dom (R2)当且仅当x ∈ dom (R1) ⋃ dom (R2)所以,dom (R1⋃ R2) = dom (R1) ⋃ dom (R2) 。
因为若x ∈ ran (R1⋂ R2),则有x ∈ A使得<x, y> ∈ (R1⋂ R2) ;有x ∈ A使得<x, y> ∈ R1且<x, y> ∈ R2 ;有x ∈ A使得<x, y> ∈ R1且有x ∈ A使得<x, y> ∈ R2 ;x ∈ ran (R1) 且x ∈ ran (R2);x ∈ ran (R1) ⋂ ran (R2)。
所以,ran (R1⋂ R2) ⊆ ran (R1) ⋂ ran (R2)。