空气的密度粘度随温度的变化表
- 格式:xls
- 大小:30.00 KB
- 文档页数:1
第二节 空气的物理性质、气体状态方程及流动规律一、空气的组成成份及空气的物理性质1.空气的组成成份大气中的空气主要是由氮、氧、氩、二氧化碳,水蒸气以及其它一些气体等若干种气体混合组成的。
含有水蒸气的空气为湿空气。
大气中的空气基本上都是湿空气。
而把不含有水蒸气的空气称为干空气。
在距地面20 km 以内,空气组成几乎相同。
在基准状态(0℃,绝对压力为101325 Pa ,相对湿度为0)下地面附近的干空气的组成见表11-1。
空气中氮气所占比例最大,由于氮气的化学性质不活泼,具有稳定性,不会自燃,所以空气作为工作介质可以用在易燃、易爆场所。
2.空气的密度单位体积空气的质量,称为空气的密度ρ(kg/m 3),其公式为ρ =m / V (11-1)式中 ρ — 空气密度;m — 空气的质量(kg );V — 空气的体积(m 3)。
气体密度与气体压力和温度有关,压力增加,密度增加,而温度上升,密度减少。
在基准状态下,干空气的密度为 1.293 kg/m 3,在温度 t (℃)、压力(MPa )下的干空气的密度可用下式计算(11-2) 式中 ρ0 — 基准状态下的干空气密度;p — 绝对压力(MPa );ρ — 干空气的密度;t — 温度(℃),其中(273+t )为绝对温度(K )。
对于湿空气的密度可用下式计算(11-3)式中 ρ' — 湿空气的密度;p — 湿空气的全压力(MPa );φ — 空气的相对湿度(%);p b — 温度为t ℃时饱和空气中水蒸气的分压力(MPa )。
3.空气的粘性空气在流动过程中产生的内摩擦阻力的性质叫做空气的粘性,用粘度表示其大小。
空气的粘度受压力的影响很小,一般可忽略不计。
随温度的升高,空气分子热运动加剧,因此,空气的粘度随温度的升高而略有增加。
粘度随温度的变化关系见表11-2。
气体与液体和固体相比具有明显的压缩性和膨胀性。
空气的体积较易随压力和温度的变化而变化。
例如,对于大气压下的气体等温压缩,压力增大0.1 MPa ,体积减小一半。
【关键字】情况、平衡、保持、位置、作用、速度、吸引、方向不同温度时水的密度、粘度及与空气界面上的表界面张力表3 不同温度时水的密度、粘度及与空气界面上的表面张力在293K下水的表面张力系数为72.75×10-3 N·m-1,乙醇为22.32×10-3 N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N·m-1。
(1)定义或解释①促使液体表面收缩的力叫做表面张力[1]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
(2)单位表面张力的单位在SI制中为牛顿/米(N/m),但仍常用达因/厘米(dyn/cm), 1dyn/cm = 1mN/m。
(3)说明①表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
②表面张力是分子力的一种表现。
它发生在液体和气体接触时的边界部分。
是由于表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子由于只显著受到液体内侧分子的作用,受力不均,使速度较大的分子很容易冲出液面,成为蒸汽,结果在液体表面层(跟气体接触的液体薄层)的分子分布比内部分子分布来得稀疏。
相对于液体内部分子的分布来说,它们处在特殊的情况中。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
因此,如果在液体表面上任意划一条分界线MN把液面分成a、b两部分。
F表示a部分表面层中的分子对b部分的吸引力,F6表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势,由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。
7铝青铜 7.80 锌锭(Zn0。
1、Zn1、Zn2、Zn3) 7.15铍青铜 8。
30 铸锌 6.863-1硅青铜 8。
47 4—1铸造锌铝合金 6。
901—3硅青铜 8。
60 4—0.5铸造锌铝合金 6。
751铍青铜 8.80 铅和铅锑合金 11.371。
5锰青铜 8。
80 铅阳极板 11.335锰青铜 8。
60 4-4—2.5 锡青铜 8.75金 19.30 5铝青铜 8.204—0.3、4-4-4锡青铜 8。
