大气污染控制工程课程设计
- 格式:docx
- 大小:318.25 KB
- 文档页数:29
1 前言1.1 锅炉烟气的特点国内锅炉设备所用燃料以煤为主,排出的污染物主要有烟尘和二氧化硫等气体。
1.2 危害随着我国经济的快速发展,因燃煤排放的二氧化硫、颗粒物等有毒有害的污染物质急剧增多。
空气污染以煤烟型为主,主要污染物是二氧化硫和烟尘。
我国的大气污染已危害了人们的身体健康。
研究表明,在中国引起慢性障碍性呼吸道疾病的主要决定因素是大气污染。
大气污染造成了巨大的经济损失,制约了经济的发展。
1.3 处理现状介绍根据《国民经济和社会发展第十一个五年规划纲要》提出的环境保护目标,“十一五”期间,减少二氧化硫排放总量的主要工程措施是加快和强化现役及新建燃煤电厂脱硫设施建设与运行监管。
选用高效除尘脱硫工艺对缓解我国使用燃煤锅炉造成的大气污染具有重要意义。
2 设计概况说明2.1 设计依据1、《锅炉大气污染物排放标准》(DB44/765- 2010);2、《国家大气污染物综合排放标准》(GB16297-1996);3、《广东省大气污染物排放标准》(DB44/27-2001);4、《采暖通风和空气调节设计规范》(GBJ19-88);5、《机械设备安装工程施工及验收规范》(TJ231-78);6、《工业管道工程施工及验收规范》(GBJ235-82);7、《通风与空调工程施工及验收规范》(GBJ243-82);8、《建筑安装工程质量检验评定标准(通风机械设备安装工程)》(TJ305-75);9、《低压配电装置及线路设计规范(GBJ54-83);10、《通用用电设备配电规范》(GBJ50055-93);2.2 设计原则1、采用成熟可靠的工艺,在保证排放达标的前提下尽可能减少投资、降低成本;2、外购设备选用国内知名品牌的优良产品,并切实可行;3、非标设备应符合国家或行业相关规范,并保证性能稳定、外表美观;4、管道设备应采取必要防腐措施,延长寿命。
2.3 设计范围根据锅炉的设计参数,承担该工程的工艺初步设计及设计计算。
大气污染控制工程课程设计Air Pollution Control Engineering Curriculum Design一、课程基本情况课程类别:专业任选课课程学分:2学分课程总学时:2周,其中讲课:0学时,实验(含上机):0学时,课外2周课程性质:选修开课学期:第5学期先修课程:环境工程学原理;大气污染控制工程适用专业:环境工程教材:张慧等,大气污染控制工程设计,气象出版社,2015。
开课单位:环境科学与工程学院环境工程系二、课程性质、教学目标和任务大气污染控制工程课程设计是大气污染控制工程课程的重要实践性环节,是环境工程专业学生一次较全面的大气污染控制设计能力训练,在实现学生总体培养目标中占有重要地位。
通过课程设计使学生在学习专业技术基础和主要专业课程的基础上,学习和掌握大气污染物控制工程设计的基本知识和方法,培养学生综合运用所学的环境工程领域的基础理论、基本技能和专业知识分析问题和解决工程设计问题的能力,培养学生调查研究,查阅技术文献、资料、手册,进行工程设计计算、图纸绘制及编写技术文件的基本能力。
三、教学内容和要求第1阶段下达设计任务书(2天)指导学生针对大气污染控制工程课程内容(包括颗粒污染物、气态污染物的处理方法、技术与设备),以及净化设备的设计计算、管道布置、阻力计算、风机选型等相关知识,进行讲述,提出设计目的、设计要求和设计内容;(1)理解颗粒污染物、气态污染物的处理方法、技术与设备;(2)掌握净化设备的设计计算、管道布置、阻力计算、风机选型等相关知识。
重点:颗粒污染物、气态污染物的处理方法、技术与设备难点:净化设备的设计计算、管道布置、阻力计算第2阶段选题,设计方案比选(0.5天)根据设计任务书,围绕大气污染控制工程课程设计要求,展开选题,题目可来自理论课程或社会实践。
在满足课程设计要求和设计任务书的前提下,综合考虑设计工作量和实际条件,选题恰当、适中,符合当前市场需求,具有创意。
课程设计—大气污染控制工程
大气污染是环境保护和人类健康的一个重要问题,目前全球大多数国家都已经开始采取措施限制空气污染。
因此,大气污染控制工程作为一门重要的专业,其课程设计至关重要。
首先,该课程的主要目标是帮助学生了解大气污染的机制、防治方法和技术。
这包括大气污染的来源、成分、影响因素,以及防治措施和技术等方面的研究。
具体来说,该课程将通过理论课程和实践操作,为学生提供理论和实践相结合的学习体验,使其能够更好地理解大气污染的现状和未来发展趋势。
其次,该课程的内容主要包括:大气污染的基本概念、大气污染的种类和来源、大气污染控制与治理技术等。
其中,控制污染的技术包括物理、化学和生物等方法,如静电沉降、离子交换、膜分离、光化学氧化、生物反应器等。
此外,该课程还将重点介绍大气污染防治政策、的国际标准、法律法规和国内状况等。
最后,该课程的教学方法应该采用多种形式,包括理论课程、实验操作、案例分析和实地考察等,以便学生能够更加深入地了解大气污染控制工程的实际应用。
这样不仅能够培养学生的实际操作能力,还可以增强他们的综合素质和创新能力。
总之,大气污染控制工程的课程设计应该贯穿理论与实践相结合的教学原则,充分利用多种教学手段实现各个方面的教
