二升三数学竞赛[第3讲]归一问题之-归一和归总课后小测试
- 格式:doc
- 大小:124.00 KB
- 文档页数:3
(奥数典型题)归一归总问题--2023-2024学年六年级下册小升初数学思维拓展第9讲归一归总问题【知识点归纳】1.归一应用题分为两类.(1)直进归一:求出一个单位量后,再用乘法求出结果.(2)逆转归一:求出一个单位量后,再用包含除法求出结果.从应用题的结构上看,给了单一量和数量,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后根据总数量求出每份数,份数.总数量÷份数=每份数,总数量÷每份数=份数.归一问题应用题中必有一种不变的量.如汽车的速度不变,拖拉机每小时耕地的公顷数不变.在归一问题应用题中,常常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系.归一应用题分为正归一应用题、反归一应用题两类.正、反归一问题的相同点是:一般情况下,第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.2.归总问题:(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题.这类应用题叫做归总应用题.(21.惠民特产武定府酱菜已有四百多年的历史,有“进贡”小菜的美称。
王大伯也学着年青人做起了“直播带货”,3箱卖207元,小丽想买5箱,她要付多少元?2.学校组织了一场歌咏比赛。
如果每6人一组,可以分成4组,如果每8人一组,可以分成几组?3.学校举行艺术体操表演,如果每行站24人,正好站12行。
如果每行减少8人,能站成20行吗?(写出计算过程)4.每年“小雪”节气前后,温州三烊湿地的果农们开始采摘瓯柑。
48箱瓯柑共重864千克,照这样计算,16箱瓯柑共重多少千克?5.小丽读一本名著,如果每天读48页,12天可以读完。
小丽打算8天读完,那么平均每天要读多少页?6.700杯不开封的奶茶连起来约87米,7亿杯不开封的奶茶连起来约多少千米?地球赤道周长大约是4万千米,这个长度可以绕地球赤道两周吗?7.用100kg大豆可以榨出13kg豆油。
专题1-归一归总问题小升初数学思维拓展典型应用题专项训练(学问梳理+典题精讲+专项训练)1、归一应用题分为两类。
(1)直进归一:求出一个单位量后,再用乘法求出结果。
(2)逆转归一:求出一个单位量后,再用包含除法求出结果。
从应用题的结构上看,给了单一量和数量,依据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后依据总数量求出每份数,份数。
总数量÷份数=每份数,总数量÷每份数=份数。
归一问题应用题中必有一种不变的量。
如汽车的速度不变,拖拉机每小时耕地的公顷数不变。
在归一问题应用题中,经常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系。
归一应用题分为正归一应用题、反归一应用题两类。
正、反归一问题的相同点是:一般状况下,第一步先求出单一量;不同点在其次步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
2、归总问题。
(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。
这类应用题叫做归总应用题。
(2)解决方法:归总应用题的特点是先总数,再依据应用题的要求,求出每份是多少,或有这样的几份。
【典例一】3头河马一天要吃360千克水草,动物园里养了8头河马,一天要给它们预备( )千克水草。
A.1600 B.960 C.8640【答案】B【分析】依据已知条件“3头河马一天要吃360千克水草”可以先算出一头河马平均每天要吃的水草,再算出8头河马要吃的水草。
【解答】解:36038÷⨯=⨯1208=(千克)960答:要给它们预备960千克水草。
故选:B。
【点评】此题可以依据数量关系式:水草总量÷河马数量=一头河马每天吃的水草量。
【典例二】王师傅做一项工程,想知道粗细均匀的10千克铁丝有多长,于是剪下10米长的一段称重大约是200克,那么10千克铁丝的长度约是米。
【答案】500。
年级三年级学科奥数版本通用版课程标题归一归总问题(二)前面我们学习了正归一问题,下面我们主要讨论反归一问题的解决方法。
在解决归一问题的时候,我们要首先判断是正归一还是反归一,从而去决定运用乘法还是除法。
但是很多问题要求我们综合考虑,在一个问题里可以同时包含正归一和反归一,甚至是与归总问题或是其它多种知识点相结合,这就需要我们锻炼综合能力。
一、归一问题有两种基本类型:1. 一种是正归一,也称为直进归一。
如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?注:解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;2. 另一种是反归一,也称为返回归一。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?注:解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量。
二、解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫做归总问题,它常常和归一问题密不可分,可以看出无论是归一问题还是归总问题都涉及“总数量”和“单一量”,归一问题在变化过程中每份数保持不变,归总问题在变化过程中总量保持不变。
三、基本关系式:总工作量=每份的工作量(单一量)×份数份数=总工作量÷每份的工作量(单一量)每份的工作量(单一量)=总工作量÷份数例17辆“黄河牌”卡车6趟运走336吨沙土。
现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?分析与解:要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,即可知每趟需运走多少吨沙土,为了求出一共需要卡车的数量,就应先求出一辆卡车一次能运多少吨沙土。
本题属于反归一问题。
一辆卡车一次能运沙土336÷6÷7=56÷7=8(吨),560吨沙土,5趟运完,每趟必须运走560÷5=112(吨),需要增加同样的卡车112÷8-7=7(辆)。
列综合算式:560÷5÷(336÷6÷7)-7=7(辆)。
小学数学小升初归一、归总、比例应用题闯关1.用同样的砖铺地,铺9平方米,用砖309块。
工地上还剩4120块砖,还可以铺地多少平方米?2.四年级两个班共有学生100人,如果从一班分10名学生到二班,这时两个班的人数就相等,两班原来各有多少名学生?3.修一条水渠,计划每天修60米,12天可以修完,实际每天比原计划多修20米,只需要几天修完?4.用5辆汽车每天可以运货75吨,如果增加3辆同样的汽车,每天共可运货多少吨?5.北京园博会的中国园林博物馆开馆4天接待游客3万人,照这样计算,中国园林博物馆2个星期预计接待多少人?6.一辆汽车从甲地开往乙地,前3小时行了168千米,照这样的速度又行了5小时,正好到达乙地,甲乙两地相距多少千米?7.绿化队给果树喷药,用2个喷药器4小时能喷100棵树,5个喷药器6小时能喷几棵树?8.机械厂用4台机床4.5小时可以生产720个零件,照这样计算,8台机床1小时可以生产多少个零件?9.小红看书,4天看了32页,照这样计算,要看96页书要多少天?10.小红看一本书,第一天读了全书的一半多3页,第二天读了剩下的一半少3页,第三天读完余下的48页。
这本书共有多少页?11.某工厂6天烧煤4.2吨,12.6吨可以烧多少天?12.小龙家6天用电9度。
照这样算,1个月(按30天计算)用电多少度?。
13.一个滴水的龙头5分钟流失20毫升的水,照这样算,1天流失水多少升?1年流失水多少吨?14.某工厂采用最新技术,每天用料14吨,这样原来7天的用料,现在可用10天,原来每天用料几吨?15.李师傅做一个玩具的时间由原来的12分钟减少到8分钟,原来做200个玩具的时间,现在可以多做多少个?16.小红是集邮爱好者。
如果在集邮册中每页放6枚邮票,32页就可以放完。
如果每页放4枚邮票,需要几页才能放完呢?17.电视机厂计划全年生产彩电12600台,实际9个月就完成了全年计划,照这样计算,全年超过计划多少台?18.用大、小两种车来运580吨土石,已知大、小车载重分别为10吨和6吨,大车比小车多2辆,且每辆车都运了5次,求有几辆大车?19.养猪专业户王大伯说:“如果卖掉75头猪,那么饲料可维持20天,如果买进100头猪,那么饲料只能维持15天。
