最新平抛运动与斜面、曲面相结合问题老沈汇总
- 格式:ppt
- 大小:904.50 KB
- 文档页数:32
平抛运动与斜面、曲面结合的问题高考试题呈现方式及命题趋势纵观近几年的高考试题,平抛运动考点的题型大多数不是单纯考查平抛运动而是平抛运动与斜面、曲面结合的问题,这类问题题型灵活多变,综合性强,既可考查基础又可考查能力,因此收到命题专家的青睐,在历年高考试题中属于高频高点。
求解思路解答平抛试题,首先要掌握平抛运动的规律和特点,同时也要明确联系平抛的两个分运动数量关系的桥梁,除时间t 外,还有两个参量:速度偏角α,tan yx v v α=位移偏角θ,tan y xθ= 两者关系:tan 2tan αθ=。
平抛运动与斜面、曲面结合的问题,命题者用意用于考查学生能否寻找一定的几何图形中几何角的关系,考查学生运用数学知识解决物理问题的能力。
知识准备结论:做平抛运动的物体经时间t 后,其速度t v 与水平方向的夹角为α(速度偏角),位移s 与水平方向的夹角为θ(位移偏角),则有tan 2tan αθ=证明:速度偏角0tan yx v gt v v α== 位移偏角2001112tan tan 22gt y gt x v t v θα==== 即:tan 2tan αθ=说明:以上结论对于做平抛运动的物体在任意时刻此式都成立,与物体运动速度大小,运动时间等外界因素无关!试题分类归纳一、抛点和落点都在斜面上存在以下规律:(1)位移与水平方向的夹角就为斜面的倾角(2)物体的运动时间与初速度成正比;由20012tan gt y gt x v t v θ===,知02tan v t g θ=,0v 确定时t 就确定了。
(3)物体落在斜面上时的速度方向平行;(4)当物体的速度方向与斜面平行时,物体离斜面的距离最远。
1.如图所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍[答案] B2.如图所示,ab bc cdde ef ====,当小球以速度水平0v 抛出后落于b 点,当以02v 。
平抛运动与斜面相结合专题训练卷一、选择题(题型注释)1.小球以水平初速v 0抛出,飞行一段时间后,垂直撞在倾角为θ的斜面上,则可知小球的飞行时间是( )A .B . θcot 0g v θtan 0g v C .D .θsin 0g v θcos 0gv【答案】A【解析】速度方向垂直斜面,则竖直方向的分速度与速度的夹角为θ,再利用三角函数求解 2.从倾角为θ的足够长的斜面上的M 点,以初速度v 0水平抛出一小球,不计空气阻力,落到斜面上的N 点,此时速度方向水平方向的夹角为α,经历时间为t 。
下列各图中,能正确反映t 及tanα与v 0的关系的图象是( )【答案】D【解析】设此过程经历时间为t ,竖直位移y=221gt ,水平位移x=v 0t tanθ=xy联立得t=gv θtan 20,得t ∝v 0,故图象AB 均错。
tanα=θtan 20==v gtv v x Y ,得tanα与v 0无关,为一恒量,故C 错,D 正确。
3.(求平抛物体的落点)如图,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 。
从a 点正上方的O 点以速度v 0水平抛出一个小球,它落在斜面上b 点。
若小球从O 点以速度2v 0水平抛出,不计空气阻力,则它落在斜面上的( )A .b 与c 之间某一点试卷第2页,总53页B .c 点C .c 与d 之间某一点D .d 点【答案】A【解析】当水平速度变为2v 0时,如果作过b 点的直线be ,小球将落在c 的正下方的直线上一点,连接O 点和e 点的曲线,和斜面相交于bc 间的一点,故A 对。
4O 沿x 轴正方向抛出,A 在竖直平面内运动,落地点为P 1,B 紧贴光滑的斜面运动,落地点为P 2,P 1和P 2对应的x 轴坐标分别为x 1和x 2,不计空气阻力,下列说法正确的是( )A.x 1=x 2B.x 1>x 2C.x 1<x 2D.无法判断【答案】C【解析】二者水平初速度v 0相同,且x 方向分运动为速度为v 0的匀速运动,x 位移大小取决于运动时间,因沿斜面滑行的加速度(a=gsinθ)小于g 且分位移比竖直高度大,体撞击在斜面上的速度分解,如图所示,由几何关系可得:0330cot v v v y =︒=竖直方向做自由落体运动,由可得gt v y =C .cos θ:1D .1:cos 2θ【答案】B【解析】小物体b 沿光滑斜面下滑,初速度大小为v 2,加速度大小为gsin θ.小物体a 作平抛运动,把这个运动沿斜面方向和垂直斜面方向进行分解,沿斜面方向的初速度大小为v 1cos θ,加速度大小为gsin θ.它与小物体b 的加速度相同,要相能在斜面上某点相遇,必须二者的初速度大小相等,即v 1cos θ=v 2,因此v 1:v 2=1:cos θ.B 选项正确.7.如图,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为6 m 处的O 点,以1 m/s 的速度水平抛出一个小球,飞行一段时间后撞在斜面上,这段飞行所用的时间为(g =10 m/s 2)A .0.1 sB .1 sC .1.2 sD .2 s【答案】A【解析】当小球垂直撞在斜面上有:tan45°=.则t==0.1s。
