激光粒度仪原理与应用
- 格式:ppt
- 大小:563.52 KB
- 文档页数:41
激光粒度仪原理与应用激光粒度仪(Laser Particle Size Analyzer)是一种运用激光光源和散射原理,通过对散射光的测量,获得物料粒径分布的仪器。
其原理是利用激光光源照射样品,样品中的粒子会散射出不同角度的光。
通过测量不同角度的散射光强度大小,可以推导出样品中粒子的粒径分布。
激光粒度仪广泛应用于颗粒物料的科学研究、工业制造和质量控制领域。
多角度散射法是指在不同角度上收集和测量样品中的散射光。
通过分析不同角度上的散射光的强度和散射角度,可以计算出样品中的粒径分布。
这种方法适用于较大粒径分布范围的样品,具有高测量精度和准确性。
动态光散射法是基于布朗运动原理和光谱分析技术的,通过连续监测粒子的布朗运动过程,获得粒径和时间的关系曲线,进而得到样品中的粒径分布。
这种方法适用于较小粒径范围的样品。
激光粒度仪在许多领域中得到广泛应用。
首先,激光粒度仪在颗粒物料的科学研究中起到了重要作用。
通过对样品中粒子的粒径分布的测量,研究人员可以了解和分析颗粒物料的物化属性,如表面积、比表面积、粒径分布等,从而为材料研究和新材料开发提供科学依据。
其次,激光粒度仪在工业制造中具有重要应用。
在制药、化工、冶金、矿业等行业中,颗粒物料的粒径对产品的品质和生产过程的稳定性起着至关重要的作用。
激光粒度仪可以帮助企业实时监测和控制产品的粒径分布,确保产品质量的一致性和稳定性,提高生产效率和降低成本。
综上所述,激光粒度仪是一种应用广泛的粒度分析仪器,其原理基于散射原理,可以通过测量不同角度的散射光强度大小,获得样品中的粒径分布。
它在颗粒物料的科学研究、工业制造和质量控制等领域发挥着重要作用,为材料研究、产品质量控制和环境监测等提供了科学依据。
通过颗粒衍射或散射光的空间分布分析颗粒大小的仪器被称之为激光粒度仪。
它采用Furanhofer衍射及Mie散射理论,因为不受温度、介质、密度以及表面状态等因素的影响,激光粒度仪如今正广泛的应用于各行各业。
很多人所在的工作岗位都会遇到这个仪器,但不一定每个人都了解它的作用原理和应用范围。
本文就和大家一起来做个简单的知识分享。
一、作用原理不管什么仪器,搞定它的工作原理,其它的基本就很简单了。
激光粒度仪的工作原理涉及颗粒衍射或散射光空间分布等内容。
由于激光具有很好的单色性和较强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。
当光束遇到颗粒阻挡时,一部分光将发生散射现象。
其中散射部分的传播方向将与主光束的传播方向形成一个夹角θ。
散射角θ的大小与颗粒的大小相关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。
利用这个原理,在不同的角度上测量散射光的强度,就可以拿到样品的粒度分布了。
二、应用范围搞清楚原理,下一步就是它的应用范围了。
什么仪器用在什么环境上,用在哪个地方都是很有讲究的,用错领域,用错环境可能都会造成仪器的损害和测量结果的误差。
激光粒度仪目前主要应用于建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室,研究机构等领域。
类似这种大型仪器,买回去一定要注意它的环境要求,小心因为湿度和温度造成仪器寿命的缩短。
激光粒度仪的温度要求大概就是10-40℃,湿度要求只要在百分之90以下就可以了。
当然,除了这些还需要找专业技术人员进行日常维护,别不小心造成工作停滞。
本期对激光粒度仪的工作原理和工作领域、工作环境做了简单介绍,其中有不尽详细的地方也可以电话咨询大昌洋行等公司,他们会给出相对专业化的答案。
下一期将会对仪器的使用以及指标分析做一个介绍,希望通过这系列文章帮助您了解更多的激光粒度仪。
激光粒度仪的工作原理分析激光粒度仪工作原理激光粒度仪是通过测量颗粒群的衍射光谱经计算机处理来分析其颗粒分布的。
它可用来测量各种固态颗粒、雾滴、气泡及任何两相悬浮颗粒状物质的粒度分布、测量运动颗粒群的粒径分布。