14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。
而归一的意思,就是用除法求出单一量,这就是归一的说法。
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。
二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。
所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。
考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。
【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。
【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。
第二讲归一归总问题A 较易【例1】1.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要4天.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.【解答】解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.【例2】2.修一段路,24人12天可以修完,现在24人修了4天后,再增加8人,还要6天才能修完.【分析】24人12天可修完,则需要总工数为24×12,现在24人修了4天后,还剩下24×(12﹣4)个工数,此时又增加了8人,则还需要24×(12﹣4)÷(24+8)天才能修完.【解答】解:24×(12﹣4)÷(24+8)=24×8÷32=6(天)答:还要6天才能修完.故答案为:6【点评】在求出需要总工数的基础上,根据总工数与每天的工数之间的关系进行解答比较简单.【例3】3.4名瓦工用面积为80平方厘米的地砖铺6平米的房间,用了3天时间:16名瓦工用另一种规格的地砖铺了12平方米的房间,用了12天时间.每名瓦工铺一块任何大小的地砖所需要的时间都相等.那么,第二个房间所用的地砖面积是10平方厘米.【分析】要想求出两次用的砖的大小关系,我们就要知道两次工作量的关系,如果第二次工作量是第一次的2倍,那么第一次砖的大小就是第二次的2倍.【解答】解:考虑两次铺砖的比例关系:16名砖瓦工铺12天所铺的块数,应是4名砖瓦工铺3天所铺块数1612=1643⨯⨯倍,但房间大小方面,第二个房间只是第一个房间12÷6=2倍,这说明第一房间的地砖大小是第二个房间地砖大小的16÷2=8倍,故知第二个房间的地砖大小为80÷8=10平方厘米.答:第二个房间所用的砖的面积是10平方厘米.【点评】此题特别注意16人工作12天是4人工作3天的16倍,而不是4倍.倍比法的好处就是直接找到倍数关系即可求解,不需要求出单位量.【例4】4.7头奶牛5天产牛奶630千克,照这样计算,15头奶牛8天可以产牛奶2160千克.【分析】以1头奶牛1天产的牛奶为单一量,则1头奶牛1天产奶(630÷5÷7=18)千克,那么15头奶牛8天可以产牛奶:18×8×15=2160千克;由此解答即可.【解答】解:(630÷7÷5)×8×15=18×8×15=2160(千克);答:照这样计算,15头奶牛8天可产牛奶2160千克;故答案为:2160.【点评】解答此题的关键是先求得单一量,再由不变的单一量求得总量.【例5】5.加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加10人.【分析】先求出平均每人每天完成多少件大衣,然后求出剩下的大衣件数,再求出这些大衣15天需要多少人,用这个人数减去已有的30人就是要增加的人数.【解答】解:13200÷30÷10=44(件),39600﹣13200=26400(件),26400÷(44×15)=40(人),40﹣30=10(人);答:要增加10人.故答案为:10.【点评】先求出单一的量,再根据这个量来求解.【例6】6.东风服装厂要做6500件同样的上衣,按照以往3人10天可做195件上衣的进度,如果要25天完成,需要40个工人同时做.【分析】先求出1人1天可做的上衣的件数,因为进度相同,所以再总件数除以需要的天数即可得需要多少个工人同时做.【解答】解:6500÷(195÷3÷10)÷25=6500÷6.5÷25=40(个)答:需要40个工人同时做.故答案为:40.【点评】本题考查了归一应用题,关键是先求出1人1天可做的上衣的件数.【例7】7.一台铺路机3小时铺路162米,照这样计算,2台铺路机9小时共铺路972米.【分析】照这样计算,说明一台铺路机的效率不变,先求出每台铺路机每小时铺多少米的路,然后再乘2求出2台铺路机每小时铺多少米的路,再乘9就是2台铺路机9小时可以铺路多少米.据此解答.【解答】解:162÷3×2×9=54×2×9=972(米)答:2台铺路机9小时共铺路972米.故答案为:972.【点评】本题关键是先求出单一的量,再根据单一的量求出总量.【例8】8.商店有三种颜色的油漆,红色的每桶1.5千克,黄色的每桶2千克,白色的每桶2.5千克.为了方便顾客,商店把这三种油漆整装成每桶0.5千克油漆的小桶.结果三种油漆分别装了200桶、225桶、208桶.未分装之前,红、黄、白色的油漆依次有66.7、56.25、41.6桶.【分析】漆整装成每桶0.5千克油漆的小桶,三种油漆分别装了200桶、225桶、208桶,根据每桶质量×桶数=总质量求出红、黄、白色的油漆的总质量,然后根据总质量÷原来每桶质量=原来桶数,即可得解.【解答】解:红色:(0.5×200)÷1.5≈66.7(桶)黄色:(0.5×225)÷2=56.25(桶)白色:(0.5×208)÷2.5=41.6(桶)答:未分装之前,红、黄、白色的油漆依次有66.7、56.25、41.6桶.故答案为:66.7,56.25,41.6.【点评】解答此题需要分情况探讨,明确题目中所给数量属于哪一种情况,由此选择正确的解题方法.【例9】9.四(4)班植树节参加植树活动,全班计划每小时种植20棵树,实际每小时比计划多种8棵,结果提前2小时种完,问四(4)班一共种植了140棵树.【分析】先求出实际每小时植树多少棵,提前2小时种完,用实际每小时种树的棵数乘上2小时,求出2小时里面实际多种了多少棵,再除以每小时实际比计划多种的棵数,即可求出计划植树的时间,然后乘计划每小时植树的棵数即可求解.【解答】解:(20+8)×2÷8=56÷8=7(小时)20×7=140(棵)答:四(4)班一共种植了140棵树.故答案为:140棵.【点评】解决本题也可以用方程的方法求解,设计划植树的时间是x小时,根据工作量=工作效率×工作时间分别表示出计划和实际的植树的棵数,再根据植树的棵数不变列出方程,求出计划的时间,进而求出植树的棵数,如下:设计划植树的时间是x小时,则:20x=(20+8)×(x﹣2)20x=28×(x﹣2)20x=28x﹣568x=56x=720×7=140(棵)答:四(4)班一共种植了140棵树.【例10】10.一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨200根.(损耗忽略不计)【分析】根据题意,用1900÷4先求出平均每根钢轨重的千克数,进而看95000千克里面有多少个(1900÷4),即可得解.【解答】解:95000÷(1900÷4)=95000÷475=200(根).答:可以制造这种钢轨200根.故答案为:200.【点评】此题属于归一应用题,关键是先求出平均每根钢轨的重量,进而得解.【例11】11.一个成年人平均每分钟呼吸16次,每次吸入500立方厘米空气.问:他在一昼夜里吸入11.52立方米空气.【分析】一昼夜是24小时,每小时是60分钟,先计算出一昼夜有多少分钟,即24×60=1440分钟,再乘16次计算出呼吸的次数,再乘每次吸入500立方厘米的空气,即可求出一昼夜吸入多少立方厘米的空气,再根据1立方米=1000000立方厘米进行单位换算,问题即可得解.【解答】解:24×60×16×500=23040×500=11520000(立方厘米)11520000立方厘米=11.52立方米答:他在一昼夜里吸入11.52立方米空气.故答案为:11.52.【点评】解决本题根据乘法的意义:求几个几是多少,用乘法求解;注意单位之间的换算.【例12】12.3名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人9人.