数值分析
第 二 节 复化求积公式
一、复化求积公式 复化求积公式的基本思想: 将区间[a , b] 分为若干个小子区间,在每个 小子区间上使用低阶的Newton-Cotes公式。然后
把它们加起来,作为整个区间上的求积公式。
数值分析
数值分析
1、复化梯形公式
将区间 a , b n等分, ba h , xk a kh, ( k 0,1, , n), n 在每个小区间 xk , xk 1 ,(k 0,1, , n 1) 上用梯形公式:
数值分析
数值分析
数值试验
复化Simpson公式Matlab程序
function rs= simpson(s,a,b,n) h = (b-a)/n; r= feval(s,a)+feval(s,b); for j = 1:2:n-1 x=a+j*h ; r= r+ 4*feval(s,x); end for j = 2:2:n-2 x=a+j*h ; r= r+ 2*feval(s,x); end 将此程序存于work目录中 rs = r*h/3;
n 1
复化Simpson公式的截断误差为
(b a ) 4 (4) 4 R( Sn ) h f ( ) O(h ) a, b 2880
数值分析
数值分析
数值分析
数值分析
Example 1
Approximate the integral
1 0.9 0.8 f(x)=sin(x)/x 0.7 0.6 0.5 0.4 0.3 0.2
s in x dx x 0
Using the Composite Trapezoidal rule and Composite Simpson’s rule