激光粒度仪是依据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻拦的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。
当光束碰到颗粒阻拦时,一部分光将发生散射现象。
散射光的传播方向将与主光荣的传播方向形成一个夹角。
散射理论和结果证明,散射角的大小与颗粒的大小有关,颗粒越大,产生的散射光的角就越小;颗粒越小,产生的散射光的角就越大。
激光粒度仪经典的光路由发射、接受和测量窗口等三部分构成。
发射部分由光源和光束处理器件构成,紧要是为仪器供应单色的平行光作为照明光。
接收器是仪器光学结构的关键。
测量窗口紧要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。
接收器由傅立叶选镜和光电探测器阵列构成。
所谓傅立叶选镜就是针对物方在无限远,像方在后焦面的情况除去像差的选镜。
激光粒度仪的光学结构是一个光学傅立叶变换系统,即系统的察看面为系统的后焦面。
由于焦平面上的光强分布等于物体(不论其放置在透镜前的什么位置)的光振幅分布函数的数学傅立叶变换的模的平方,即物体光振幅分布的频谱。
激光粒度仪将探测器放在透镜的后焦面上,因此相同传播方向的平行光将聚焦在探测器的同一点上。
据测器由多个中心在光轴上的同心圆环构成,每一环是一个独立的探测单元。
这样的探测器又称为环形光电探测器阵列,简称光电探测器阵列。
激光器发出的激光束经聚焦、低通滤波和准直后,变成直径为8~25 mm的平行光。
平行光束照到测量窗口内的颗粒后,发生散射。
散射光经过傅立叶透镜后,同样散射角的光被聚焦到探测器的同一半径上。
一个探测单元输出的光电信号就代表一个角度范围(大小由探测器的内、外半径之差及透镜的焦距决议)内的散射光能量,各单元输出的信号就构成了散射光能的分布。
激光粒度分析仪的原理特点及其应用现状激光粒度仪顾名思义既然是粒度仪那当然是测量颗粒的,利用了激光具有的单色性和极强的方向性等特性,激光粒度仪是全球范围内公认的最先进,最快捷的颗粒测试仪器。
粒度分析在材料工程、食品工程、制药工程、石油化工、国防工业等领域具有重要作用。
由于传统的粒度测量方法操作繁琐,耗时较长,已经越来越不能适应现代工业和科研快速反应的需求。
现代新兴科技的发展使激光和微电子技术应用到粒度测量领域,完全克服了传统方法所带来的弊端,在大大减轻劳动强度的同时,加快了样品的检测速度,提高了检测结果的质量。
近年来,有关粒度分布的测试技术和测试方法有很多,而激光粒度分析方法,因测量速度快、精度高及准确度好等特点被人们普遍认同。
激光粒度仪顾名思义既然是粒度仪那当然是测量颗粒的,利用了激光具有的单色性和极强的方向性等特性,激光粒度仪是全球范围内公认的最先进,最快捷的颗粒测试仪器。
激光粒度分析仪的测量原理激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。
激光粒度分析仪的原理特点及其应用现状米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。
即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的。
进一步研究表明,散射光的强度代表该粒径颗粒的数量。
这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。
为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。
我们在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行处理,就会准确地得到粒度分布了。
激光粒度仪的特点及应用激光粒度仪的工作原理激光粒度仪是一种利用激光光束进行粒度分析的仪器。
它通过激光光束在样品中进行衍射,从而得到样品中颗粒的大小、浓度和分布情况等信息。
其工作原理可以简单概括为以下几个步骤:1.激光器产生单色激光,照射在样品上。