【分析】由“3名工人5小时加工零件90件”,可知每人每小时加工零件90÷5÷3=6(个);要在10小时完成540个零件,那么每小时完成540÷10=54(个),因此需要工人54÷6=9(人).【解答】解:540÷10÷(90÷5÷3)=54÷6=9(人)答:需要工人9人.故答案为:9.【点评】此题解答的关键是先求出每人每小时加工的零件个数,然后再求10小时完成540个零件需要的人数.【例13】13.5名工人5小时加工了5个零件,则1名工人1小时加工1个零件.×.(判断对错)【分析】5名工人5小时加工了5个零件,5名工人1小时加工的个数就是(5÷5)个,1名工人1小加工的个数就是[(5÷5)÷5]个,据此解答.【解答】解:(5÷5)÷5=1÷5=0.2(个)答:1名工人1小时加工0.2个零件.故答案为:×.【点评】本题的只要求出1名工人1小时加工零件的个数,进行比较既可.【例14】14.如果平均1个同学1天植树10棵,那么,3个同学4天共植树120棵.【分析】先用120棵除以4,求出3个同学1天植树多少棵,再除以3人,就是每人每天平均植树多少棵.【解答】解:120÷4÷3=30÷3=10(棵);答:平均1个同学1天植树10棵.故答案为:10.【点评】本题考查了归一问题,根据除法平均分的意义,列出连除的算式求解即可.【例15】15.4台同样的织布机2.5小时织布1.3千米,照这样计算,6台同样的织布机4.5小时织布多少千米?【分析】求出1台织布机1小时织布1.3÷2.5÷4=0.13千米,即可求出6台同样的织布机4.5小时织布多少千米【解答】解:由题意,1台织布机1小时织布:1.3÷2.5÷4=0.13(千米),所以6台同样的织布机4.5小时织布:0.13×6×4.5=3.51(千米),答:6台同样的织布机4.5小时织布3.51千米.【点评】本题考查归一归问题,考查学生转化问题的能力,属于中档题.【例16】16.爸爸每天给小军同样多的零花钱,小军原来有一些钱,如果每天用10元,可以用6天;如果每天用15元,可以用3天,小军原来有30元.【分析】根据题意,求出爸爸每天给小军同样多的零花钱,再根据每天用10元,可以用6天,即可求出小军原来的钱.【解答】解:由题意,设爸爸每天给小军同样多的零花钱为x元,则因为每天用10元,可以用6天,所以小军原来有一些钱为6×10﹣6x,因为每天用15元,可以用3天,所以小军原来有一些钱为15×3﹣3x,所以6×10﹣6x=15×3﹣3x,解得x=5元,∴小军原来有6×10﹣6×5=30元,故答案为30.【点评】本题考查归一归问题,考查学生的计算能力,解题的关键是求出爸爸每天给小军的零花钱.【例17】17.一个手电筒每6小时耗费3个电池.电池以每包4个销售,那么要使用手电筒30小时至少需要购买电池4包.【分析】先求出30小时里面有多少个6小时,然后再乘3就是需要的电池的总数量,再用总数量除以每包的数量,由此即可求解.【解答】解:30÷6×3=5÷3=15(个)15÷4=3(包)…1(个)余下的一个还需要多买1包3+1=4(包)答:要使用手电筒30小时至少需要购买电池4包.故答案为:4.【点评】解决本题要注意,有余数的情况下根据“进一法”保留整数.【例18】18.9只母鸡在4天内下12只蛋,问4只母鸡在9天内下12只蛋.【分析】要求4只母鸡在9天内下蛋的只数,要先求出平均1只母鸡在1天内下蛋的只数,进而得解.【解答】解:平均1只母鸡在1天内下蛋的只数:12÷9÷4=13(只),4只母鸡在9天内下蛋的只数:13×4×9=12(只);答:4只母鸡在9天内下12只蛋.故答案为:12.【点评】解决此题也可以根据“9只母鸡在4天内下12只蛋”,直接判断出“4只母鸡在9天内也是下12只蛋”.【例19】19.一户居民住宅楼原有3户装空调,现又增加一户,这4台空调全部打开时就会烧断保险丝,因此最多只能同时用3台空调.这样,在24小时内平均每户可以使用空调18小时.【分析】有四户装空调,全部打开时就会烧断保险丝,因此最多只能同时用3台空调,就要有一户不能打开,应轮流停开,一个循环须四次,各少用一次,把24小时平均分成4份,每份是24÷4=6(小时),即可求出问题.【解答】解:因为有四户装空调,全部打开时就会烧断保险丝,因此最多只能同时用3台空调,就要有一户不能打开,应轮流停开,一个循环须四次,各少用一次,把24 小时平均分成4份,即:24÷4=6(小时),24﹣6=18(小时),答:在24小时内平均每户可以使用空调18小时.【点评】本题也可以这样想:因为24小时中每一小时都有3户同时使用,所以共使用24×3=72小时,72小时平均分给4户,得72÷4=18小时.【例20】20.筑路队,修一段路,6个人45天完成,如果增加9人,18天完成.【分析】先求出6个人45天完成的工作总量,再求现在总人数,最后即可求出所用的天数.【解答】解:6×45÷(6+9)=18(天);答:18天完成.故答案为:18.【点评】此题主要考查归总应用题的解题思路和方法.【例21】21.54人12天修水渠1944米,如果人数增加18人,天数缩到原来的一半,可修水渠1296米.【分析】先用1944÷54÷12求出一人一天可修水渠多少米,然后根据题意,用12÷2计算出后来用的天数,继而用“一人一天可修水渠的数量×后来的人数×需用的天数”进行解答即可.【解答】解:(1944÷54÷12)×(18+54)×(12÷2),=3×72×6,=1296(米);答:可修水渠1296米.故答案为:1296.【点评】解答此题的关键是先求出一人一天可修水渠多少米,进而根据求几个相同加数的和是多少,用连乘解答即可.【例22】22.红光大队用拖拉机耕地,2台3小时耕75公亩,照这样算,4台5小时耕250公亩.【分析】根据题意,关键理解“照这样算”,意思是平均每台每小时的工作效率是一定的;首先求出1台1小时耕地多少公亩,再求4台5小时耕地多少公亩,由此列式解答.【解答】解:75÷3÷2×4×5=25÷2×4×5=12.5×4×5=250(公亩).答:4台5小时耕250公亩.故答案为:250.【点评】此题属于二次归一问题,即用两步除法求出单一量,再用两步乘法求出总数量;解答关键是抓住“照这样算”去分析求单一量.【例23】23.某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高15.这样16天完成.【分析】制造12000个零件,原任务加上增加的28%可以计算后来的任务;要在15天制造12000个零件可以计算日产量,日产量加上提高的15可得后来的日产量,后来的任务除以后来的日产量可得完成的天数.【解答】解:任务增加后需要生产的零件:12000+12000×28%=15360(个),任务增加后的日产量:12000÷15+12000÷15×15,=800+160,=960(个),完成任务需要的天数:15360÷960=16(天).答:这样16天完成.故答案为:16.【点评】分析题干,根据数量关系分别求出任务增加后的生产总量与日产量,即可计算需要的天数.【例24】24.一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加28人.【分析】根据题意,把每人每天的工作量看再1份,求此总工作量是多少份减去5天完成的,再求剩下的工作量用几天完成,减求原来的人数即是需要增加的人数.由此解答.【解答】解:(28×25﹣28×5)÷(25﹣5﹣10)﹣28,=(700﹣140)÷10﹣28,=560÷10﹣28,=56﹣28,=28(人).答:应增加28人.故答案为:28.【点评】此题的解答首先把每人每天的工作量看再1份,然后进一步分析要求什么必须先求什么,理清解题思路,再列式解答即可.【例25】25.某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃16天.【分析】根据食堂存有16人可吃15天的米,可以计算米的总量,减去16人吃了5天的,就是剩下的米,而剩下的米有(16﹣6)人吃,用剩下的米除以剩下的人数,可得余下的可以吃的天数.【解答】解:(15×16﹣5×16)÷(16﹣6),=160÷10,=16(天).故答案为:16.【点评】分析题干,弄清数量关系是解决这个问题的关键.【例26】26.某工程队,16个工人9天能挖水沟1872米,27个工人14天能挖4914米.【分析】先用除法求出1个工人每天挖多少米,再乘上27人和14天即可.【解答】解:1872÷16÷9×27×14,=117÷9×27×14,=13×27×14,=4914(米).故答案为:4914.【点评】先求出不变的单一的量,再求总量.