抛体运动九大问题目录题型一 平抛运动的基本规律题型二 平抛运动的临界、极值问题题型三 斜面上的平抛问题类型1.顺着斜面平抛斜面倾斜角是“位移”偏向角类型2.顺着斜面(圆弧)平抛斜面倾斜角是“速度”偏向角类型3.对着斜面平抛“垂直”打在斜面上斜面倾斜角为“速度”偏向角的余角类型4对着斜面平抛“最小位移”打在斜面上斜面倾斜角为“位移”偏向角的余角题型四 有约束条件的平抛运动模型类型1 对着竖直墙壁的平抛运动类型2半圆内的平抛问题题型五 平抛的多解问题题型六 平抛与圆周的临界问题题型七 斜抛运动的理解和分析题型八 类平抛运动题型九 抛体运动中的功能与动量平抛运动的基本规律【解题指导】1.性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线。
2.研究方法:运动的合成与分解(1)水平方向:匀速直线运动。
(2)竖直方向:自由落体运动。
3.基本规律(如图)(1)速度水平方向:v x =v0竖直方向:v y=gt合速度的大小v=22xy v+v=20v+g2t2设合速度的方向与水平方向的夹角为θ,有tanθ=v yv x=gtv0。
(2)位移水平方向:x=v0t 竖直方向:y=12gt2合位移的大小s=x2+y2=(v0t)2+12gt 2设合位移的方向与水平方向的夹角为α,有tanα=yx=gt2v0。
(3)三个重要结论:①合速度方向与水平方向的夹角θ和合位移方向与水平方向的夹角α的关系,tanθ=2tanα。
②做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,即x OC=x2。
③速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(Δv=gΔt)相等,且必沿竖直方向,如图所示。
任意两时刻的速度与速度的变化量Δv构成三角形,Δv沿竖直方向。
1(2023春·湖南衡阳·高三校考阶段练习)如图所示,甲、乙两人练习配合传球投篮,两人分别以2m/s、3m/s的速度同时匀速垂直通过篮球场地中线时,二者相距3m,甲继续匀速奔跑2s后从1.7m的高度将篮球近似水平抛出,乙在1.5m的高度接住篮球并奔向篮板。
高一物理下学期期中综合复习(重点专练模拟检测)专题06 平抛运动与斜面和曲面相结合的问题特训专题 特训内容专题1 斜面内的平抛运动(1T—5T )专题2 斜面外的平抛运动(6T—10T ) 专题3 平抛运动与曲面相结合的问题(11T—15T )【典例专练】一、斜面内的平抛运动1.甲、乙两个小球分别以v 、2v 的速度从斜面顶部端点O 沿同一方向水平抛出,两球分别落在该斜面上P 、Q 两点,忽略空气阻力,甲、乙两球落点P 、Q 到端点O 的距离之比为( )A .12 B .13C .14D .15【答案】C【详解】设斜面倾角为α,小球落在斜面上速度方向偏向角为θ,甲球以速度v 抛出,落在斜面上,如图所示根据平抛运动的推论tan 2tan θα=可知甲、乙两个小球落在斜面上时速度偏向角相等,对甲有=tanyv vθ甲对乙有=2tanyv vθ乙又因为下落高度22yvyg=可得甲、乙两个小球下落高度之比为1=4yy甲乙乙两球落点P、Q到端点O的距离之比1==4s ys y甲甲乙乙故选C。
2.24届冬季奥运会将于北京召开,跳台滑雪是比赛项目之一,该运动经过助滑坡和着陆斜坡,助滑坡末端视为水平,过程简化如图,两名运动员甲、乙(可视为质点)从助滑坡末端先后飞出,初速度之比为1:2,不计空气阻力,运动员和装备整体可视为质点,如图所示,则两人飞行过程中()A.甲、乙两人飞行时间之比为4:1B.甲、乙两人飞行的水平位移之比为1:4C.甲、乙两人在空中离斜坡面的最大距离一定相同D.甲、乙两人落到斜坡上的瞬时速度方向一定不相同【答案】B【详解】A.斜面倾角即为位移与水平方向的夹角,方程关系20012tan2gty gtx v t vθ===故时间与速度成正比,甲、乙两人飞行时间之比为1:2,故A错误;B.根据0x v t=水平位移为1:4,故B正确;C.速度越大,抛物线的开口越大,速度方向与斜坡平行时,到斜坡的最大距离越大,故C错误;D.根据推论公式瞬时速度与水平方向夹角的正切是位移与水平方向夹角正切的两倍,只要是落在斜面上,两偏角都为固定值,所以两人落到斜坡上的瞬时速度方向一定相同,故D错误。