学目标。
借助该课程,将对学生的职业发展有正面的影响,为大气污染治理事业的发展提供有力的支持。
大气污染控制工程课程设计(1)一、前言空气质量关系到人类和动植物的健康和生态环境。
随着经济的发展和人口的增加,空气污染已经成为全球环境问题的重要组成部分。
因此,采取有效的方法来降低大气污染已经成为重要而紧迫的问题。
为了更好地掌握大气污染防治技术,本文将通过课程设计来探讨大气污染控制工程的相关知识,希望能够对学习者在掌握大气污染治理技术方面提供一定的帮助。
二、课程设计目的本课程设计的目的是帮助学习者更好地理解大气污染的防治技术。
通过此设计,学习者将能够掌握以下内容:•掌握大气污染防治的基本知识,了解大气污染的成因和影响;•学习大气污染防治方案的制定方法,掌握雾霾天气应急预案的制定;•学习大气污染治理技术的基本原理和方法;•学习大气污染监测技术和管理系统的建设。
三、课程设计内容课程设计共分为四部分:第一部分:大气污染防治的基本知识•大气污染的成因和影响;•大气环境质量指标及其评价标准;•大气污染物排放标准及其限制。
第二部分:大气污染防治方案的制定方法•雾霾天气应急预案制定;•大气污染治理规划编制。
第三部分:大气污染治理技术•大气污染治理技术的基本原理和常用方法;•烟气脱硫技术;•烟气脱硝技术;•动力煤污染物治理技术。
第四部分:大气污染监测技术和管理系统的建设•大气污染监测技术的基本原理和常用方法;•大气环境监测技术和管理系统的建设。
四、课程设计要求1.在学习后,学生应该熟悉大气污染的防治技术,并能够应用相关的知识和技术;2.学生需要完成大气污染防治方案的制定、大气污染治理技术的应用以及大气污染监测技术和管理系统的建设等任务,并撰写实验报告;3.学生需要在规定的周期内完成任务,按时提交实验报告。
五、大气污染控制工程的课程设计旨在帮助学习者更好地了解和掌握大气污染防治技术,掌握相关的基本理论、技术和方法。
通过该课程设计,学生能够培养自己的实践能力,提高综合素质,为未来的发展打下坚实的基础。
大气污染控制工程课程设计实例一、课程设计题目某燃煤采暖锅炉烟气除尘系统设计二、课程设计的目的通过课程设计使学生进一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养学生运用所学理论知识进行净化系统设计的初步能力。
通过设计,使学生了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。
三、设计原始资料锅炉型号:SZL4-13型,共4台设计耗煤量:600kg/h(台)排烟温度:160℃烟气密度:1.34kg/Nm3空气过剩系数: =1。
4排烟中飞灰占煤中不可燃成分的比例:16%烟气在锅炉出口前阻力:800Pa当地大气压力:97.86kPa冬季室外空气温度:—1℃空气含水按0.01293kg/ Nm3烟气其他性质按空气计算煤的工业分析值:YO=5%,C=68%,YH=4%, Y S=1%,YYV=13%N=1%,YW=6%,Y A=15%, Y按锅炉大气污染物排放标准(GB13271—2001)中二类区标准执行:烟尘浓度排放标准:200mg/ Nm3二氧化硫排放标准:900mg/ Nm3净化系统布置场地为锅炉房北侧15m以内.四、设计计算1.燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算(1)理论空气量()Y Y Y Y aO S H C Q 7.07.056.5867.176.4-++=' /kg)(m N 3 式中:YC 、Y H 、YS 、YO 分别为煤中各元素所含的质量百分数。
)/(97.6)05.07.001.07.004.056.568.0867.1(76.4'3kg mQ Na =⨯-⨯+⨯+⨯⨯=(2)理论烟气量(设空气含湿量12。
93g/m 3N )Y a a Y Y Y Y sN Q Q W H S C Q 8.079.0016.024.12.11)375.0(867.1+'+'++++='(m 3N /kg )式中:aQ '—理论空气量(m 3N /kg ) YW -煤中水分所占质量百分数;Y N -N 元素在煤中所占质量百分数/kg)(m 42.701.08.097.679.097.6016.006.024.104.02.11)01.0375.068.0(867.1'N 3=⨯+⨯+⨯+⨯+⨯+⨯+⨯=s Q(3)实际烟气量a ss Q Q Q '-+'=)1(016.1α (m 3N /kg) 式中:α -空气过量系数。
大气污染控制工程课程设计任务书大气污染控制工程课程设计任务书一、任务背景随着工业化、城市化进程的加快,大气污染问题越来越严重,已成为全球关注的重点环境问题之一。
大气污染控制工程作为一门前沿技术,以有效地治理和控制大气污染为目标,具有极其重要的意义。
为了提高大学生对大气污染控制工程的认知和理解,本次课程设计将针对大气污染控制工程进行探讨,了解大气污染控制工程的基础理论、技术应用和实际操作,进而掌握相应的实践操作技能。