【例27】27.5台车床3小时能生产零件600个,照这样计算,11台这样的车床8小时可以生产零件3520个.【分析】根据题意,5台车床3小时能生产零件600个可以求出1台车床1小时生产的零件是600÷5÷3=40(个),再根据题目给出的条件就能求出11台这样的车床8小时可以生产零件的个数.【解答】解:由题意可得,1台车床1小时生产的零件是:600÷5÷3=40(个),那么11台这样的车床8小时可以生产零件是:40×11×8=3520(个).故答案为:3520.【点评】先根据已知条件,求出单位时间内一台车床生产的零件个数,然后再根据题中的条件和问题求出结果.【例28】28.某电子产品加工厂原计划5人16天生产2400打计算机芯片,后来由于订货增加,采用新工艺生产,工效是原来的1.5倍,但还需要8人20天才能完成生产任务.这样后来生产的数量是原计划生产数的3倍.【分析】先求出平均每人每天的工作效率是多少,然后求出后来的每人每天的工作效率是多少;用这个工作效率乘工作时间和工作人数求出后来的工作量;再用的工作量除以原来的工作量即可.【解答】解:2400÷16÷5,=150÷5,=30(打);30×1.5×8×20,=45×8×20,=360×20,=7200(打);7200÷2400=3;答:后来生产的生产数是原计划生产数的3倍.故答案为:3.【点评】解决本题先求出单一的量,再由单一的量求出总量.【例29】29.锅炉房按照每天4.5吨的用量储备了120天的供暖煤.供暖40天后,由于进行了技术改造,每天能节约0.9吨煤.问:这些煤共可以供暖多少天?【分析】供暖40天后,还剩下4.5×(120﹣40)=360吨,然后除以实际每天的用煤量4.5﹣0.9=3.6吨,求出技术改造后又用的天数,再加上原来的时间40天即可.【解答】解:4.5×(120﹣40)=4.5×80=360(吨)360÷(4.5﹣0.9)=100(天)100+40=140(天)答:这些煤共可以供暖140天.【点评】解答本题关键是求出剩下的吨数和实际每天的用煤量.【例30】30.一个修路队要修一条公路,计划每天修280米,20天完成任务,实际用6天完成,则实际每天比原计划多修多少米?【分析】已知计划每天修280米,要求实际每天比原计划多修了多少米,应求出实际每天修的米数.根据题意,实际每天修280×20÷6,然后用求得的结果减去280米即可.【解答】解:280×20÷6﹣280=93319333﹣280=16533(米)答:实际每天比原计划多修16533米.【点评】此题解答的关键是求出实际每天修的米数,再根据计划每天修的米数,解决问题.【例31】31.美猴王孙悟空采了许多桃子.按照3只猴子分9个桃子的标准,分给30只猴子后正好分完.孙悟空一共采了多少个桃子?【分析】用9除以3先求出1只猴子分几个桃子,再乘猴子的总只数30即可.【解答】解:9÷3×30=3×30=90(个)答:孙悟空一共采了90个桃子.【点评】解答此题的关键是先求得单一量,再由不变的单一量求得总量.【例32】32.一头牛一天要吃17.5千克青草,15头牛一星期一共要吃多少千克青草?【分析】根据题意,可用17.5乘15计算出15头牛每天吃青草的重量,然后再乘7进行计算即可得到答案.【解答】解:17.5×15×7=262.5×7=1837.5(千克)答:15头牛一星期一共要吃1837.5千克青草.【点评】本题考查了归总应用题,关键明确数量之间的关系.【例33】33.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱.如果3个纸箱和2个木箱装的鞋同样多.每个纸箱和每个木箱各装鞋多少双?【分析】根据题意可知:3个纸箱装的鞋=2个木箱装的鞋,则4个木箱装的鞋=6个纸箱装的鞋,由此可以求出每个纸箱装的鞋的数量,进而求出木箱装鞋的数量.【解答】解:1800÷(12+3×2)=100(双)3×100÷2=150(双)答:每个纸箱装鞋100双,每个木箱装鞋150双.【点评】本题考查的是等量代换,也可以把12个纸箱装鞋的数量转化成8个木箱装鞋的数量来解答.【例34】34.花果山上桃树多,5只小猴分200棵.现有小猴60只,按刚才的分法分后还余90棵,请算出桃树有几棵?【分析】本题考察归一归总问题.【解答】解:每只小猴分200÷5=40(棵),现在一共分40×60=2400(棵),一共有桃树2400+90=2490(棵).答:一共有2490棵桃树.【点评】本题难度较低,细心解答即可.【例35】35.一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时?【分析】通过3小时磨60千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求.【解答】解:(200﹣60)÷(60÷3)=140÷20=7(天)答:照这样计算,磨完剩下的面粉还要7小时.【点评】解决正归一的问题首先要求出单位数量,解决反归一的问题同样也是要先求出单位数量.【例36】36.孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【分析】先求出一小时一只猴子摘桃子多少,然后算出1200个桃子在3小时内需要多少猴子.【解答】解:640÷16÷2=20(个)1200÷20÷3=20(只)20﹣16=4(只)答:需要增加4只猴子.【点评】此题的关键是先归一求出一只猴子一小时摘桃子的个数,然后求解.【例37】37.王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛12天可生产牛奶多少千克?【分析】以1头奶牛1天产的牛奶为单一量,则1头奶牛1天产奶(630÷5÷7=18)千克,那么8头奶牛15天可产牛奶18×8×12=1728千克;由此解答即可.【解答】解:(630÷7÷5)×8×12=18×8×12=1728(千克);答:照这样计算,8头奶牛12天可产牛奶1728千克.【点评】解答此题的关键是先求得单一量,再由不变的单一量求得总量.【例38】38.5个人2小时植树20棵,6个人3小时植树多少棵?【分析】要求6个人3小时植树多少棵,必须先求出5个人1小时植的棵数,再求出1个人1小时所植的棵数.【解答】解:20÷5÷2×6×3=2×6×3=36(棵)答:6个人3小时植树36棵.【点评】本题考查了归一归总应用题分为两类.先求出单一量后,再用乘法求出总量.【例39】39.一项工程,8个人工作15小时可以完成,如果12个人工作,多少小时可以完成?【分析】工程总量相当于1个人工作15×8=120(小时),则12个人完成这项工程需要120÷12=10(小时),据此解答.【解答】解:15×8=120(小时)120÷12=10(小时)答:那么10小时可以完成.【点评】本题关键是先求出工程总量,相当于1个人工作15×8=120小时,进一步解决问题.【例40】40.84千克黄豆可榨12千克油,照这样计算,如果要榨120千克油需要黄豆多少千克?【分析】根据题意,我们先求出榨1千克油需要多少千克黄豆,用84÷12=7千克,再求要榨120千克油需要黄豆多少千克,列式为7×120,解决问题.【解答】解:84÷12×120=7×120=840(千克)答:要榨120千克油需要黄豆840千克.【点评】解答此题的关键是先求得单一量,再由不变的单一量求得总量.【例41】41.某厂要制造一批机床,计划每天生产64台,15天可以完成,实际提前3天完成了任务,实际每天比计划多生产机床多少台?【分析】先求出这批机床的总数,以及实际用的时间,再用总数除以实际用的时间求出实际的每天生产的台数;实际每天生产的台数减去计划每天生产的台数即可.【解答】解:(64×15)÷(15﹣3)=960÷12=80(台);80﹣64=16(台).答:实际每天比计划多生产机床16台.【点评】解答这类问题一般从问题出发,一步步找到要求的问题与所需的条件,再由条件回到问题即可列式解决.【例42】42.一个装订小组要装订2640本书,3小时装订了240本.照这样计算,剩下的书还需要多少小时能装订完?【分析】照这样计算,说明装订的效率不变,先求出1小时装订多少本和还剩下多少本,用剩下的本数除以装订的效率就是还需要的时间.【解答】解:(2640﹣240)÷(240÷3)=2400÷80=30(小时);答:剩下的书还需要30小时能装订完.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,先求出不变的效率,再根据效率求解.【例43】43.一批树苗,原计划8个人栽,每人要栽28棵;后来增加到16个人栽,每人要栽几棵?