行政人事部工作计划模板文章《行政人事部工作计划》正文开始>>一、总体目标根据本年度工作情况与存在不足,结合目前公司发展状况和今后趋势,行政人事部计划从十个方面开展____年度的工作:1、进一步完善公司的____架构,确定和区分每个职能部门的权责,争取做到____架构的科学适用,三年不再做大的调整,保证公司的运营在既有的____架构中运行。
2、完成公司各部门各职位的工作分析,为人才招募与评定薪资、绩效考核提供科学依据;3、完成日常行政招聘与配置;4、推行薪酬管理,完善员工薪资结构,实行科学公平的薪酬制度;5、充分考虑员工福利,做好员工激励工作,建立内部升迁制度,做好员工职业生涯规划,培养雇员主人翁精神和献身精神,增强企业凝聚力。
6、在现有绩效考核制度基础上,参考先进企业的绩效考评办法,实现绩效评价体系的完善与正常运行,并保证与薪资挂钩。
从而提高绩效考核的权威性、有效性。
7、大力加强员工岗位知识、技能和素质培训,加大内部人才开发力度。
8、弘扬优秀的企业文化和企业传统,用优秀的文化感染人;9、建立内部纵向、横向沟通机制,调动公司所有员工的主观能动性,建立和谐、融洽的企业内部关系。
集思广益,为企业发展服务。
10、做好人员流动率的控制与劳资关系、纠纷的预见与处理。
既保障员工合法权益,又维护公司的形象和根本利益。
二、注意事项:1、行政工作是一个系统工程。
不可能一蹴而就,因此行政人事部在设计制订年度目标时,按循序渐进的原则进行。
如果一味追求速度,行政部将无法对目标完成质量提供保证。
2、行政工作对一个不断成长和发展的公司而言,是非常重要的基础工作,也是需要公司上下通力合作的工作,各部门配合共同做好的工作项目较多,因此,需要公司领导予以重视和支持。
自上而下转变观念与否,各部门提供支持与配合的程度如何,都是行政工作成败的关键。
所以行政人事部在制定年度目标后,在完成过程中恳请公司领导与各部门予以协助。
3、此工作目标仅为行政人事部____年度全年工作的基本文件,而非具体工作方案。
突破14 平抛运动规律的应用之多体平抛运动问题与斜面上的平抛运动问题一、多体平抛运动问题1.多体平抛运动问题是指多个物体在同一竖直平面内平抛时所涉及的问题。
2.三类常见的多体平抛运动(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动。
(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定。
(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动。
3. 解题技巧(1)物体做平抛运动的时间由物体被抛出点的高度决定,而物体的水平位移由物体被抛出点的高度和物体的初速度共同决定。
(2)两条平抛运动轨迹的交点是两物体的可能相遇处,两物体要在此处相遇,必须同时到达此处。
【典例1】如图所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x 轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则( ).A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大【答案】BD【典例2】如图所示,A 、B 两小球从相同高度同时水平抛出,经过时间t 在空中相遇。
若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( )A .tB .22tC.2tD.4t 【答案】C 【解析】设两球间的水平距离为L ,第一次抛出的速度分别为v 1、v 2,由于小球抛出后在水平方向上做匀速直线运动,则从抛出到相遇经过的时间t =v1+v2L,若两球的抛出速度都变为原来的2倍,则从抛出到相遇经过的时间为t ′=2(v1+v2L =2t,C 项正确。
【跟踪短训】1. 如图所示,两个小球从水平地面上方同一点O 分别以初速度v 1、v 2水平抛出,落在地面上的位置分别是A 、B ,O ′是O 在地面上的竖直投影,且O ′A ∶AB =1∶3。
平抛运动的基本规律和与斜面曲面相结合问题特训目标特训内容目标1平抛运动基本规律(1T -4T )目标2平抛运动与斜面相结合的问题(5T -8T )目标3平抛运动与圆面相结合的问题(9T -12T )目标4平抛运动与任意曲面相结合的问题(13T -16T )【特训典例】一、平抛运动基本规律1如图,正在平直公路行驶的汽车紧急刹车,位于车厢前端、离地高度分别为H ≈3.2m 、h ≈2.4m 的两件物品,因没有固定而散落到路面,相距L ≈1m 。