90 变形镁 MB1 1.76不锈钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13 、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 MB2、MB8 1.78 Cr14、Cr17 7.70 MB3 1。
790Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 7.85 MB5、MB6、MB7、MB15 1。
801Cr18Ni11Si4A1Ti 7.52 锻铝 LD8 2.77不锈钢 1Crl8NillNb、Cr23Ni18 7.90 LD7、LD9、LD10 2。
802Cr13Ni4Mn9 8.50 钛合金 TA4、TA5、TC6 4。
453Cr13Ni7Si2 8.00 TA6 4。
40白铜 B5、B19、B30、BMn40-1。
5 8。
90 TA7、TC5 4.46BMn3-12 8。
40 TA8 4.56BZN15-20 8.60 TB1、TB2 4.89BA16—1。
5 8。
70 TC1、TC2 4。
55BA113—3 8.50 TC3、TC4 4.43锻铝 LD2、LD30 2。
70 TC7 4.40LD4 2.65 TC8 4.48LD5 2。
75 TC9 4。
52防锈铝 LF2、LF43 2。
68 TC10 4。
53LF3 2。
67 硬铝 LY1、LY2、LY4、LY6 2。
76LF5、LF10、LF11 2。
65 LY3 2。
灰口铸铁软木白口铸铁锌可锻铸铁纯铜材铜 59、62、65、68黄铜铁 80、85、90黄铜铸钢 96黄铜工业纯铁 59-1、63-3铅黄铜普通碳素钢 74-3铅黄铜|优质碳素钢 90-1锡黄铜碳素工具钢 70-1锡黄铜易切钢 60-1和62-1锡黄铜锰钢 77-2 铝黄铜15CrA铬钢、66-6-3-2、60-1-1铝黄铜20Cr、30Cr、40Cr铬钢镍黄铜38CrA铬钢锰黄铜铬、钒、镍、钼、锰、硅钢、、、4-3锡青铜纯铝 5-5-5铸锡青铜铬镍钨钢 3-12-5铸锡青铜铬钼铝钢铸镁^含钨9高速工具钢工业纯钛(TA1、TA2、TA3)含钨18高速工具钢超硬铝镉青铜 LT1特殊铝铬青铜工业纯镁19-2铝青铜 6-6-3铸锡青铜9-4、铝青铜硅黄铜、镍黄铜、铁黄铜10-4-4铝青铜纯镍、阳极镍、电真空镍高强度合金钢 ` 镍铜、镍镁、镍硅合金轴承钢镍铬合金7铝青铜锌锭(、Zn1、Zn2、Zn3)铍青铜铸锌;3-1硅青铜 4-1铸造锌铝合金1-3硅青铜铸造锌铝合金1铍青铜铅和铅锑合金锰青铜铅阳极板5锰青铜锡青铜金 5铝青铜、4-4-4锡青铜变形镁 MB1不锈钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13 、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 MB2、MB8Cr14、Cr17 MB30Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 MB5、MB6、MB7、MB151Cr18Ni11Si4A1Ti 锻铝 LD8—不锈钢 1Crl8NillNb、Cr23Ni18 LD7、LD9、LD102Cr13Ni4Mn9 钛合金 TA4、TA5、TC63Cr13Ni7Si2 TA6白铜 B5、B19、B30、 TA7、TC5BMn3-12 TA8BZN15-20 TB1、TB2TC1、TC2BA113-3 TC3、TC4锻铝 LD2、LD30 TC7LD4 TC8LD5 TC9[防锈铝 LF2、LF43 TC10LF3 硬铝 LY1、LY2、LY4、LY6LF5、LF10、LF11 LY3LF6 LY7、LY8、LY10、LY11、LY14LF21 LY9、LY12LY16、LY17上一篇:常见液体的粘度、密度值下一篇:国产质量流量计基本参数目录简介方法分类{分离方法1.气体扩散法2.电磁分离法3.热扩散法4.质量扩散法5.离心法6.精馏法7.化学交换法8.电解法9.光化学法参考书目~展开简介方法分类分离方法1.气体扩散法2.电磁分离法3.热扩散法4.质量扩散法5.离心法6.精馏法7.化学交换法8.|9.电解法10.光化学法参考书目展开编辑本段简介同位素分离isotope separation同位素分离(一)将某元素的一种或多种同位素与该元素的其他同位素分离或富集的过程。