【分析】首先根据题意,用原计划每人要栽树苗的棵数乘8,求出一共要栽多少棵树苗;然后用一共要栽树苗的棵数除以16,求出如果16人栽,每人只要栽多少棵即可.【解答】解:28×8÷16=224÷16=14(棵)答:后来增加到16个人栽,每人要栽16棵.【点评】此题主要考查了简单的归总应用题,要熟练掌握,解答此题的关键是先求出不变的总量,再根据总量求解.【例44】44.小红家原来每月用水28吨,使用节水龙头后,原来一年用的水,现在可以多用2个月.现在每个月用水多少吨?【分析】一年共有12个月,原来每月用水28吨,则原来每年用水28×12=336吨,现在可多用2个月,即现在可用12+2=14个月,根据除法的意义可知,现在每月用水:336÷14=24吨.【解答】解:28×12÷(12+2)=336÷14=24(吨)答:现在每个月用水24吨.【点评】首先根据乘法的意义求出原来一年用水多少吨是完成本题的关键.【例45】45.5朵玫瑰花和5朵月季花共15元,8朵玫瑰花和8朵月季花共多少元?【分析】用15÷5求出单价和,再乘相同的数量8即可.【解答】解:15÷5×8=3×8答:8朵玫瑰花和8朵月季花共24元.【点评】本题结合数据的特征,不用求两种花的各自的单价,只要求出单价和即可.【例46】46.制造一台机器,原来用144小时,改进技术后,比原来缩短24小时,原来制造50台所用时间,现在可以多制造多少台?【分析】首先求出制造50台机器所用的总时间,再除以现在的时间就是技术改进后生产的台数,据此解答即可.【解答】解:144×50÷(144﹣24)=60(台)60﹣50=10(台)答:现在可以多制造10台.【点评】本题考查的是归一归总问题,关键是求出改进技术后,生产的台数.【例47】47.一件工程,原计划60个人18天完成.现在要提前3天完成,需要增加多少人?【分析】先依据工作总量=工作时间×人数,求出工作总量,再求出实际需要的时间,然后根据人数=工作总量÷工作时间,求出实际需要的人数,最后减原计划需要的人数即可解答.【解答】解:(60×18)÷(18﹣3)﹣60=1080÷15﹣60=72﹣60=12(人)答:需要增加12人.【点评】本题属于归一应用题,只要依据数量间的等量关系,代入数据即可解答.【例48】48.一千克奶糖和一千克酥糖共25.8元,同样的8千克奶糖和8千克酥糖共多少元?【分析】用一千克奶糖和一千克酥糖的单价和25.8元乘8即可求出同样的8千克奶糖和8千克酥糖共多少元.【解答】解:25.8×8=206.4(元)答:同样的8千克奶糖和8千克酥糖共206.4元.【点评】本题用单一量的和乘相同的数量即可求出总价和.【例49】49.振华机器制造厂制造一台机器,原来用钢材1.44吨,经过技术革新,现在比原来节约0.24吨.原来制造50台机器用的钢材,现在可以制造多少台?【分析】要求现在可以制造多少台,需要先求出原来制造50台机器用多少钢材,以及现在一台机器用多少钢材;再用钢材的总吨数除以一台机器需要的吨数即可.【解答】解:(1.44×50)÷(1.44﹣0.24)=72÷1.2。
6-1-1-1.归一问题.题库 教师版 page 1 of本讲主要学习归一问题.通过本节课的学习,学生应了解归一问题的类型,以及解决归一问题的一般方法,掌握归一问题的基本关系式,并会将这种方法应用到一些实际问题中.归一问题 归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题 中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数模块一、简单的归一问题 【例 1】 某人步行,3小时行15千米,7小时行多少千米?【考点】简单的归一问题 【难度】1星 【题型】解答【解析】 153735÷⨯=(千米)。
答:7小时行35千米。
【答案】35【巩固】 一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【考点】简单的归一问题 【难度】1星 【题型】解答【解析】 先求每小时航行多少千米,再求航行270千米需要几小时,最后求出共需多少小时。
专题二归一、归总应用题及其牛吃草问题温馨提醒:一、归一问题一般是指先要求出“单位数量”(即单一量),再根据题目的要求与条件求出问题的答案。
这里的“单一量”,是指单位时间的工作量、单位时间所行的路程、单位面积及物品的单价等等。
归一问题的特点是“单一量”是一定的。
二、归总问题是研究单位数量、数量和总量之间的数量关系的一类应用题,与归一问题联系紧密。
这里的“总量”是指总路程、总工程量、总产量、物品的总价等等。
归总问题的特点是“总量”是一定的。
例1、刘阳看一本390页的小说,4天看了120页,照这样速度,刘阳还需几天才能看完?思路点拨:这是一道归一问题,刘阳看书的速度不变,计算时可以先算出看书的速度,然后求出还要几天,120÷4=30(页/天)390-120=270(页)270÷30=9(天)举一反三:1、一辆汽车从甲地开往乙地,前3小时行了168千米,照这样的速度又行了5小时,正好到达乙地,甲、乙两地相距多少千米?2、某加工厂2台磨面机3小时能磨面粉14.4吨。
照这样计算,6台磨粉机8小时,一共能磨面粉多少吨参考答案:1、汽车的速度不变,448千米。
2、先要求出每台磨粉机每小时能够磨面粉多少吨,答案为115.2吨。
例二、装配小组要装配一批洗衣机,计划每天装配27台,20天完成任务。
实际每天装配了30台,只需几天就可以完成任务?思路点拨:这是一道归总问题,装配的总量不变,装配的效率发生变化,先求总量,后根据新的效率求解天数,18天。
举一反三:1、私塾学堂打算用30名工人装修教室,3周的时间完工,装修工人装修5天后,又增加了10人,若每个工人的工作效率相同,私塾学堂可以提前几天搬进新教室?2、运送一批货物,原计划每列20节车厢的火车80次运完,这样运了20次后,每节车增加30加30节车厢,剩下部分再运多少次可以完工?参考答案:1、归总问题,工作总量不变,民工数量极其工作天数发生变化,解这种问题是先设1人1天的工作量为1,则a人一天的工作量为a。
归一与归总问题知识框架一、归一问题(1)归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
(2)归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?(3)正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.(4)解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
(5)归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数(正归一)份数=总工作量÷每份的工作量(单一量)(反归一)每份的工作量(单一量)=总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.例题精讲一、归一问题【例1】某人步行,3小时行15千米,7小时行多少千米?【巩固】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【例2】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天?【巩固】一列火车从甲地开往乙地,开出2.5小时,行了150千米。
小学数学《归一应用题》练习题(含答案)为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法。
除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!在生活中,我们经常会遇到这样一类问题:“一辆汽车每小时行驶60千米,照这样的速度,3小时行驶多少千米?”其中,每小时行驶60千米,我们称它为“单位数量”或“单一量”,知道了单位数量,然后把它作为固定不变的量,进行相关问题的计算,这种类型的应用问题,叫做归一问题。
归一问题有两种基本类型:一种是正归一,也称为直进归一。
如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量。
正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
下面是归一问题的基本关系式推荐给大家作为参考:总工作量=每份的工作量(单一量)×份数(正归一)份数=总工作量÷每份的工作量(单一量)(反归一)每份的工作量(单一量)=总工作量÷份数【例1】先根据条件提出问题,使它成为一步计算的应用题,再口头列式解答。
