已知年金求终值公式的推导
- 格式:ppt
- 大小:23.00 KB
- 文档页数:2
一、资金时间价值的计算及应用:1.单利计息模式下利息的计算:It=P×i单2.复利计息模式下利息的计算:It=i×Ft-1★对于利息来说,更为重要的计算思路,为I=F–P。
3.一次支付终值的计算:F=P(1+i)n[F=P(F/P,i,n)]★现值系数与终值系数互为倒数。
4.已知年金求终值:★逆运算即为求偿债基金。
5.已知年金求现值:★逆运算即为求等额投资回收额6.名义利率r和计息周期利率i的转换:i=r/m7.计息周期小于或(或等于)资金收付周期时的等值计算(按计息周期利率计算)。
二、技术方案经济效果评价:1.总投资收益率:★分母的总投资包括建设投资、建设期贷款利息和全部流动资金。
注意和总投资的区别(生产性建设项目包括建设投资和铺底流动资金)。
2.资本金净利润率:★分子的净利润=税前利润-所得税=息税前利润-利息-所得税;分母为投资方案资本金。
3.投资回收期:★记住含义即可,现金净流量补偿投资额所需要的时间。
4.财务净现值:★记住含义即可,现金流量的折现和(流出带负号)。
5.财务内部收益率:★记住含义即可,现金流量现值之和等于零的折现率,即财务净现值等于零的折现率。
6.基准收益率的确定基础:★作为基准收益率确定的基础,是单位资金成本和单位投资机会成本中的高者。
7.基准收益率的计算:★影响基准收益率的因素有机会成本、资金成本、风险和通货膨胀等因素。
8.借款偿还期:★表明可以作为偿还贷款的收益(利润、折旧、摊销及其他收益)用来偿还技术方案投资借款本金和利息所需要的时间。
9.利息备付率(ICR):★已获利息倍数各年可用于支付利息的息税前利润(EBIT)与当期应付利息(PI)的比值。
10.偿债备付率(DSCR):★各年可用于还本付息的资金(EBITDA-TAX)与当期应还本付息金额(PD)的比值。
如果企业在运行期内有维持运营的投资,可用于还本付息的资金应扣除维持运营的投资。
三、技术方案的不确定性分析:1.总成本的计算:总成本=固定成本+变动成本=单位变动成本×产销量+固定成本2.量本利模型的核心公式:利润=单价×产销量-单位产品税金×产销量-单位变动成本×产销量-固定成本★这个公式非常重要,对于计算盈亏平衡点,保本点,目标利润的产销量等,都可以用该公式进行推导,教材中的其他类似公式就不必死记硬背了。
1. Excel计算年金现值公式年金终值公式:F=A(F/A,i,n)2. 年金现值公式表年金的现值是年金终值的逆计算,是指将在一定时期内按相同时间间隔在每期期末收入或支付的相等金额折算到第一期初的现值之和。
基本介绍年金现值是年金终值的逆计算。
计算公式:年金现值因子:年金的现值年金的现值年金的现值年金的现值年金的现值年金的现值,是普通年金1元、利率为i、n期的年金现值,记作(P/A,i,n)。
推导过程:年金的现值……………………①将①式乘以(1+i),则:年金的现值………………………②②-①,则:(1 + i)P − P = B − B(1 + i) − nP(1 + i − 1) = B[1 − (1 + i) − n]∴年金的现值3. excel计算年金现值的公式在Excel中,计算现值的函数是PV,其语法格式为:PV(rate,nper,pmt,fv , type)。
其中:参数rate 为各期利率,参数nper 为投资期(或付款期)数,参数pmt 为各期支付的金额。
省略pmt参数就不能省略fv 参数;fv 参数为未来值,省略fv 参数即假设其值为0,也就是一笔贷款的未来值为零,此时不能省略pmt 参数。
type 参数值为1 或0,用以指定付款时间是在期初还是在期末,如果省略type 则假设值为0,即默认付款时间在期末。
【案例1】计算复利现值。
某企业计划在5 年后获得一笔资金1000000元,假设年投资报酬率为10%,问现在应该一次性地投入多少资金?在Excel工作表的单元格中录入:= PV(10%,5 ,0 ,- 1000000),回车确认,结果自动显示为620921.32元。
【案例2】计算普通年金现值。
购买一项基金,购买成本为80000 元,该基金可以在以后20 年内于每月月末回报600元。
若要求的最低年回报率为8%,问投资该项基金是否合算?在Excel 工作表的单元格中录入:=PV(8%/ 12,12* 20,- 600),回车确认,结果自动显示为71732.58 元。