二、任务目标本次课程设计主要目标如下:1.了解大气污染控制工程的基础理论、技术应用和实际操作。
2.掌握各种大气污染控制工程的设计和运行原理。
3.熟悉大气污染控制工程的实践操作技能。
4.通过课程设计,提高学生对大气污染控制工程的综合性应用能力。
三、任务内容1.大气污染控制工程概述利用课堂讲解、分组讨论、调研报告等形式,了解大气污染控制工程的概述,包括大气污染概念、通用大气污染控制技术和大气污染控制技术的分类等方面。
2.大气污染物的性质和特征结合实验操作、课堂讲解、研究报告等形式,认识大气污染物的性质、来源和特征,探讨污染物的生成机理及污染物的影响。
3.大气污染治理技术和应用利用组内小组讨论、实验操作和数学模拟技术,了解大气污染治理技术和应用,包括大气监测、大气污染源排放标准和大气污染控制技术等方面。
更具体地,学生需要了解大气污染预防措施、大气污染防治政策和技术成果,并选择一个例子,进行实验操作、数据分析和技术应用研究。
4.大气污染控制程序的模拟和优化设计通过实验操作和模拟技术,模拟和分析大气污染控制程序,并进行优化设计,提高大气污染控制效果和经济效益。
五、作业要求1.按照学科规律和任务要求,按时完成课程设计任务。
2.在课程设计完结后,结合实验数据和研究报告,撰写课程设计论文,论文内容应包括:(1)课程设计要求与目标。
(2)课程设计的理论依据和研究方法。
(3)课程设计的实际操作步骤和过程。
目录2 1 绪论 ....................................................................................................................21.1 课程设计的目的......................................................................................1.2设计任务与要求 (2)3 2.设计说明书 ........................................................................................................32.1集气罩的设计..........................................................................................2.1.1设计原则.......................................................................................32.1.2集气罩尺寸参数的确定 (3)2.1.3控制点控制速度v x的确定 (4)2.1.4排风量的确定 (6)2.2 除尘器的选型与设计 (6)2.2.1除尘器类型比选 (6)2.2.2 除尘器的选型 (7)2.3管道、弯头及三通的设计 (8)2.3.1 管道设计原则 (8)2.3.2管道的初步设计 (8)2.3.3管径与管内流速的确定 (9)2.3.4弯头的设计 (10)2.3.5三通的设计计算 (10)2.3.6管段长度的确定 (10)112.4压损平衡设计........................................................................................2.4.1管段压损计算 (11)132.4.2压力校核.....................................................................................2.4.3除尘系统总压力损失 (13)2.5 风机的选择与校核 (14)16 致谢 .....................................................................................................................17 参考文献 .............................................................................................................1 绪论1.1 课程设计的目的课程设计的目的在于进一步巩固和加深课程理论知识,并能结合实践,学以致用。