(1)小芳买2支钢笔用了10元钱,?(2)书架每个25元,有100元,?分析:建议老师们可以在学生提出问题使它成为一步计算的应用题的基础上,再让学生提出问题使它成为两步计算的应用题。
如:买3支钢笔多少元?使本道例题成为归一问题的最典型的题目,使学生感受归一问题的题型。
可在例1后补充一题作为巩固练习。
练:一只小蜗牛6分钟爬行12分米,照这样速度30分爬行多少分米?分析:本题属于正归一,有两种解题思路。
法1:归一思想。
应用题-经典应用题-归一归总问题基本知识-3星题课程目标知识提要归一归总问题基本知识•概述归一问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归总问题是找出总量,再根据其它条件求出结果。
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.•分类归一问题可以分为两种:一种是求总量的,先求出一个单位量,然后利用乘法求出结果,这类问题叫做正归一问题(也称正归一);另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一).•归一问题的基本关系式总工作量=每份的工作量(单一量)×份数份数=总工作量÷每份的工作量(单一量)每份的工作量(单一量)=总工作量÷份数精选例题归一归总问题基本知识1. 筑路队修一段路,6个人45天完成,如果增加9人,天完成.【答案】18【分析】修这段路的工作总量是45×6=270(总工量),增加9人,共有15个人,需要270÷(6+9)=18(天)完成.2. 一筐水果中,恰好有一半数量是苹果,如果吃掉苹果数量的一半,筐中只剩下60个水果,那么,这时筐中还有个苹果.【答案】20【分析】最初苹果和其他水果各占一半,苹果被吃掉一半后,苹果占1份,其他水果占2份,一共3份共60个水果,所有一份是20个.3. 500张白纸的厚度为50毫米,那么张白纸的厚度是750毫米.【答案】7500【分析】因为500张白纸的厚度为50毫米,那么10张纸的厚度为1毫米,所以750毫米应为750×10=7500(张)白纸的厚度.4. 某工程队,16个工人9天能挖水沟1872米,27个工人14天能挖米.【答案】4914【分析】每个工人每天挖水沟1872÷16÷9=13(米),27个工人14天能挖27×14×13=4914(米).5. 购买3斤苹果,2斤桔子需8元;购8斤苹果,9斤桔子需25元,那么苹果、桔子各买1斤需元.【答案】3【分析】买3+8斤苹果和2+9斤桔子.需8+25=33(元),所以各买1斤需33÷11= 3(元).6. 购买3斤苹果,2斤橘子需6.90元;购8斤苹果,9斤橘子需22.80元,那么苹果、橘子各买1斤需元.【答案】 2.7【分析】买3+8斤苹果和2+9斤橘子需6.9+22.8=29.7(元).所以各买1斤需要29.7÷11=2.7(元).7. 一个果园摘桃子,4个人3小时共摘了600千克,照这样计算,8个人6小时可以摘千克桃子.【答案】2400【分析】8个人是4个人的两倍,6小时是3小时的两倍,所以8个人6小时所摘桃子的重量恰好是4个人3小时摘桃子重量的4倍,因此8个人6小时可以摘桃子600×4=2400(千克).8. A牌电池的广告语是“一节更比六节强”,意义是A牌电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍.有两种耗电速度一样的时钟,现在同时在甲钟里装了4节A电池,乙钟里装了3节B电池.结果乙时钟正常工作了2个月就耗尽了,那么甲时钟还能正常工作月.【答案】14【分析】乙钟2个月耗3节B电池,甲钟相当于有24节,24÷3×2−2=149. 9个人6天完成了12件作品,按照这样的速度,3个人3天可以完成多少件作品?21人12天可以完成多少件作品?【答案】(1)2件;(2)56件.【分析】中间量是第一问中的3人3天完成几件,因为此题无法缩小至1人1天几件,所以只能缩至多份量,是此题的难点.可以根据倍数关系,直接进行倍比.(1)12÷2÷3=2件;(2)2×7×4=56件.10. 16只兔子一共重60千克,那么36只兔子一共重多少千克?多少只兔子一共重75千克?【答案】135千克;20只.【分析】4只兔子共重60÷4=15千克,36只兔子共重15×9=135千克,75÷15=5,4×5=20只兔子共重75千克.11. 某运输公司用6辆汽车运水泥,每天可运96吨.根据运输情况,现在增加4辆同样的汽车,每天一共运水泥多少吨?【答案】160【分析】“增加4辆同样的汽车“,每天一共运水泥多少吨,应是增加的汽车运输量与增加前的运输量的和,即10辆汽车的运输量.96÷6×(6+4)=16×10=160(吨).12. 一个工人在森林中锯木头,他用10分钟把一根树干锯成了3段,如果保持工作速度不变,要把每段木头再锯成两段,还需要多少分钟?【答案】15分钟【分析】3段需要锯2刀,那么锯一刀需10÷(3−1)=5(分钟),每段都锯成两段,还需要3刀,需要时间5×3=15(分钟).13. 3的位老师4小时可以解决120道题.按这样的速度,4位老师解决400道题需要多少小时?【答案】10小时.【分析】每人每小时做120÷3÷4=10道.4人做400道需400÷4÷10=10小时.14. 小高、墨莫和卡莉娅三人比谁的积分多,数了数之后发现:小高和墨莫的积分之比为5:8,墨莫和卡莉娅的积分比为12:13,三人的积分总和为400多分.那么卡莉娅比小高多多少分?【答案】77分.【分析】小高、墨莫和卡莉娅的积分比是15:24:26,总分应为15+24+26=65的倍数,又知道三人的积分总和为400多分,故为65×7=455分,卡莉娅比小高多(26−15)×7= 77分.15. 学校买了12张办公桌和若干把椅子,共用去2440元,其中买办公桌用去1440元.又知每张办公桌比每把椅子贵70元.问一共买了多少把椅子?【答案】20【分析】每张办公桌是1440÷12=120(元),则每把椅子120−70=50(元),所以买了椅子(2440−1440)÷50=20(把).16. 某化工厂使用新技术前,每天用原料26吨,使用新技术后原来7天的原料现在可以用13天,该厂现在比过去每天节约多少吨原料?【答案】12【分析】过去7天共用原料26×7=182(吨),现在每天用料182÷13=14(吨),所以现在比过去每天节省原料26−14=12(吨).17. 植物园里菊花与月季花的盆数之比是3:4,月季花与兰花的盆数之比是5:6,如果菊花比兰花少五十多盆,那么月季花比菊花多多少盆?.【答案】30盆.【分析】菊花、月季花和兰花的盆数之比是15:20:24,因此菊花比兰花少的盆数应为9的倍数,所以为54盆,1份为54÷(24−15)=6盆月季花比菊花多6×(20−15)=30盆.18. 有4台相同的吊车,7小时卸煤280吨.那么:(1)1台吊车7小时卸煤多少吨?(2)4台吊车1小时卸煤多少吨?(3)平均1台吊车1小时卸煤多少吨?【答案】(1)70;(2)40;(3)10【分析】(1)1台吊车7小时卸煤:280÷4=70(吨);(2)4台吊车1小时卸煤:280÷7=40(吨);(3)1台吊车1小时卸煤:70÷7=10(吨)或40÷4=10(吨)或280÷7÷4=10(吨).19. 某油库里有一定量的汽油,可以供20辆出租车用35天,但在这些车用了10天后又从别的地方调来了5辆出租车共同使用这些汽油,那么剩下的油还能用几天?【答案】20天.【分析】设一辆出租车一天用1份汽油,那么共有700份汽油,(700−20×10)÷(20+5)=20天.20. 5个工人要加工735个零件,前2天已经加工了135个.已知这2天中有1人因事假请假了1天.若每个工人每天加工的零件数相等,且以后几天无人请假,还要多少天才能完成任务?【答案】8【分析】5个工人2天加工了135个零件,其中1人请假1天,相当于5×2−1=9(个)工人1天加工了135个零件,所以每个工人每天加工的零件为135÷(5×2−1)=15(个),剩下的零件还需要(735−135)÷5÷15=8(天)加工完成.21. 老李从批发市场以6元钱3千克的价格买进一些柚子,然后以5元2千克的价格卖出去,那么要想获利180元,需要买进多少千克柚子?【答案】360千克.【分析】每6千克进价为12元,售价为15元,可以赚3元,所以要买进180÷3×6=360千克.22. 如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?【答案】5【分析】1台数控机床1小时加工960÷3÷4=80(个).