已知年金终值系数求后一年年金终值系数例题摘要:I.引言A.年金终值系数概念介绍B.求后一年年金终值系数的重要性II.已知年金终值系数求后一年年金终值系数的例题A.例题描述B.解题思路分析C.解题步骤详述III.结论A.求后一年年金终值系数的方法总结B.该例题的意义和启示正文:I.引言年金终值系数是金融学中的一个重要概念,它表示在一定利率和计息期数下,每期期末等额支付的系列的复利终值之和。
在实际金融活动中,计算年金终值系数是一项常见的工作,对于投资者来说,准确计算年金终值系数,可以更好地进行投资决策。
在某些情况下,我们已知年金终值系数,需要求解后一年的年金终值系数。
这个问题在实际应用中也是常见的,例如在金融产品的设计中,需要根据市场情况预测未来的年金终值系数。
II.已知年金终值系数求后一年年金终值系数的例题现在,我们来看一个具体的例子。
假设我们已知年金终值系数为4.246,现在需要求解后一年的年金终值系数。
A.例题描述假设某人现在每年年末支付1000 元,年利率为3%,计息期数为5 年。
已知第5 年的年金终值系数为4.246,求第6 年的年金终值系数。
B.解题思路分析我们可以使用年金终值系数的计算公式来解这个问题。
年金终值系数的计算公式为:F/A,i,n = [(1+i)^n - 1] / i其中,F/A,i,n 表示年金终值系数,i 表示年利率,n 表示计息期数。
根据题目中的已知条件,我们可以得到:F/A,3%,5 = 4.246现在我们需要求解第6 年的年金终值系数,即F/A,3%,6。
C.解题步骤详述我们可以按照以下步骤来解这个问题:1.代入已知的年金终值系数F/A,3%,5 = 4.246,计息期数n = 5,年利率i = 3% 到年金终值系数的计算公式中,得到:4.246 = [(1+0.03)^5 - 1] / 0.032.化简公式,解出(1+0.03)^5 的值:4.246 * 0.03 = (1.03)^5 - 1(1+0.03)^5 = 1.2231293.根据上一步的结果,我们可以求出第6 年的年金终值系数F/A,3%,6:F/A,3%,6 = [(1.223129)^6 - 1] / 0.03F/A,3%,6 ≈ 5.623因此,第6 年的年金终值系数约为5.623。
年⾦公式年⾦公式(2012-03-10 23:35:17)转载▼标签:杂谈分类:现值PV与终值FV年⾦年⾦(annuity): (多筆定存,計算利息) (多筆固定⾦額)如果⼀个系列现⾦流的每期收⼊相等,如每⽉收⼊⼀万元,则称其为年⾦。
================================================================================(年⾦终值)FVa = C X {(1+r)n次⽅ -1/ r }FVa = PV × 年⾦終值利率因⼦(年⾦现值)PVa = C X { (1 -(1+r)n次⽅) / r }PVa = FV × 年⾦現值利率因⼦n=期数 C= CASH R=报酬 i = 利率年⾦可分为普通年⾦和即时年⾦。
普通年⾦(ordinary annuity):每期期末收付等额款项的年⾦,也称后付年⾦。
这种年⾦在⽇程⽣活中最为常见.即时年⾦(prepaid annuity):每期期初获得收⼊的年⾦,也称先付年⾦。
什么是普通年⾦普通年⾦(Ordinary Annuity)普通年⾦⼜称“后付年⾦”,是指每期期末有等额的收付款项的年⾦。
这种年⾦形式是在现实经济⽣活中最为常见。
普通年⾦终值犹如零存整取的本利和,它是⼀定时期内每期期末等额收付款项的复利终值之和。
普通年⾦的公式普通年⾦终值的计算公式为:A——年⾦数额; i——利息率; n——计息期数; FVAn——年⾦终值。
上式中的叫年⾦终值系数或年⾦复利系数。
可写成FVIFAi,n或ACFi,n,则年⾦终值的计算公式可写成:FVAn = A * FVIFAi,n = A * ACFi,n例:5年中每年年底存⼊银⾏100元,存款利率为8%,求第5年末年⾦终值为多少。
⼀定期间内每期期末等额的系列收付款项的现值之和,叫普通年⾦现值。
年⾦现值的符号为PVAn,式中,叫年⾦现值系数,或年⾦贴现系数。
六、年金终值和年金现值的计算(一)年金的含义年金是指一定时期内每次等额收付的系列款项。
通常记作A 。
具有两个特点:一是金额相等;二是时间间隔相等。