大气污染掌握工程课程设计实例一.课程设计标题某燃煤采暖汽锅烟气除尘体系设计二.课程设计的目标经由过程课程设计使学生进一步消化和巩固本能课程所学内容,并使所学的常识体系化,造就学生应用所学理论常识进行净化体系设计的初步才能.经由过程设计,使学生懂得工程设计的内容.办法及步骤,造就学生肯定大气污染掌握体系的设计筹划.进行设计盘算.绘制工程图.应用技巧材料.编写设计解释书的才能.三.设计原始材料汽锅型号:SZL4-13型,共4台设计耗煤量:600kg/h(台)排烟温度:160℃烟气密度:1.34kg/Nm3空气多余系数: =1.4排烟中飞灰占煤中不可燃成分的比例:16%烟气在汽锅出口前阻力:800Pa当地大气压力:97.86kPa冬季室外空气温度:-1℃空气含水按0.01293kg/ Nm3烟气其他性质按空气盘算煤的工业剖析值:YO=5%,C=68%, YH=4%, Y S=1% , YYV=13%W=6%, Y A=15%, YN=1%, Y按汽锅大气污染物排放标准(GB13271-2001)中二类区标准履行:烟尘浓度排放标准:200mg/ Nm3二氧化硫排放标准:900mg/ Nm3净化体系布置场地为汽锅房北侧15m以内.四.设计盘算1.燃煤汽锅排烟量及烟尘和二氧化硫浓度的盘算 (1)理论空气量()Y Y Y Y aO S H C Q 7.07.056.5867.176.4-++=' /kg)(m N 3 式中:YC .Y H .YS .YO 分离为煤中各元素所含的质量百分数.)/(97.6)05.07.001.07.004.056.568.0867.1(76.4'3kg mQ Na =⨯-⨯+⨯+⨯⨯=(2)理论烟气量(设空气含湿量12.93g/m 3N )Y a a Y Y Y Y sN Q Q W H S C Q 8.079.0016.024.12.11)375.0(867.1+'+'++++='(m 3N /kg )式中:aQ '—理论空气量(m 3N /kg ) YW —煤中水分所占质量百分数;Y N —N 元素在煤中所占质量百分数/kg)(m 42.701.08.097.679.097.6016.006.024.104.02.11)01.0375.068.0(867.1'N 3=⨯+⨯+⨯+⨯+⨯+⨯+⨯=s Q(3)现实烟气量a ss Q Q Q '-+'=)1(016.1α (m 3N /kg ) 式中:α —空气过量系数.sQ '—理论烟气量(m 3N /kg ) aQ '—理论空气量(m 3N /kg ) 烟气流量Q 应以m 3N /h 计,是以.⨯=s Q Q 设计耗煤量/h)(m615060025.10/kg)(m 25.1097.6)14.1(016.142.7N3N 3=⨯=⨯==⨯-⨯+=设计耗煤量s s Q Q Q(4) 烟气含尘浓度:sYsh Q A d C ⋅= (kg/m 3N )式中:sh d —排烟中飞灰占煤中不可燃成分的百分数; Y A —煤中不可燃成分的含量;s Q —现实烟气量(m 3N /kg ).)(mg/m 1034.2)(kg/m 1034.225.1015.016.0N 33N 33⨯=⨯=⨯=-C (5) 烟气中二氧化硫浓度的盘算61022⨯=SY SO Q S C (mg/ m 3N ) 式中:YS — 煤中含硫的质量分数. S Q — 燃煤产生的现实烟气量(m 3N /kg ))(mg/m 1091.11025.1098.001.02N 3362⨯=⨯⨯⨯=SO C 2.除尘器的选择 (1)除尘效力CC s-=1η 式中:C —烟气含尘浓度,mg/m 3N ;C s —汽锅烟尘排放标准中划定值,mg/m 3N .3200191.45%2.3410η=-=⨯ (2)除尘器的选择工况下烟气流量:TQT Q ''=(m 3/h ); 式中,Q —标准状况下的烟气流量,m 3/h; 'T —工况下烟气温度,k;T —标准状况下温度273k./s)(m 7.2360097543600'/h)(m 9754273)160273(6150'33===+⨯=Q Q 依据工况下的烟气量.烟气温度及请求达到的除尘效力肯定除尘器:由陕西蓝天汽锅装备制作有限公司所供给的“XDCG 型陶瓷多管高效脱硫除尘器”(《国度级科技成果重点推广筹划》项目)中拔取XDCG4型陶瓷多管高效脱硫除尘器.产品机能规格见表1,装备外型构造尺寸见表2.表1 XDCG4型陶瓷多管高效脱硫除尘器产品机能规格以及体系总阻力(1)各装配及管道布置的原则依据汽锅运行情形及汽锅现场的现实情形肯定各装配的地位.一旦肯定各装配的地位,管道的布置也就根本可以肯定了.对各装配及管道的布置应力图简略.紧凑.管路短.占地面积小,并使安装.操作和检修便利.(2)管径的肯定πνQd 4=(m )式中,Q —工况下管道内的烟气流量(m 3/s );ν—烟气流速(m/s )(对于汽锅烟尘ν=10-15 m/s ). 取ν=14 m/s,49.01414.37.24=⨯⨯=d (m )圆整并拔取风道:内径=d 1=500-2⨯0.75=495.5mm 由公式πνQd 4=可盘算出现实烟气流速:8.134955.014.37.24422=⨯⨯==d Q πν (m/s ) 4.烟囱的设计(1)烟囱高度的肯定起首肯定共用一个烟囱的所有汽锅的总的蒸发量(t/h ),然后依据汽锅大气污染物排放标准中的划定(表3)肯定烟囱的高度.表3 汽锅烟囱高度表汽锅总额定出力:4⨯4=16(t/h ) 故选定烟囱高度为40m. (2)烟囱直径的盘算烟囱出口内径可按下式盘算: ϖQd 0188.0= (m )式中:Q —经由过程烟囱的总烟气量(m 3/h ) ω—按表4拔取的烟囱出口烟气流速(m/s )表4 烟囱出口烟气流速m/s选定ω=4m/sm d 83.14975440188.0=⨯= 圆整取d=1.8m 烟囱底部直径H i d d ⋅⋅+=221 (m ) 式中:d 2—烟囱出口直径(m ); H —烟囱高度(m );i —烟囱锥度(平日取i =0.02~0.03). 