同样的零件:1台数控机床加工400个零件需要400÷80=5(时).23. 孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【答案】4【分析】要求增加多少只小猴子,必须先求出需要多少只小猴子去完成孙悟空布置的任务.根据要求,3小时摘桃子1200个,可以先求出1小时共摘桃子的个数,即1200÷3=400(个).再根据每只小猴每小时摘桃子的个数,即640÷16÷2=20(个).就可以求出所需要的小猴数量,即400÷20=20(只),最后求出增加的小猴只数:20−16=4(只).24. 一个装订小组要装订2640本书,3小时装订240本.照这样下去,剩下的书还需要多少小时才能装订完?【答案】30【分析】3小时装订240本,每小时装订240÷3=80(本),还剩下书2640−240=2400(本),需要2400÷80=30(时).25. 买5支铅笔要1元钱,买同样的铅笔25支,需要多少钱?【答案】5元【分析】5支铅笔看成1组需1元钱,买25支铅笔共有25÷5=5(组),一共需要5×1= 5(元).26. 3台机床5小时能完成14个零件,那么照这样的速度,9台机床10小时能完成多少个零件?【答案】84个.【分析】9台机床是3台机床的3倍,10小时是5小时的2倍,所以完成的零件数应该是2×3=6倍.所以可以完成14×6=84个零件.27. 4辆大卡车运沙土,7趟共运走沙土140吨.现在有沙土400吨,要求5趟运完.问:需要增加同样的卡车多少辆?【答案】12【分析】每辆大卡车一趟运走沙土140÷4÷7=5(吨),要求5趟运完,一辆大卡车5趟运走5×5=25(吨),运400吨沙土需要大卡车400÷25=16(辆),需要增加大卡车16−4=12(辆).28. 3只老鼠5天偷吃了30根玉米.按照这样的速度,4只老鼠7天能偷吃多少根玉米?【答案】56【分析】3只老鼠1天吃的玉米:30÷5=6(根);1只老鼠1天吃的玉米:6÷3=2(根);4只老鼠1天吃的玉米:2×4=8(根);4只老鼠7天吃的玉米:8×7=56(根).29. 购买10种货物:A1,A2,A3,⋯A10.如果在这10种中购买的件数依次是1,3,4,5,6,7,8,9,10,11件,共需人民币1992元;如果购买的件数依次是1,5,7,9,11,13,15,17,19,21件,共需人民币3000元.那么在这10种货物中各买一件时,共需人民币多少元?【答案】984【分析】2×(1,3,4,5,6,7,8,9,10,11)−(1,5,7,9,11,13,15,17,19,21)=(2,6,8,10,12,14,16,18,20,22)−(1,5,7,9,11,13,15,17,19,21)=(1,1,1,1,1,1,1,1,1,1).也就是说2倍的第一种情况下的各种货物的件数与第二种情况下各种货物的件数对应作差正好是10种货物每种1件,所以此时所需的费用为1992×2−3000=984(元).所以,在这10种货物中各买一件时,共需人民币984元.和30. 春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的35 30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【答案】杨树:825;柳树:360;槐树:315【分析】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份−15棵,则一份为(1500−30+15)÷(2+2+5)=165(棵),杨树5×165=825(棵);柳树165×2+30=360(棵);槐树165×2−15=315(棵).31. 一个修路队要修一条长2700米的公路,前5天一共修了750米.照这样下去,余下的要多少天完成?【答案】13【分析】5天修了750米,每天修路750÷5=150(米),还剩下2700−750=1950(米),需要3天修完,每天修1950÷150=13(天).32. 一艘远洋轮船上共有30名海员,船上的淡水可供全体船员用40天.轮船离港10天后在公海上救起15名遇难的外国海员.假如每人每天使用的淡水同样多,剩下的淡水可供船上的人再用多少天?【答案】20天.【分析】设1人1天喝1份水,则共有30×40×1=1200份水,现在轮船离开港口10天,会剩下1200−10×30×1=900份水,这时船上有30+15=45人,则还可再用900÷45=20天.33. 平整一块土地,原计划8人平整,每人每天工作9时,15天可以完成任务.由于急需播种,要求12天完成,并且增加2人.问:每天要工作几小时?【答案】9小时【分析】总的工作量为8×9×15=1080(单位工作量),现在比原先增加2人,共有10人,则现在每天工作1080÷12÷(8+2)=9(小时).34. 3名工人5小时加工零件90个,要在10小时内完成540个零件的加工,至少需要工人少名?【答案】9【分析】方法一:3名工人5小时加工零件90个,就是说每人每小时加工(90÷3)÷5=6(个),那么一名工人10小时可以加工6×10=60(个),540个零件在10小时做完至少需要工人540÷60=9(人).方法二:3名工人5小时加工零件90个,假设在时间相同的情况下,3名工人10小时加工零件180个,要完成540个零件用倍比的思想,540个零件是180的3倍,时间相同,完成零件的数量是3倍,那么工人也是3倍的关系,3×3=9(人).35. 汽车厂每名工人每天生产汽车零件6个.按照这样的速度,10名工人3天能生产多少个零件?如果要用5天的时间生产出300个零件,那么需要多少名工人?【答案】(1)180个;(2)10名.【分析】(1)10×6×3=180个.(2)300÷5÷6=10名.36. 3只猴子3天吃3个桃子,按照这样的速度,6只猴子6天能吃几个桃子?9只猴子要吃9个桃子,需要多少天?【答案】(1)12个;(2)3天.【分析】利用倍比法解题:(1)3×2×2=12个(2)9÷3=3天.37. 某车间用4台车床5小时生产零件600个,照这样计算,增加3台同样的车床后,8小时可以生产多少个零件?【答案】1680【分析】 因条件中有小时和台数两个变量,需用“两次归一”,即先求出 4 台车床 1 小时生产多少个零件,再求 1 台车床 1 小时生产多少个零件.600÷5÷4×(4+3)×8=30×7×8=1680(个).38. 一个工人在森林中锯木头,他用 8 分钟把一根树干锯成了 3 段,那么把树干锯成 8 段需要多长时间?【答案】 28 分钟【分析】 3 段需要锯 2 两刀,那么锯一刀需 8÷(3−1)=4(分钟),锯 8 段需要锯 7 刀,时间为 4×(8−1)=28(分钟).39. 3 台同样的磨面机 1 小时可磨面粉 2400 千克.问:(1)这 3 台磨面机磨 5 小时可磨出多少千克面粉?(2)1 台磨面机磨 1 小时可磨出多少千克面粉?(3)1 台磨面机磨 5 小时可磨出多少千克面粉?【答案】 (1)12000;(2)800;(3)4000【分析】 (1)这 3 台磨面机磨5小时可磨出:2400×5=12000(千克);(2)1 台磨面机磨 1 小时可磨出:2400÷3=800(千克);(3)1 台磨面机磨 5 小时可磨出:800×5=4000(千克).40. 小华和爷爷的年龄比是 1:6,已知小华比爷爷小 50 岁,小华和爷爷的年龄和是多少?【答案】 70 岁【分析】 小华比爷爷小 50 岁,小华比爷爷少 5 份,求出 1 份是多少岁,再乘以总份数,就可求出小华和爷爷一共的岁数。
6-1-1-1.归一问题.题库 教师版 page 1 of本讲主要学习归一问题.通过本节课的学习,学生应了解归一问题的类型,以及解决归一问题的一般方法,掌握归一问题的基本关系式,并会将这种方法应用到一些实际问题中.归一问题 归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题 中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数模块一、简单的归一问题 【例 1】 某人步行,3小时行15千米,7小时行多少千米?【考点】简单的归一问题 【难度】1星 【题型】解答【解析】 153735÷⨯=(千米)。
答:7小时行35千米。
【答案】35【巩固】 一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【考点】简单的归一问题 【难度】1星 【题型】解答【解析】 先求每小时航行多少千米,再求航行270千米需要几小时,最后求出共需多少小时。