2.颗粒将激光光束吸收和散射后,形成散射光。
3.多个探测器接收这些散射光,并将其转换为电信号发送到电子器件。
4.通过分析接收到的电信号,可以获得样品中颗粒的大小、浓度和分布情况等信息。
激光粒度仪的特点激光粒度仪的特点有很多,主要包括以下几个方面:1.高精度:激光粒度仪可以检测非常小的颗粒,一般来说可以检测到0.1微米的粒子。
2.快速性:激光粒度仪工作速度非常快,仅需几秒钟就可以完成一次检测。
3.非破坏性:激光粒度仪不会对样品造成破坏,因此可以在检测后继续使用样品进行其他的实验或分析。
4.粒度分布:激光粒度仪可以测量大量颗粒的粒度分布,并且可以根据需要进行分组。
5.自动化:现代的激光粒度仪通常具有自动化功能,可以自动开关、清洁、校准和存储数据等。
激光粒度仪的应用范围由于激光粒度仪具有高精度、快速性、非破坏性、可靠性、自动化等特点,因此广泛应用于多个领域。
1.医药领域:激光粒度仪可以用来研究药物的微粒大小、分布和浓度,以便更好地控制药物的成分和治疗效果。
2.食品行业:激光粒度仪可以对食品进行粒度分析,以保证其质量和安全性。
3.化学领域:化学反应中颗粒的大小、浓度和分布情况对反应结果有很大影响。
激光粒度仪可以用来研究化学反应中的颗粒情况,进而优化反应条件。
4.环境监测:激光粒度仪可以测量空气、水和土壤中的污染物微粒,以便实时监测和分析环境质量。
总之,随着科技的不断进步,激光粒度仪在多个领域中都有着广泛的应用,其高精度、快速性、非破坏性和自动化等特点,为科研和工业分析提供了有力的工具。
简述激光粒度仪的基本原理激光粒度仪是一种常用的颗粒分析仪器,利用激光散射原理来测量物料的颗粒大小。
它主要由激光源、物料流动系统、检测器和数据分析系统等几个部分组成。
激光粒度仪的基本原理是利用激光照射在物料颗粒上时,光与颗粒发生散射现象。
根据散射光的强度和散射角度的变化来推测颗粒的大小和分布情况。
以下是激光粒度仪的基本原理描述:1.激光源:激光粒度仪使用的激光器通常是低功率的、单频的激光器。
激光器发射的单一波长的光束,具有良好的单色性和方向性。
2.物料流动系统:物料通常以溶液或悬浮液的形式进入物料流动系统。
物料流动系统引导物料以细流的方式通过仪器,以保证每个颗粒都能被激光照射到。
3.散射角度的检测:激光粒度仪通常会设置多个探测器,用于检测散射光的强度和散射角度的变化。
常见的探测器包括正向散射光探测器和侧向散射光探测器。
正向散射光探测器用于检测颗粒在正向散射光中的散射强度,侧向散射光探测器用于检测颗粒在侧向散射光中的散射强度。
通过测量散射光强度的变化,可以推测颗粒的大小和分布情况。
4.数据分析系统:激光粒度仪的数据分析系统会根据散射光的强度和散射角度的变化来计算颗粒的大小和分布。
通过校准曲线,可以将散射光强度和散射角度映射到颗粒大小上。
常用的数据分析方法包括多峰分析、积分法和拟合法等。
总的来说,激光粒度仪的工作原理是通过激光照射物料颗粒,测量散射光的强度和散射角度的变化来推测颗粒的大小和分布情况。
这种技术无需进行样品的预处理,非常方便快捷。
同时,由于激光具有高亮度、直线传播和单一波长等特点,激光粒度仪具有高精度和高分辨率的特点,可以测量颗粒尺寸范围广、粒径分布广的样品。
因此,激光粒度仪广泛应用于材料科学、药剂学、环境监测、地质研究和生命科学等领域。
激光粒度分析原理激光粒度分析是一种常用的颗粒分析方法,通过激光的散射和透过性来确定颗粒在液体或气体介质中的大小和分布情况。
本文将探讨激光粒度分析的原理、应用和优势。
一、激光粒度分析是基于光散射原理的,主要包括散射角度、光强和颗粒直径之间的关系。
当激光束照射到颗粒上时,部分光线会被散射出去,其散射角度和颗粒的直径相关。
根据斯托克斯散射定律,散射强度与颗粒的直径的平方成正比。
在激光粒度分析中,通常使用激光束通过样品所产生的散射光进行测量。
散射光经过物镜聚焦,通过光电探测器接收,并将光信号转换为电信号。
通过分析电信号的强度和散射角度,可以确定颗粒的大小和分布。