取i =0.02,d 1=1.83+2⨯0.02⨯40=3.5m. (3)烟囱的抽力B t t H S p k y ⋅⎪⎪⎭⎫⎝⎛+-+=273127310342.0 (Pa ) 式中,H —烟囱高度(m ); t k —外界空气温度(℃); t p —烟囱内烟气平均温度(℃); B —当地大气压(Pa ).)(1831086.97)160273112731(400342.03Pa S y =⨯⨯+--⨯⨯= 5. 体系阻力的盘算 (1)摩擦压力损掉对于圆管, 2.2ρυλd L P L =∆ (Pa )式中, L —管道长度(m ) d —管道直径(m ); ρ—烟气密度(kg/m 3); υ—管中气流平均速度(m/s );λ—摩擦阻力系数,是气体雷诺数Re 和管道相对光滑度dK的函数.可以查手册得到(现实中对金属管道λ值可取0.02,对砖砌或混凝土管道λ值可取0.04).a . 对于φ500圆管L=9.5m)/(84.044327334.11602732733m kg n=⨯=+=ρρ)(4.3028.1384.05.05.902.02Pa P L =⨯⨯⨯=∆b . 对于砖砌拱型烟道222)2(242BB D A ππ+=⨯=mmB mm D 450500==故则XA R =式中,A 为面积,X 为周长. (2)局部压力损掉22ρυξ⋅=∆P (Pa )式中:ξ—异形管件的局部阻力系数,可在有关手册中查到,或经由过程实验获得; υ—与ξ相对应的断面平均气流速度(m/s ); ρ—烟气密度(kg/m 3).图3中一为减缩管 α≤45℃时,ξ=0.1 取α=45℃.υ=13.8m/s)(0.828.1384.01.0222Pa P =⨯⨯==∆ρυξ)(12.05.67tan 05.01m l =⨯=图3中二为30℃Z 型弯头)(6.0595.039.2985.2m h ==-=12.05.06.0==Dh,取157.0'=ξ'Re ξξξ=由《通风》817页表18-17得Re ξ=1.0157.0157.00.1=⨯=ξ)(6.1228.1384.0157.0222Pa P =⨯⨯==∆ρυξ图3中三为渐扩管79.144985.014.3135.0221=⨯⨯=A A查《大气污染掌握工程》附表十一,并取o30=α 则19.0=ξ)(2.1528.1384.019.0222Pa P =⨯⨯==∆ρυξl 图4 除尘器出口至风机进口段管道示意图图4中a 为渐扩管1.045=≤ξα时,o取s m o/8.13,30==υα)(93.0)(0.828.1384.01.0222m l Pa P ==⨯⨯==∆ρυξ 图4中b.c 均为90o 弯头,23.0,,500===ξ则取D R D则)(4.1828.1384.023.0222Pa P =⨯⨯==∆ρυξ两个弯头)(8.364.1822'Pa P P =⨯=∆=∆ 对于如图5图5 T 型三通管示意图78.0=ξ)(4.6228.1384.078.0222Pa P =⨯⨯==∆ρυξ对于T 型合流三通:55.0=ξ)(4428.1384.055.0222Pa P =⨯⨯==∆ρυξ体系总阻力(个中汽锅出口前阻力为800Pa,除尘器阻力1400 Pa ):∑++++++++++=∆1400800444.628.360.82.156.120.81.844.30h)(5.2601Pa =6.风机和电念头选择及盘算(1)风机风量的盘算 Bt Q Q py 325.1012732731.1⨯+⋅= (m 3/h ) 式中:1.1—风量备用系数; Q —风机前风量(m 3N /h );t p —风机前烟气温度(℃),若管道不太长,可以近似取汽锅排烟温度; B —当地大气压力(kPa )./hm 8.1110986.97325.10127316027361501.13=⨯+⨯⨯=y Q(2)风机风压的盘算 ∑⨯⨯++-∆=Yyp y y B t t S h H ρ293.1335.101273273)(2.1 (Pa ) 式中: 1.2—风压备用系数;∑∆h —体系总阻力(Pa )S y —烟囱抽力(Pa );t p —风机前烟气温度t y —风机机能表中给出的实验用气体温度(℃); ρy —标况下烟气密度(γ=1.34kg/m 3N ).)(240034.1293.186.97325.101250273160273)1835.2601(2.1Pa H y =⨯⨯++-=依据y y H Q 和选定Y5-47-136.5C 工况序号为2的引风机,机能表为:(3)电念头功率的盘算 2110003600ηηβ⨯=y y H Q Ne (kw )式中:Q y —风机风量(m 3/h ); H y —风机风压(Pa );η1—风机在全压头时的效力(一般风机为0.6,高效风机约为0.9); η2—机械传动效力,当风机与电机直联传动时η2=1,用联轴器衔接时 η2=0.95~`0.98,用三角皮带传动时η2=0.95; β—电念头备用系数,对引风机,β=1.3.9.1695.06.010*******.1240011109=⨯⨯⨯⨯⨯=Ne (kw )依据电念头的功率.