知识要点正归一1. 某人步行,3小时行15千米,7小时行多少千米?【解析】 153735÷⨯=(千米)。
答:7小时行35千米。
2. 一只小蜗牛6分钟爬行12分米,照这样的速度,30分钟爬行多少分米?【解析】 本题属于正归一,有两种解题思路.(方法一)归一思想.为了求出蜗牛30分钟爬多少分米,必须先求出1分钟爬多少分米(单一数),“照这样速度”说明小蜗牛每分钟爬行的速度是相等的,然后以这个数目为依据按要求算出结果.小蜗牛每分钟爬行1262÷=(分米),30分钟爬23060⨯=(分米).(方法二)倍比思想.仔细观察题目中所给的条件,已知30分钟正好是6分钟的5倍,爬行的距离也应是12的5倍.即12560⨯=(分米).3. 先根据条件提出问题,使它成为一步计算的应用题,再口头列式解答.⑴孙悟空3天吃了45个桃子, ?⑵学学买2支钢笔用了18元钱, _______ ?【解析】 建议老师可以先让学生提出问题使它成为一步计算的应用题:⑴每天吃多少个?⑵每只钢笔多少元?再让学生提出问题使它成为两步计算的应用题.如:⑴7天吃多少个桃子?⑵54元可以买多少只钢笔?使本道例题成为归一问题的最典型的题目,使学生感受归一问题的题型.4. 小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米?【解析】 600310200102000÷⨯=⨯=(米)。
5. 一列火车从甲地开往乙地,开出2.5小时,行了150千米。
照这样的速度,再行驶3小时到达乙地。
甲、乙两地相距多少千米?归一问题有两种基本类型:一种是正归一,也称为直进归一。
如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量.另外还有在正归一和反归一基础上的两次归一。
三年级奥数:归一、归总问题应用题:归一、归总问题了解:归一问题的类型.熟悉:解决归一问题的一般方法.掌握:归一问题的基本关系式,并会将这种方法应用到实际问题中.诀窍1基本归一问题例题1:一只小蜗牛6分钟爬行12分米,照这样的速度,40分钟爬行多少分米?【解析】归一思想【解析】归一思想..为了求出蜗牛40分钟爬多少分米,必须先求出1份量,即1分钟爬多少分米:12÷6=2(分米),“照这样的速度”说明小蜗牛每分钟爬行的距离是相等的,然后以这个数目为依据按要求算出结果,然后以这个数目为依据按要求算出结果,4040分钟爬行:2×40=80(分米)答:答:4040分钟爬行80分米分米. .练习1:小熊3分钟可以吃60个包子,照这样的速度,它今天吃了10分钟,请问它今天吃了多少个包子?例题2:绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需要多少天?【解析】方法一:归一思想方法一:归一思想方法一:归一思想. .先求出先求出1份量,即绿化队1天种多少棵树:210÷3=70(棵)“照这样的工作效率”说明绿化队每天种树的数量是相等的,种420棵树需要的天数:420420÷÷70=670=6(天)(天)(天)..最后记得加上之前的3天:共需:天:共需:3+6=93+6=93+6=9(天)(天)(天). .方法二:倍比思想方法二:倍比思想方法二:倍比思想. .仔细观察题目所给的条件,仔细观察题目所给的条件,因为工作的效率不变,所以可以求出种420棵树需要的天数是种210棵树需要天数的2倍:倍:420420420÷÷210=2,所以种420棵树需要的天数为3×2=62=6(天)(天),也就是完成任务共需3+6=93+6=9(天)(天)(天). .答:他们平均每人折了15只纸鹤只纸鹤. .练习2:一艘轮船4小时航行108千米,照这样的速度,继续航行216千米,共需多少小时?诀窍2二次归一问题例题3:王奶奶家养了5头奶牛,7天产奶牛630千克,照这样计算,8头奶牛15天可生产奶牛多少千克?【解析】直接以1头奶牛1天产的牛奶量为1份量进行归一,1头奶牛1天产奶:630÷5÷7=18(千克),8头奶牛1天产奶:天产奶:181818××8=1448=144(千克)(千克),8头奶牛15天产奶:产奶:144144144××15=216015=2160(千克)(千克)(千克). .答:答:88头奶牛15天可生产牛奶2160千克千克. .几次归一就连除几次.练习3:2台机器20分钟造纸80吨,照这样的效率,吨,照这样的效率,55台机器1小时造纸多少吨?诀窍总结:解归一问题,先求一份量,再求几份量.例题4:3名工人5小时加工零件90个,照这样的效率,要在10小时完成加工540个零件,需要工人多少名?【解析】先求出1份量,份量,33名工人5小时加工零件90个,所以1人1小时加工90÷3÷5=6(个),那么一个人10小时可以加工零件6×10=60(个).问题转化为:为:540540个零件,每人加工60个,需要几个人?所以需要540540÷÷60=960=9(名)(名) 答:把甲级糖和乙级糖混在一起的什锦糖每千克7元.练习4:如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?例题5:4辆大卡车运沙土,7次共运走沙土336吨.现有沙土420吨,增加了3辆相同的卡车,问:几次可以运完?【解析】【解析】11辆卡车1趟运沙土:趟运沙土:336336336÷÷4÷7=127=12(吨)(吨),现在又4+3=74+3=7(辆)卡车,(辆)卡车,把7辆1次运的数量作为整体,7辆车1次可运:次可运:77×12=8412=84(吨)(吨),420吨沙土运完次数:完次数:420420420÷÷84=584=5(次)(次)答:答:55次可以运完次可以运完. .练习5:5台拖拉机24天耕地12000公亩公亩..现增加了25台拖拉机,要耕完54000公亩土地,需要多少天?诀窍总结: 二次归一,连除两次.N 次归一,连除n 次诀窍 3归总问题例题6:农具厂生产一批农具,原计划每天声场120件,28天可以完成任务,实际每天多生产了20件,这样可以提前几天完成任务?【解析】此题是归总问题,需要先求总量,再根据总量不变,求出实际生产多少天.这批农具总共有:120×28=3360(件),实际生产天数:33603360÷÷(120+20120+20))=24=24(天)(天)最后做差,提前的天数:28—24=4(天)答:第三筐苹果重35千克;第五筐香蕉重86千克千克. .练习6:面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完,现在改用每辆装30袋的汽车6辆来运,几次可以运完?知识点总结诀窍总结: 归总问题,先用乘法求总量,再用除法求1份量或份数.一、 归一问题1. 含义在解题时,先求出1份量是多少(归一),然后以1份量为标准,求出所要求的数量2. 数量关系总量÷份数总量÷份数=1=1份量;1份量×所占份数份量×所占份数==所求几份的量;另一总量÷(总量÷份数)另一总量÷(总量÷份数)==所求份数所求份数. .3. 解题思路和方法先求出1份量,以1份量为标准,算出要求的数量份量为标准,算出要求的数量. .二、归总问题1.1.含义含义在解答某一类应用题时,先求出总数是多少(归总)在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题和题中的有关条件求出问题. .2.2.数量关系数量关系1份量×份数份量×份数==总量总量÷总量÷总量÷11份量份量==份数份数. .3. 3.解题思路和方法解题思路和方法先求出总数量,再根据题意得出所求每份是多少或有这样的几份先求出总数量,再根据题意得出所求每份是多少或有这样的几份先求出总数量,再根据题意得出所求每份是多少或有这样的几份. .。
14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。
而归一的意思,就是用除法求出单一量,这就是归一的说法。
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。
二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。
所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。
考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。
【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。
【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。