二、激光粒度分析的应用1. 粒径分布分析:通过激光粒度分析,可以获得颗粒的粒径分布情况。
这对于研究颗粒材料的特性和性能具有重要意义。
例如,在制药工业中,可以通过粒径分布分析来控制药物颗粒的均匀性和稳定性。
2. 表面积分析:通过激光粒度分析,还可以获得颗粒的比表面积信息。
颗粒的表面积与其活性和吸附能力相关,因此在催化剂和材料科学领域具有重要的应用价值。
3. 聚集态分析:激光粒度分析可以用于研究颗粒的聚集行为。
聚集态的颗粒对于许多工业和环境应用具有重要影响,例如在大气污染中的颗粒聚集和生物颗粒的凝聚等。
三、激光粒度分析的优势1. 快速准确:激光粒度分析具有快速、准确的特点。
通过自动化仪器和精确的光学系统,可以实现对大量样品的快速测试和数据处理。
2. 宽测量范围:激光粒度分析方法适用于不同颗粒尺寸范围的样品。
从纳米级到数百微米的颗粒都可以进行粒度分析和测量。
3. 非侵入性:激光粒度分析是一种非侵入性的测量方法,不会破坏样品的结构和性质,适用于对颗粒样品进行重复分析。
4. 灵敏度高:激光粒度分析具有高灵敏度,可以检测到微小变化和细小颗粒的存在。
四、总结激光粒度分析是一种常用的颗粒分析方法,通过激光散射光线的特性来测量颗粒的大小和分布情况。
激光粒度分析具有快速准确、宽测量范围、非侵入性和高灵敏度等优势,广泛应用于材料科学、制药工业、环境监测等领域。
激光粒度分析仪原理
激光粒度分析仪用于测量固体颗粒的各种粒径,可以直接测量各种颗粒的尺寸,例如粮食、煤炭、矿石、化工原料、园林绿化装饰材料、造纸原料、建筑材料、工业产品等。
它采用了激光原理,不仅可以测量粒径,还可以测量粒度曲线,它能很好地反映物料的粒度性质。
激光粒度仪得工作原理是:用激光源从上向下发出激光束,使激光束穿过颗粒空间中的颗粒,由微处理机检测激光和颗粒交点,获取和统计颗粒的粒径和个数,最终得出颗粒粒度的分布情况并做出曲线图,从而得出粒径的最大最小值及对应的比例,以进行状况的分析。
激光粒度仪的优点是,测量粒径的精度高,而且呈现粒度分布曲线准确,获取粒径曲线相对容易,可作轻量级或台式仪器使用,易于携带,尤其是用来测量细小颗粒,它有得天独厚的特点。
喷雾激光粒度仪原理1. 引言喷雾激光粒度仪是一种常用的粒度分析仪器,广泛应用于颗粒物料的物理性质研究和工业生产中。
本文将详细介绍喷雾激光粒度仪的工作原理、测量原理和应用领域,以及相关的研究进展和未来发展方向。
2. 工作原理喷雾激光粒度仪主要由激光发生器、散射器、检测器和数据处理系统等组成。
其工作原理基于散射光的特性,通过测量样品中散射光的强度和角分布,来推算出样品中颗粒物料的大小分布。
2.1 激光发生器喷雾激光粒度仪通常采用气体或固体激光器作为其激光源。
气体激光器通常使用氦氖或二氧化碳等,而固体激光器则使用钕酸钇或二极管等。
这些激光源具有较高的功率和较窄的波长范围,使得测量结果更加准确。
2.2 散射器散射器是喷雾激光粒度仪中的关键组件,用于将激光束散射到不同的角度。
常见的散射器包括正向散射器和侧向散射器。
正向散射器用于测量较小颗粒的散射光,而侧向散射器则用于测量较大颗粒的散射光。
2.3 检测器喷雾激光粒度仪中常用的检测器有光电二极管和光电倍增管等。
检测器将样品中经过散射后的光信号转化为电信号,并传输给数据处理系统进行处理。
2.4 数据处理系统数据处理系统是喷雾激光粒度仪中非常重要的一部分,它负责接收、处理和分析检测到的信号,并根据一定算法计算出样品中颗粒物料的大小分布。
常见的数据处理方法包括多峰拟合、傅里叶变换和相关函数等。
3. 测量原理喷雾激光粒度仪通过测量样品中颗粒物料对入射激光束进行散射后的光强度和角分布,来推算出颗粒的大小分布。
其测量原理主要基于光散射理论和多次散射效应。
3.1 光散射理论根据光散射理论,当激光束照射到样品中的颗粒物料时,颗粒会对激光束进行散射。
根据散射角度和强度的变化,可以推算出颗粒的大小和浓度。
3.2 多次散射效应多次散射效应是指当样品中存在多个颗粒时,它们之间会相互干扰并影响到光的传播路径。
喷雾激光粒度仪通过对多次散射进行建模和修正,可以更准确地推算出样品中颗粒物料的大小分布。