风机的转速.传动方法选定Y180M-2型电念头. 7.体系中烟气温度的变化(1)烟气在管道中的温度降 VC Q Fq t ⋅⋅=∆1 (℃)式中:Q —烟气流量(m 3N /h ) F —管道散热面积(m 2)C V —烟气平均比热(一般C =1.352~1.357kJ/m 3N •℃); Q —管道单位面积散热损掉.室内q =4187kJ/m 2•h 室外q =5443kJ/m 2•h室内管道长:L=2.18-0.6-0.12=1.46m229.25.046.114.3m D l F =⨯⨯=⋅=π室外管道长L=9.5-1.46=8.04m262.125.004.814.3m D l F =⨯⨯=⋅=π354.150.6)62.12544329.24187(221122111⨯⨯+⨯=⋅+=⋅+⋅=∆vvv C Q F q F q C Q Fq C Q F q t=9.4(℃)(2)烟气在烟囱中的温度降: DA H t ⋅=∆2 (℃)式中:H —烟囱高度(m );D —合用统一烟囱的所有汽锅额定蒸发量之和(t/h ); A —温降系数,可由表5查得.表5 烟囱温降系数4444.0402=⨯⨯=∆t (℃)总温度降4.1344.921=+=∆+∆=∆t t t (℃)五.重要参考书目(略)。
大气污染控制工程课程设计简介大气污染是当前全球环境问题中,影响人类健康和环境品质的主要问题之一。
为了控制大气污染,大气污染控制工程课程设计应运而生。
本文将从课程设计的意义、工程设计的流程和技术选择三个方面进行介绍和探讨。
课程设计的意义近年来,大气污染问题引起了国际社会的高度重视。
为应对这一问题,各国政府纷纷出台了相关政策和措施。
而大气污染控制工程作为一门专业课程,不仅具有理论研究的价值,还具有较强的实用性和社会价值。
通过大气污染控制工程课程设计的学习,学生可以了解大气污染控制的基本概念和工程原理,并掌握相关的工程设计和运营管理知识。
同时,课程设计还能促进学生的创新能力和实践能力的培养,为学生将来从事大气污染控制工作打下基础。
工程设计的流程确定设计目标在进行大气污染控制工程设计之前,首先要明确设计目标。
设计目标包括控制的污染物种类、控制的程度和控制的成本等要素,这些要素共同构成了设计目标的综合考虑因素。
通过明确设计目标,可以为后续的工程设计提供依据。
制定方案在明确设计目标之后,接下来就是制定大气污染控制的具体方案。
制定方案时需要考虑技术的可行性、经济的可行性和社会的可持续性等问题。
根据设计目标的要求,结合已有的技术和经验,制定一个符合实际情况的方案。
进行工程设计在制定出方案之后,就要开始进行具体的工程设计。
工程设计包括工程细节的设计、运营管理的预计、以及实施方案的编制等。
要保证设计的完整性和正确性,需要进行严谨的计算和模拟分析。
同时,工程设计也需要与各种法规的要求相协调,确保工程符合规范和标准。
实施工程在完成工程设计之后,就是实施工程的过程。
实施工程需要有一个明确的计划和过程控制,必须要对各种因素进行全面的考虑,才能确保工程质量和安全。
实施工程时需要特别关注施工过程中的环保、安全问题等,同时要保证工期和成本的控制。
进行检测和评估在完成工程实施之后,应当进行检测和评估工作。
检测和评估的目的在于检查工程实施情况是否符合预期效果,并评估工程的实施成果和经济效益。
大气污染控制工程课程设计集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]大气污染控制工程课程设计题目SZL4-13型燃煤采暖锅炉烟气除尘系统设计班级环境N121学号 9533学生姓名顾丹阳指导老师王成贤完成日期 2015年6月7日目录前言 (1)第1章大气污染控制工程课程设计任务书 (2)设计题目 (2)设计任务 (2)原始资料 (2)第2章烟气量烟尘和二氧化硫浓度计算 (3)标准状态下理论空气量 (3)标准状态下理论湿烟气量 (3)标准状态下实际烟气量 (3)标准状态下烟气含尘浓度 (4)标准状态下烟气中二氧化硫浓度的计算 (4)第3章除尘装置的选择设计 (4)除尘装置应达到的净化效率 (4)除尘器的选择 (5)除尘况烟气流量 (5)除尘器型号的确定 (5)第4章确定除尘设备风机和烟囱的位置及管道布置 (6)各装置及管道布置的原则 (6)管径的确定 (6)第5章烟囱的设计 (7)烟囱高度的确定 (7)烟囱直径的计算 (7)烟囱的抽力 (8)第6章系统阻力的计算 (8)摩擦压力损失 (8)局部压力损失 (9)各管段压力损失计算 (9)第7章风机和电动机选择及计算 (12)风机风量的计算 (12)风机风压的计算 (12)选用风机型号及参数 (13)电动机功率的计算 (13)选用电机型号及参数 (14)第8章总结 (15)第9章参考文献 (15)前言凡是能使空气质量变差的物质都是大气污染物。
大气污染物已知的约有100多种。
有自然因素(如森林火灾、火山爆发等)和人为因素(如工业废气、生活燃煤、汽车尾气等)两种,并且以后者为主要因素,尤其是工业生产和交通运输所造成的。