0.5镉青铜8.90 LT1特殊铝 2.750.5铬青铜8.90 工业纯镁 1.7419-2铝青铜 7.60 6-6-3铸锡青铜8.829-4、10-3-1.5铝青铜 7.50 硅黄铜、镍黄铜、铁黄铜 8.5010-4-4铝青铜 7.46 纯镍、阳极镍、电真空镍8.85高强度合金钢 ` 7.82 镍铜、镍镁、镍硅合金 8.85轴承钢7.81 镍铬合金8.727铝青铜7.80 锌锭(Zn0.1、Zn1、Zn2、Zn3) 7.15铍青铜8.30 铸锌 6.863-1硅青铜8.47 4-1铸造锌铝合金 6.901-3硅青铜8.60 4-0.5铸造锌铝合金 6.751铍青铜8.80 铅和铅锑合金11.371.5锰青铜8.80 铅阳极板 11.335锰青铜8.60 4-4-2.5 锡青铜 8.75金19.30 5铝青铜8.204-0.3、4-4-4锡青铜8.90 变形镁 MB1 1.76不锈钢0Cr13、1Cr13、2Cr13、3Cr13、4Cr13 、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 MB2、MB8 1.78Cr14、Cr17 7.70 MB3 1.790Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 7.85 MB5、MB6、MB7、MB15 1.801Cr18Ni11Si4A1Ti 7.52 锻铝LD8 2.77不锈钢1Crl8NillNb、Cr23Ni18 7.90 LD7、LD9、LD10 2.802Cr13Ni4Mn9 8.50 钛合金TA4、TA5、TC6 4.453Cr13Ni7Si2 8.00 TA6 4.40白铜B5、B19、B30、BMn40-1.5 8.90 TA7、TC5 4.46BMn3-12 8.40 TA8 4.56BZN15-20 8.60 TB1、TB2 4.89BA16-1.5 8.70 TC1、TC2 4.55BA113-3 8.50 TC3、TC4 4.43锻铝LD2、LD30 2.70 TC7 4.40LD4 2.65 TC8 4.48LD5 2.75 TC9 4.52防锈铝LF2、LF43 2.68 TC10 4.53LF3 2.67 硬铝LY1、LY2、LY4、LY6 2.76LF5、LF10、LF11 2.65 LY3 2.73LF6 2.64 LY7、LY8、LY10、LY11、LY14 2.80LF21 2.73 LY9、LY12 2.78LY16、LY17 2.84上一篇:常见液体的粘度、密度值下一篇:国产质量流量计基本参数目录简介方法分类分离方法1.气体扩散法2.电磁分离法3.热扩散法4.质量扩散法5.离心法6.精馏法7.化学交换法8.电解法9.光化学法参考书目展开简介方法分类分离方法1.气体扩散法2.电磁分离法3.热扩散法4.质量扩散法5.离心法6.精馏法7.化学交换法8.电解法9.光化学法参考书目展开编辑本段简介同位素分离is otopeseparat ion同位素分离(一)将某元素的一种或多种同位素与该元素的其他同位素分离或富集的过程。
上一篇:下一篇:常见液体的粘度、密度值25℃,常压上一篇:下一篇:常用材料密度表材料名称密度(g/cm3) 材料名称密度(g/cm3)煤油水玻璃冰铅银酒精水银(汞) 汽油灰口铸铁软木白口铸铁锌可锻铸铁纯铜材铜 59、62、65、68黄铜铁 80、85、90黄铜铸钢 96黄铜工业纯铁 59-1、63-3铅黄铜普通碳素钢 74-3铅黄铜优质碳素钢 90-1锡黄铜碳素工具钢 70-1锡黄铜易切钢 60-1和62-1锡黄铜锰钢 77-2 铝黄铜15CrA铬钢、66-6-3-2、60-1-1铝黄铜20Cr、30Cr、40Cr铬钢镍黄铜38CrA铬钢锰黄铜铬、钒、镍、钼、锰、硅钢、、、4-3锡青铜纯铝 5-5-5铸锡青铜铬镍钨钢 3-12-5铸锡青铜铬钼铝钢铸镁含钨9高速工具钢工业纯钛(TA1、TA2、TA3)含钨18高速工具钢超硬铝镉青铜 LT1特殊铝铬青铜工业纯镁19-2铝青铜 6-6-3铸锡青铜9-4、铝青铜硅黄铜、镍黄铜、铁黄铜10-4-4铝青铜纯镍、阳极镍、电真空镍高强度合金钢 ` 镍铜、镍镁、镍硅合金轴承钢镍铬合金7铝青铜锌锭(、Zn1、Zn2、Zn3)铍青铜铸锌3-1硅青铜 4-1铸造锌铝合金1-3硅青铜铸造锌铝合金1铍青铜铅和铅锑合金锰青铜铅阳极板5锰青铜锡青铜金 5铝青铜、4-4-4锡青铜变形镁 