也可以理解为年金是指等额、定期的系列收支。
在现实工作中年金应用很广泛。
例如,分期付款赊购、分期偿还贷款、发放养老金、分期支付工程款、每年相同的销售收入等,都属于年金收付形式。
老师手写板:①②年、月、半年、2年1年 2年 3年1年 1年 1年(二)年金的种类年金按其每次收付款项发生的时点不同,可以分为四种:普通年金(后付年金):从第一期开始每期期末收款、付款的年金。
预付年金(先付年金、即付年金):从第一期开始每期期初收款、付款的年金。
与普通年金的区别仅在于付款时间的不同。
递延年金:从第二期或第二期以后开始每期期末收付的年金。
永续年金:无限期的普通年金。
注意:各种类型年金之间的关系(1)普通年金和即付年金区别:普通年金的款项收付发生在每期期末,即付年金的款项收付发生在每期期初。
联系:第一期均出现款项收付。
【例题1·单选题】2007年1月1日,甲公司租用一层写字楼作为办公场所,租赁期限3年,每年12月31日支付租金10万元,共支付3年。
该租金有年金的特点,属于( )。
(2010年考试真题)A .普通年金B .即付年金C .递延年金D .永续年金【答案】A【解析】每年年末发生等额年金的是普通年金。
(2)递延年金和永续年金二者都是在普通年金的基础上发展演变起来的,它们都是普通年金的特殊形式。
它们与普通年金的共同点有:它们都是每期期末发生的。
区别在于递延年金前面有一个递延期,也就是前面几期没有现金流,永续年金没有终点。
在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的转化形式。
【提示】1.这里的年金收付间隔的时间不一定是1年,可以是半年、一个季度或者一个月等。
A A A A A A A A A A 300万 200万 100万2.这里年金收付的起止时间可以是从任何时点开始,如一年的间隔期,不一定是从1月1日至12月31日,可以是从当年7月1日至次年6月30日。
例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算就是:50000×(1+3%)30由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。
只需将公式中的利率换成通胀率即可。
这均是时间价值问题,简单来讲,今天的100元不等于5年后的100元,那5年后的100元相当于今天的多少呢?这就需要贴现,即用100乘以期限为5,相应利率的复利现值系数,而如果要知道今天的100元相当于5年后的多少呢?则用100乘以复利终值系数,也就是求本利和。
这里的复利终值系数和复利现值系数都是在复利计算下推出的。
(一次性收付款)年金是每隔相同时间就发生相等金额的收付款,比如房租,如果发生时间在每期期末,则称为普通年金,如果以后5年中每年末可以得到100元,相当于今天能得多少(从时间价值考虑,肯定不是500元)就要用100乘以普通年金现值系数 ,反之,比如每年末存银行100元,在复利下5年能得到多少?则用100乘以年金终值系数复利终值系数、复利现值系数是针对一次性收付款,而年金终值系数和年金现值系数是系列收付款,而且是特殊的系列收付款不知道明白没有,最好能看看财务管理中时间价值章节终值的计算终值是指货币资金未来的价值,即一定量的资金在将来某一时点的价值,表现为本利和。
单利终值的计算公式:f=p(1+r×n)n复利终值的计算公式:f = p(1+r)式中f表示终值;p表示本金;r表示年利率;n表示计息年数其中,(1+r)n称为复利终值系数,记为fvr,n,可通过复利终值系数表查得。
现值的计算现值是指货币资金的现在价值,即将来某一时点的一定资金折合成现在的价值。
单利现值的计算公式:复利现值的计算公式:式中p表示现值;f表示未来某一时点发生金额;r表示年利率;n表示计息年数其中称为复利现值系数,记为pvr,n,可通过复利现值系数表查得。
终值的概念:
▲终值(terminal value)是指一笔金融投资未来可以持续带来的收益,即未来一段时期的价值总和。
终值公式的推导:
1、终值的基本概念:
终值是指一笔金融投资未来可以持续给出的全部收益,终值的计算需
要计算金融投资的未来收益,以及投资期限内投资的收益率。
2、终值的计算公式
终值的计算分为两步,首先通过折现现金流法来计算投资期间的收益,之后再计算投资期间之后的收益率,最后便可以得出投资的终值。
具体的计算公式为:
终值=最后一笔现金流÷(投资期间内的收益率-投资期间之后的收益率)
其中,最后一笔现金流由投资期内的最后一笔现金流和投资期间之后
的现金流之和构成;投资期内的收益率一般按照相关无风险利率算,投资
期间之后的收益率可以按照公司的内部收益率或者市场收益率等来确定。
3、终值的意义
终值是一种金融投资成功的检验标准,它可以反映投资者投资最终的
收益效果。
终值的高低取决于投资者投资的时机、投资期限及收益率等许
多因素,是投资者衡量投资效果的重要标准之一。
年金是指在一定期限内定期支付的一系列等额现金流。
年金可以分为两类:年金终值和年金现值。
年金终值是指在未来一些特定时间点的一系列等额现金流的总和。
计算年金终值的公式如下:FV=PMT*[(1+r)^n-1]/r其中FV是年金终值PMT是每期支付的金额r是每期的利率n是支付期数。
我们可以通过以下例子来说明如何计算年金终值:假设你决定每个月从现在开始存入500元,存款期限是10年,年利率是5%。
现在我们来计算这个年金的终值。
PMT=500,r=0.05/12,n=10*12=120。
带入公式计算得到:FV=500*[(1+0.05/12)^120-1]/(0.05/12)年金现值是指将未来的一系列等额现金流折算到现在的总金额。
计算年金现值的公式如下:PV=PMT*[1-(1+r)^(-n)]/r其中PV是年金现值PMT是每期支付的金额r是每期的利率n是支付期数。
以下是一个年金现值的实例:假设你决定每个月从现在开始存入500元,存款期限是10年,年利率是5%。
现在我们来计算这个年金的现值。
PMT=500,r=0.05/12,n=10*12=120。
带入公式计算得到:PV=500*[1-(1+0.05/12)^(-120)]/(0.05/12)在计算年金终值和现值时,需要注意以下几个要点:1.利率的表示方式:通常利率是年利率,需要根据支付频率进行调整。
例如,如果利率是年利率,而支付频率是每个月,则利率需要除以122.支付期数的计算:支付期数等于存款期限乘以支付频率。
例如,如果存款期限是10年,支付频率是每个月,则支付期数为10乘以12,即120期。
3.利率和支付期数的单位要一致:利率和支付期数的单位要保持一致,比如,如果利率是年利率,支付期数应该是年份;如果利率是月利率,支付期数应该是月份。
4.汇率调整:如果计算的是国际性的年金,涉及到不同货币的转换,需要根据汇率进行调整。
综上所述,年金终值和现值的计算可以通过相应的公式进行完成。
复利计算是指在一定期限内,按照固定利率将本金和已获得利息再投入资金中进行的计算。
年金是指在一定期限内,按照固定利率,定期向其中一方支付一定金额的资金。
下面将详细介绍复利和年金的计算推导。
一、复利计算推导:假设有一本金P,年利率为r,投资期限为n年。
每年利息税前计算公式为:I=P*r;每年利息税后计算公式为:I=P*r*T,其中,T为税后利率。
1.单利计算:单利计算是指在投资期限结束时,只计算本金按照固定利率计算的利息。
单利计算公式为:A = P + I = P + P*r*n = P*(1+rn)2.复利计算:复利计算是指在投资期限内,本金和已获得的利息按照固定利率再进行投资,连续复利计算公式为:A=P*(1+r)^n3.含税复利计算:含税复利计算是指在应纳税的情况下,将税后利息再投入资金中。
含税复利计算公式为:A=P*(1+r*T)^n二、年金计算推导:年金计算是指在一定期限内,按照固定利率,定期向其中一方支付一定金额的资金。
1.年金终值计算(未完全终值):假设每年支付金额为C,年利率为r,投资期限为n年,年金终值计算公式为:A=C*((1+r)^n-1)/r2.年金现值计算(未完全现值):假设每年支付金额为C,年利率为r,投资期限为n年,年金现值计算公式为:P=C*(1-(1+r)^-n)/r3.年金终值计算(完成终值):假设每年支付金额为C,年利率为r,投资期限为n年,最后一期支付时,定期支付数量为C,年金终值计算公式为:A=C*((1+r)^n-1)/r*(1+r)4.年金现值计算(完成现值):假设每年支付金额为C,年利率为r,投资期限为n年,最后一期支付时,定期支付数量为C,年金现值计算公式为:P=C*(1-(1+r)^-n)/r*(1+r)以上是复利和年金的计算推导,通过上述公式可以计算复利和年金的终值和现值。
这些公式在金融领域非常常用,可以帮助我们计算投资收益和还贷情况等。