主要过程由污染源排放、大气传播、人与物受害这三个环节所构成。
影响大气污染范围和强度的因素有污染物的性质(物理的和化学的),污染源的性质(源强、源高、源内温度、排气速率等),气象条件(风向、风速、温度层结等),地表性质(地形起伏、粗糙度、地面覆盖物等)。
防治方法很多,根本途径是改革生产工艺,综合利用,将污染物消灭在生产过程之中;另外,全面规划,合理布局,减少居民稠密区的污染;在高污染区,限制交通流量;选择合适厂址,设计恰当烟囱高度,减少地面污染;在最不利气象条件下,采取措施,控制污染物的排放量。
中国已制订《中华人民共和国环境保护法》,并制订国家和地区的“废气排放标准”,以减轻大气污染,保护人民健康。
大气污染物按其存在状态可分为两大类。
一种是气溶胶状态污染物,另一种是气体状态污染物。
气溶胶状态污染物主要有粉尘、烟液滴、雾、降尘、飘尘、悬浮物等。
气体状态污染物主要有以二氧化硫为主的硫氧化合物,以二氧化氮为主的氮氧化合物,以一氧化碳为主的碳氧化合物以及碳、氢结合的碳氢化合物。
大气中不仅含无机污染物,而且含有机污染物。
大气污染控制工程课程设计任务书第1章并且随着人类不断开发新的物质,大气污染物的种类和数量也在不断变化。
就连南极和北极的动物也受到了大气污染的影响!设计题目SZL4-13型燃煤采暖锅炉烟气除尘系统设计设计任务燃煤锅炉燃烧过程排放的烟气中含有大量的烟尘和二氧化硫,如不采取有效的治理措施,将会对周围大气环境及居民健康造成严重影响与危害。
因此,本设计结合燃煤锅炉烟气排放特点,根据所提供的原始参数及资料,拟设计一套燃煤采暖炉房烟气除尘系统。
要求设计的净化系统效果好、操作方便、投资省,且出口烟气浓度达到锅炉大气污染物排放标准(GB13271-2001)中二类区标准,即:烟尘排放浓度≤200mg/Nm3。
原始资料锅炉型号:SZL4-13型,额定蒸发量h锅炉台数:3台设计耗煤量:650kg/(h·台)排烟温度:160℃烟气密度(标准状态下):m3空气过剩系数:α=烟气在锅炉出口前阻力:800Pa当地大气压力:冬季室外空气温度:-1℃空气含水(标准状态下)按m3烟尘的排放因子:25%烟气其它性质按空气计算。
排烟中飞灰占煤中灰分(不可燃成分)的比例:表1 燃煤煤质(按质量百分含量计,%)第2章烟气量、烟尘和二氧化硫浓度的计算标准状态下理论空气量Q a’=×++ (m3/kg)式中:C Y, H Y, S Y, O Y-分别为煤中各元素所含的质量分数。
标准状态下理论湿烟气量(设空气含湿量m3)Q’s=(C Y++++’a+’a+ (m3/kg)式中:Q’a-标准状态下理论空气量,m3/kg;W Y-煤中水分所占质量分数,%;N Y-N元素在煤中所占质量分数,%。
标准状态下实际烟气量Q s=Q’s+(a-1) Q’a (m3/kg)式中:a-空气过量系数Q’s-标准状态下理论烟气量,m3/kg;Q’a-标准状态下理论空气量,m3/kg。
标准状态下烟气流量Q以m3/h计,因此,Q= Q s×设计耗煤量标准状态下烟气含尘浓度sY sh Q A d C •=(kg/m 3) 式中:d sh -排烟中飞灰占煤中灰分(不可燃成分)的质量分数,排放因子,%;A Y -煤中灰分(不可燃成分)的含量,%;Q s -标准状态下实际烟气量,m 3/kg 。
标准状态下烟气中二氧化硫浓度的计算6108.022⨯⨯=sY SO Q S C (mg/m 3)式中:S Y -煤中含可燃硫的质量分数;-燃料中硫转化为SO 2的转化率%,一般取80%。
Q s -标准状态下燃煤产生的实际烟气量,m 3/kg 。
第3章 除尘装置的选择设计除尘装置应达到的净化效率:式中:C -标准状态下烟气含尘,mg/m 3;C s -标准状态下锅炉烟尘排放标准中规定值,mg/m 3。
烟气浓度达到锅炉大气污染物排放标准(GB13271-2001)中二类区标准,即:烟尘排放浓度≤200mg/Nm 3。
除尘器的选择 除尘器工况烟气流量式中 Q ——标准状况下的烟气流量,h m /3;T '——工况下烟气温度,K ; T ——标准状态下的温度,273K ;则烟气流速为:)/(14.3140.33360042.105723600's m Q === 除尘器型号的确定按设计任务要求选择文丘里湿式除尘器,查询相关资料选择WC 型低压文丘里除尘器,是北京有色冶金设计研究总院参照国外设备和有关资料进行研究和设计的一种高效湿式除尘器。
是DW 型的改进产品。
其具体型号参数见下表:表2 WC 型低压文丘里除尘器型号参数注:1、允许风量波动±20%。
2、自流运行耗水量5m3/10000风量,为省水量可循环运行。
3、经适当组合,处理风量可达到m3/h 或更大 根据烟气工况流量选择型低压文丘里湿式除尘器第4章 定除尘设备、风机和烟囱的位置及管道布置各装置及管道布置的原则根据锅炉运行情况和锅炉房现场的实际情况确定各装置的位置。
一旦确定了各装置的位置,管道的布置也就基本可以确定了。
对各装置及管道的布置应力求简单,紧凑,管路短,占地面积小,并使安装、操作和检修方便。
管径的确定vQd π4=(m ) 式中:Q -工况下管内烟气流量,m 3/s ;v -烟气流速,m/s ,(可查有关手册确定,对于锅炉烟尘v =10~15m/s )。