MB1不锈钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13 、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 MB2、MB8Cr14、Cr17 MB30Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 MB5、MB6、MB7、MB15 1Cr18Ni11Si4A1Ti 锻铝 LD8不锈钢 1Crl8NillNb、Cr23Ni18 LD7、LD9、LD102Cr13Ni4Mn9 钛合金 TA4、TA5、TC63Cr13Ni7Si2 TA6白铜 B5、B19、B30、 TA7、TC5BMn3-12 TA8BZN15-20 TB1、TB2TC1、TC2BA113-3 TC3、TC4锻铝 LD2、LD30 TC7LD4 TC8LD5 TC9防锈铝 LF2、LF43 TC10LF3 硬铝 LY1、LY2、LY4、LY6LF5、LF10、LF11 LY3LF6 LY7、LY8、LY10、LY11、LY14LF21 LY9、LY12LY16、LY17上一篇:下一篇:目录1.2.3.4.5.6.7.8.9.展开1.2.3.4.5.6.7.8.9.展开同位素分离isotope separation同位素分离(一)将某元素的一种或多种与该元素的其他同位素分离或富集的过程。
第一节 矿内空气的主要物理参数一、密度单位体积空气所具有的质量称为空气的密度,用符号ρ表示。
空气可以看作是均质气体,故:Vm =ρ,kg/m 3 (1-2-1) 式中 m ——空气的质量,kg ;V ——空气的体积,m 3 ;ρ——空气的密度,kg /m 3;一般地说,当空气的温度和压力改变时,其体积会发生变化。
所以空气的密度是随温度、压力而变化的,从而可以得出空气的密度是空间点坐标和时间的函数。
如在大气压P 0为101325 Pa 、气温为0 ℃(273.15 K)时,干空气的密度ρ0为1.293 kg /m3。
湿空气的密度是l m3空气中所含干空气质量和水蒸汽质量之和:v d ρρρ+= (1-2-2) 式中 ρd —1m 3空气中干空气的质量,kg ;ρv —1m 3空气中水蒸汽的质量,kg ;由气体状态方程和道尔顿分压定律可以得出湿空气的密度计算公式:⎪⎭⎫ ⎝⎛-+=P P t P s ϕρ378.01273003484.0 (1-2-3) 式中 P —空气的压力,Pa ;t —空气的温度,℃ ; P s —温度t 时饱和水蒸汽的分压,Pa ;φ—相对湿度,用小数表示。
二、比容空气的比容是指单位质量空气所占有的体积,用符号v (m 3/kg)表示,比容和密度互为倒数,它们是一个状态参数的两种表达方式。
则:ρ1==m V v ,m 3/kg (1-2-4) 在矿井通风中,空气流经复杂的通风网络时,其温度和压力将会发生一系列的变化,这些变化都将引起空气密度的变化,在不同的矿井这种变化的规律是不同的。
在实际应用中,应考虑什么情况下可以忽略密度的这种变化,而在什么条件下又是不可忽略的。
三、粘性当流体层间发生相对运动时,在流体内部两个流体层的接触面上,便产生粘性阻力(内摩擦力)以便阻止相对运动,流体具有的这一性质,称作流体的粘性。
例如,空气在管道内以速度u 作层流流动时,管壁附近的流速较小,向管道轴线方向流速逐渐增大,如同把管内的空气分成若干薄层,图1-2-1所示。
不同温度时水的密度、粘度及与空气界面上的表界面张力表3 不同温度时水的密度、粘度及与空气界面上的表面张力温度t/℃密度d/(g•cm-3)粘度η/(10-3Pa•s)张力γ/(mN•m-1)0 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 270.999870.999990.999730.999630.999520.999400.999270.999130.998970.998800.998620.998430.998230.998020.997800.997560.997320.997070.996810.996541.7871.5191.3071.2711.2351.2021.1691.1391.1091.0811.0531.0271.0020.97790.95480.93250.91110.89040.87050.851375.6474.9274.2274.0773.9373.7873.6473.4973.3473.1973.0572.9072.7572.5972.4472.2872.1371.9771.8271.662829304050600.996260.995970.995670.992240.988070.965340.83270.81480.79750.65290.54680.314771.5071.3571.1869.5667.9160.75在293K 下水的表面张力系数为72.75×10-3 N·m-1,乙醇为22.32×10-3N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N·m-1。