由此估算刹车时的车速最接近()A.40km /hB.50km /hC.70km /hD.90km/h【答案】A【详解】汽车紧急刹车后物品做平抛运动,平抛初速度等于汽车碰撞瞬间的行驶速度,设为v 。
对于物品A ,水平方向上,有x A =vt 1竖直方式上,有h =12gt 21对于物品B ,水平方向上,有x B =vt 2竖直方式上,有H =12gt 22根据题图分析可知L =x B -x A 解得汽车的行驶速度v =9.33m/s =33.6km/h所以刹车时的车速最接近40km/h 故选A 。
2如图所示,空间有一底面处于水平地面上的长方体框架ABCD -A 1B 1C 1D 1,已知:AB :AD :AA 1=1:1:2,从顶点A 沿不同方向平抛小球(可视为质点)。
关于小球的运动,则()A.所有小球单位时间内的速率变化量均相同B.落在平面A 1B 1C 1D 1上的小球,末动能都相等C.所有击中线段CC 1的小球,击中CC 1中点处的小球末动能最小D.当运动轨迹与线段AC 1相交时,在交点处的速度偏转角均为60°【答案】C【详解】A .所有小球都是做平抛运动,只受重力,加速度为重力加速度g ,所有小球单位时间内的速度变化率相同,故A 错误;B .所有落在平面A 1B 1C 1D 1上的小球,下落高度相同,由t =2h g可知下落时间相同,而落到C 1点的小球水平位移最大,所以落到C 1点的小球的抛出初速度v 0最大,所以落到C 1点的小球的末速度最大,即落到C 1点的小球的末动能最大,故B 错误;C .所有击中线段CC 1的小球水平位移相同,设为x ,击中线段CC 1某点的小球的位移偏转角为θ,那么下落到该点的高度h 为h =x tan θ又由平抛规律和动能定理有h =12gt 2;x =v 0t ;mgh =E k -12mv 20联立上式得E k =mgx tan θ+14tan θ可知当tan θ=12时,E k 有最小值,再结合题目的几何关系知该点应为线段CC 1的中点,故C 正确;D .当运动轨迹与线段AC 1相交时,所有小球的位移偏转角相同,其正切值为tan θ=1再根据平抛推论知,所有小球速度偏转角相同,其正切值为tan ∂=2tan θ=2由此可知在交点处的速度偏转角均不为60°,故D 错误;故选C 。
专题平抛运动与斜面曲面相结合的模型特训目标特训内容目标2斜面内平抛模型(1T -5T )目标3斜面外平抛模型(6T -10T )目标4与曲面相结合模型(11T -15T )【特训典例】一、斜面内平抛模型1如图所示,倾角为θ的斜面上有A 、B 、C 三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D 点,今测得AB :BC :CD =5:3:1,由此可判断(不计空气阻力)()A.A 、B 、C 处三个小球的初速度大小之比为3∶2∶1B.A 、B 、C 处三个小球的运动轨迹可能在空中相交C.A 、B 、C 处三个小球运动时间之比为1∶2∶3D.A 、B 、C 处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶12某旅展开的实兵实弹演练中,某火箭炮在山坡上发射炮弹,所有炮弹均落在山坡上,炮弹的运动可简化为斜面上的平抛运动,如图所示,重力加速度为g 。
则下列说法正确的是()A.若将炮弹初速度由v 0变为v 02,炮弹落在斜面上的速度方向与斜面的夹角不变B.若将炮弹初速度由v 0变为v 04,则炮弹下落的竖直高度变为原来的12C.若炮弹初速度为v 0,则炮弹运动到距斜面最大距离L 时所需要的时间为v 0tan θgD.若炮弹初速度为v 0,则运动过程中炮弹距斜面的最大距离L =v 20sin 2θ2g cos θ3如图甲是研究小球在长为L 的斜面上做平抛运动的实验装置,每次将小球从弧形轨道同一位置静止释放,并逐渐改变斜面与水平地面之间的夹角θ,获得不同的水平位移x ,最后作出了如图乙所示的x -tan θ图像,当0<tan θ<1时,图像为直线,当tan θ>1时图像为曲线,g =10m/s 2。
则下列判断正确的是()A.小球在斜面顶端水平抛出时的初速度v0=2m/sB.θ超过45°后,小球将不会掉落在斜面上mC.斜面的长度为L=25D.斜面的长度为L=4m54如图所示,倾角为θ的斜面体固定在水平面上,一个小球在斜面上某一点第一次垂直斜面抛出,第二次水平抛出,两次抛出的初速度大小相同,两次小球均落在斜面上,第一次小球在空中运动时间为t1,落在斜面上的位置离抛出点的距离为s1,第二次小球在空中运动时间为t2,落在斜面上的位置离抛出点的距离为s2,则下列关系正确的是()A.t2=t1sinθB.t2=t1C.s2=s1tanθD.s2=s15如图所示为滑雪运动赛道的简化示意图,甲、乙两运动员分别从AB曲面(可视为光滑)上的M、N两点(图中未画出)由静止滑下,到达B点后,分别以速度v1、v2水平飞出。