v 烟气流速取13m/s则)(320.01314.3360047.37684360044''m d vQ vQ ====⨯⨯⨯ππ对圆管进行圆整,查《全国通用通风管道计算表》则mm m d 320320.0==表3 圆断面风管统一规格内径mm d 3160.223201=⨯-=依据公式()m vQ d π4=计算出实际烟气流速:第5章烟囱的设计烟囱高度的确定用一个烟囱的所有锅炉的总的蒸发量为)(4.838.2MW =⨯表4 锅炉烟囱高度表查表可得)(烟囱m H 40=烟囱直径的计算烟囱出口内径可按下式计算uQd 0188.0= (m ) 式中:Q -通过烟囱的总烟气量,m 3/h ;u -按表3选取的烟囱出口烟气流速,m/s 。
表5 烟囱出口烟气流速(m/s )取)/(4s m u =则)(122.10188.0429.7127m d =⨯=⨯烟囱底部直径:H i d d ⋅⋅+=221 (m)式中:d 2-烟囱出口直径,m ; H -烟囱高度,m ;i -烟囱锥度,通常取i=~。
取02.0=i 则)(722.24002.02122.11m d =⨯⨯+=烟囱的抽力:P t t H S pk y )27312731(0342.0+-+= (Pa )式中:H -烟囱高度,m ;t k -外界空气温度,℃;t p -烟囱内烟气平均温度,℃;P -当地大气压,Pa 。
则 )(01.1831086.97)(400342.03160273112731pa S y =⨯⨯-⨯⨯=+- 第6章 系统阻力的计算摩擦压力损失对于圆管: 22u d L p L ρλ•=∆ (Pa )式中:L -管道长度,m ; d -管道直径,m ; ρ-烟气密度,kg/m 3; u -管中气流平均速率,m/s ;λ-摩擦阻力系数,是气体雷诺数R e 和管道相对粗糙度dK的函数。
可以查手册得到(实际中对金属管道λ值可取,对砖砌和混凝土管道λ值可取)。
取管长L=++++++=(m )=12(m ) 取λ=,则 局部压力损失22v p ρξ=∆ (Pa )式中:ξ-异形管件的局部阻力系数,可在有关手册中查到,或通过实验获得;u -与ξ相对应的断面平均气流速率,m/s ; ρ-烟气密度,kg/m 3。
(1)二个渐扩管,查表,取α=30°,得ζ=(2)三个90°弯头,查表,取ζ=(3)一个T 型合流三通管,ζ=系统总阻力(其中锅炉出口阻力为800Pa ,除尘器阻力)为 各管段压力损失计算管段1:根据)/(13),(47.376831s m v h m q v ==查“计算表”得,0586.0/,320==d mm d λ实际流速s m v /0.101=,动压pa p 074.60=摩擦压力损失为:pa l P v d l 20.35074.600586.010221=⨯⨯=⋅⋅=∆ρλ各部件局部压力损失:集气罩12.0=ξ, 90弯头25.0=ξ, 90直流三通78.0=ξξ∑=++=管段3:根据s m v h m q q q v v v /13,/42.105723213==+=,查“计算表”得d=530mm,0308.0/=d λ,动压=,v=s摩擦压力损失为:pa l P v d l 69.33368.1090308.010223=⨯⨯=⋅⋅=∆ρλ局部压力损失为合流三通对应总管动压的损失,11.0=ξ,除尘器压力损失为管段4:气体流量同管段3,即根据s m v h m q q v v /13,/42.10572334===,查“计算表”得d=530mm,0308.0/=d λ,动压=,v=s摩擦损失压力为:pa l P v d l 84.16368.1090308.05224=⨯⨯=⋅⋅=∆ρλ该管段有 90弯头两个,查表得25.0=ξ 则局部压力损失pa P v m 68.54368.109225.0242=⨯⨯=⋅∑=∆ρξ管段5:气体流量同管段:4,即根据s m v h m q q v v /13,/42.10572345===,查“计算表”得d=530mm,0308.0/=d λ,动压=,v=s摩擦损失压力为:pa l P v d l 42.40368.1090308.012225=⨯⨯=⋅⋅=∆ρλ该管段局部压力损失主要包括通风机进出口及排风口伞型风帽的压力损失,通风机进口压力损失不计,出口1.0=ξ,伞型风帽3.1=ξ,4.13.11.0=+=∑ξ则局部压力损失pa P vm 115.153368.1094.1252=⨯=⋅∑=∆ρξ管段2:根据)/(13),(21.528632s m v h m q v ==查“计算表”得,0491.0/,360==d mm d λ实际流速s m v /6.141=,动压pa p 988.127=摩擦损失压力为pa l P v d l 42.31988.1270491.05222=⨯⨯=⋅⋅=∆ρλ该管段 集气罩12.0=ξ, 90弯头25.0=ξ,合流三通20.0=ξ 并联管路压力平衡:>%50027.21037.104027.210121==-∆∆-∆P P P 10%节点压力不平衡,采用调整管径的方法,进行压力平衡调整。