(1)定义或解释 ①促使液体表面收缩的力叫做表面张力[1]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
7铝青铜 7.80 锌锭(Zn0。
1、Zn1、Zn2、Zn3) 7.15铍青铜 8。
30 铸锌 6.863-1硅青铜 8。
47 4—1铸造锌铝合金 6。
901—3硅青铜 8。
60 4—0.5铸造锌铝合金 6。
751铍青铜 8.80 铅和铅锑合金 11.371。
5锰青铜 8。
80 铅阳极板 11.335锰青铜 8。
60 4-4—2.5 锡青铜 8.75金 19.30 5铝青铜 8.204—0.3、4-4-4锡青铜 8。
90 变形镁 MB1 1.76不锈钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13 、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 MB2、MB8 1.78 Cr14、Cr17 7.70 MB3 1。
790Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 7.85 MB5、MB6、MB7、MB15 1。
801Cr18Ni11Si4A1Ti 7.52 锻铝 LD8 2.77不锈钢 1Crl8NillNb、Cr23Ni18 7.90 LD7、LD9、LD10 2。
802Cr13Ni4Mn9 8.50 钛合金 TA4、TA5、TC6 4。
453Cr13Ni7Si2 8.00 TA6 4。
40白铜 B5、B19、B30、BMn40-1。
5 8。
90 TA7、TC5 4.46BMn3-12 8。
40 TA8 4.56BZN15-20 8.60 TB1、TB2 4.89BA16—1。
5 8。
70 TC1、TC2 4。
55BA113—3 8.50 TC3、TC4 4.43锻铝 LD2、LD30 2。
70 TC7 4.40LD4 2.65 TC8 4.48LD5 2。
75 TC9 4。
52防锈铝 LF2、LF43 2。
68 TC10 4。
53LF3 2。
67 硬铝 LY1、LY2、LY4、LY6 2。
76LF5、LF10、LF11 2。
65 LY3 2。
常见介质的粘度资料及数据参考表
粘度就是液体的内摩擦。
润滑油受到外力作用而发生相对移动时,油分子之间产生的阻力,使润滑油无法进行顺利流动,其阻力大小称为粘度。
流体粘度与温度有关。
1)运动粘度①流体的绝对粘度与同温度下该流体的密度的比值称运动粘度。
②是指流体剪切应力与剪切速率之比。
它是这种流体在重力作用下流动阻力的尺度,运动粘度的单位是mm2/S。
运动粘度V:即动力粘度u与密度p的比值:v=u/p,运动粘度的单位为
m2/s,习惯单位为:厘斯(mm2/s)
2)动力粘度:动力粘度是使用单位距离的单位面积液层,产生单位流速所需之力。
在国际单位制中,动力粘度单位是毫帕斯卡 .秒(pa.s)。
运动粘度和动力粘度是评定润滑油粘度的两项指标。
动力粘度越小,低温流动性越好;反之,润滑油低温流动性越差。
而运动粘度越小,润滑油粘度越低,运动粘度越大,润滑油粘度越
高
运动粘度=动力粘度/密度
粘度测量单位常用的有厘泊cP,泊P等,其换算过程:
1厘泊(1cP)=1毫帕斯卡 .秒(1mPa.s) 100厘泊(100cP)=1泊(1P)
特别注意:表中数据仅供参考,如要求特别严格,请按照实际情况来界定。
密度与温度的修正
ρ4t=ρ420-α(t-20)
ρ4t:t℃时的密度(相对于4度时纯水密度之比);
α:温度修正系数,见下表
燃料油相对密度的温度修正系数
示例:ρ420=0.855时α=6.99×10-4
运动粘度ν=(7.31E t-6.31/ E t)/100 cm2/s
变量依次为:20度时的标准密度,吨/m3,查表得到的修正系数α,温度T
0号柴油的密度在标准温度20℃,一般是0.84--0.86g/cm之间
柴油的密度一般在0.83至0.85之间,这个和温度以及产品本身有关。
通常情况下天气温度不同成品油密度也会不一样,一般二季度和三季度气温较高,平均密度较低。
晚上的温度一般比白天要低,所以晚上的密度比白天要高,故理论上晚上要比白天省一点油。
一般来说,油品计量中的密度分为标准密度、视密度、计重密度,与之对应的是三个温度,即(标准温度)20摄氏度、观察温度、和油温
它们之间的关系可以通过国标公式,或者查成品油密度表得出
一般成品油交接的计量过程是这样的:
1、量出油高
2、根据油高及罐容积表(高度——容积)查出油的体积
3、取少量油样在量筒中,用密度计读得此时的密度和温度,分别是视密度和观温
4、在油样保温盒中读出“油温”
5、根据视密度和观温换算或是查表得出标准密度
6、根据标准密度和油温得出罐内油品在罐内温度下的密度即计重密度
7、以计重密度乘以体积得出重量
说明:公式或查表得到的最终结果,已经考虑到空气浮力的影响。
得出的实际质量(m)。
综上,
1000升柴油的重量约在830千克至850千克之间。
不是一个确定的数值。
不同温度时水的密度、粘度及与空气界面上的表界面张力表3 不同温度时水的密度、粘度及与空气界面上的表面张力温度t/℃密度d/(g•cm-3)粘度η/(10-3Pa•s)张力γ/(mN•m-1)0 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 270.999870.999990.999730.999630.999520.999400.999270.999130.998970.998800.998620.998430.998230.998020.997800.997560.997320.997070.996810.996541.7871.5191.3071.2711.2351.2021.1691.1391.1091.0811.0531.0271.0020.97790.95480.93250.91110.89040.87050.851375.6474.9274.2274.0773.9373.7873.6473.4973.3473.1973.0572.9072.7572.5972.4472.2872.1371.9771.8271.662829304050600.996260.995970.995670.992240.988070.965340.83270.81480.79750.65290.54680.314771.5071.3571.1869.5667.9160.75在293K 下水的表面张力系数为72.75×10-3 N·m-1,乙醇为22.32×10-3N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N·m-1。
(1)定义或解释 ①促使液体表面收缩的力叫做表面张力[1]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
一.流体力学基础1.研究流体在静止和流动状态下的规律时,常将流体视为由无数质点组成的( D )介质。
A.可压缩B.不可压缩C.间断D.连续2.理想流体是(黏度为零)的流体。
3.流体在管内作充分发展的稳态层流流动时,其速度分布为(抛物线形)。
4.理想流体在圆形直管内流动,则在壁面附近(不存在)边界层。
(存在、不存在)5.温度升高,液体的粘度(减小)。
6.非牛顿型流体是指(不符合牛顿粘性定律的流体)。
7.流体在圆管内的流动类型可用(雷诺数)加以判断。
8.流体在圆形直管内作层流流动时,其摩擦系数与雷诺数的关系式为(),若放置在管中心的测速管所测流速为2m/s,则管内平均流速为( 1 )m/s。
9.流体在管内作充分发展的层流流动时,其平均速度为最大速度的( 0.5 )倍。
10.流体在管内作充分发展的湍流流动时,其平均速度为最大速度的( 0.82 )倍。
11.流体所受到的力有(表面力)和(质量力)两种。
12.理想流体在圆形直管内流动,则在壁面处的速度梯度为( 0 )。
13.两稳态流动的管路甲、乙并联,若两管路的长度相同、甲管内径是乙管内径的2倍,且两管内的摩擦系数均恒为0.02,则甲管流速与乙管流速的比值为( 1.41 )。
14.管壁粗糙度增大,流体在直管内湍流流动时的阻力(增大)。
15.管壁粗糙度增大,流体在直管内层流流动时的阻力(不变)。
16.孔板流量计的流量系数随孔口直径的增大而(减小)。
17.当雷诺数大于其限定值后,孔板流量计的流量系数仅与()有关。
18.在孔口直径和管路内径一定的情况下,当雷诺数大于其限定值后,孔板流量计的流量系数为(常数)。
(常数、变数、不确定)19.湍流边界层可划分为(湍流中心)、(过渡层)和(层流内层)。
20.水平放置的圆形直管改为倾斜放置,其他条件不变时,其所连接的U形压差计的读数R将(不变)。
(变大、不变、变小)21.采用量纲分析的方法指导实验设计,具有(减少试验次数)的优点。
一填空1牛顿粘性定律的数学表达式为(),牛顿粘性定律适用于()流体。
2气体的粘度随温度的升高而(),水的粘度随温度的升高而()。
3气体的粘度随温度的升高而();压力升高液体的粘度将()。
4某流体的相对密度(又称比重)为0.8,在SI制中,其密度ρ= (),重度γ= ()。
54℃水在SI制中密度为1000kg/m3;重度为();在工程单位制中密度为();重度为()。
6处于同一水平面高的流体,维持等压面的条件是(),(),()。
7当地大气压为745mmHg,测得一容器内的绝对压强为350mmHg,则真空度为()。
测得另一容器内的表压强为1360mmHg,则其绝对压强为()。
8如衡算基准以J/kg表示,柏努利方程可表示为();如用N/m2表示,则柏努利方程为()。
9经典形式的柏努利方程的应用条件是:()、()、()。
10流体流动的连续性方程是();适用于不可压缩流体流动的连续性方程是()。
11判断流体流动方向的依据是()。
12流体在圆管内作层流流动时,速度分布呈(),平均流速为管中心最大流速的()。
13雷诺数的物理意义为()。
14某流体在圆形直管中做层流流动时,其速度分布是()型曲线,其管中心最大速度为平均流速的()倍,摩擦系数λ与Re的关系为()。
15当Re为已知时,流体在圆形管内呈层流时的摩擦系数λ= (),在粗糙管内呈湍流时,摩擦系数λ与()和()有关。
16流体在管内做湍流流动时(不是阻力平方区),其摩擦系数λ随()和()而变。
17某流体在圆形直管中作湍流流动时,其摩擦系数λ主要与()有关。
若流动处于阻力平方区,平均流速曾大至原来的2倍时,摩擦阻力损失约为原损失的()倍。
18已知某油品在圆管中稳定流动,其Re=1000。
已测得管中心处的点速度为0.5m/s,则此管截面上的平均速度为()m/s。
若油品流量增加一倍,则通过每米直管的压头损失为原损失的()倍。
19流体在等径水平直管的流动系统中:层流区,压强降与速度()成正比;极度湍流区,压强降与速度()成正比。
不同温度时水的密度、粘度及与空气界面上的表界面张力表3 不同温度时水的密度、粘度及与空气界面上的表面张力在293K下水的表面张力系数为72.75×10-3 N·m-1,乙醇为22.32×10-3 N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N·m-1。
(1)定义或解释①促使液体表面收缩的力叫做表面张力[1]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
(2)单位表面张力的单位在SI制中为牛顿/米(N/m),但仍常用达因/厘米(dyn/c m), 1dyn/cm = 1mN/m。
(3)说明①表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
②表面张力是分子力的一种表现。
它发生在液体和气体接触时的边界部分。
是由于表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子由于只显著受到液体内侧分子的作用,受力不均,使速度较大的分子很容易冲出液面,成为蒸汽,结果在液体表面层(跟气体接触的液体薄层)的分子分布比内部分子分布来得稀疏。
相对于液体内部分子的分布来说,它们处在特殊的情况中。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
因此,如果在液体表面上任意划一条分界线MN把液面分成a、b两部分。
F表示a部分表面层中的分子对b部分的吸引力,F6表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势,由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。