2020中考复习--黄金分割专题训练(一)(有答案)
- 格式:docx
- 大小:233.07 KB
- 文档页数:13
2020中考复习--黄金分割专题训练(一)一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D.0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割1第2页,共15页 C. 如果线段AB 被点C 黄金分割,那么BC 与AB 的比叫做黄金比 D. 0.618是黄金比的近似值8. 如图,在△ABC 中,AB =AC ,∠BAC =108°,AD 、AE 将∠BAC 三等分交边BC 于点D ,点E ,则下列结论中错误的是( )A. 点D 是线段BC 的黄金分割点B. 点E 是线段BC 的黄金分割点C. 点E 是线段CD 的黄金分割点D. EDBE =√5−12二、填空题9. 据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10. 如果线段AB =10cm ,P 是线段AB 的黄金分割点,那么线段BP =________cm . 11. 如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割(BC <AC).已知AB =4 cm ,则BC 的长约为________cm.(结果精确到0.1)12. 在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62 cm ,则其身长约为_______cm(保留两位小数)13. 美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm ,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14. 在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则宽约为 ________ (精确到1 cm).15. 已知点C 为线段AB 的黄金分割点,且AC >BC ,若P 点为线段AB 上的任意一点,则P 点出现在线段AC 上的概率为________. 三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
初中数学黄金分割基础训练含答案一、选择题1.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm2.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm3.如图,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C 黄金分割,AC与AB的比叫做黄金比,其比值是()A.B.C.D.4.为了弘扬雷锋精神,某中学准备在校园内建造一座高2m的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中.如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m,参考数据:≈1.414,≈1.732,≈2.236)是()A.0.62m B.0.76m C.1.24m D.1.62m5.如果线段上一点P把线段分割为两条线段P A,PB,当P A2=PB•AB,即P A≈0.618AB时,则称点P是线段AB的黄金分割点,现已知线段AB=10,点P是线段AB的黄金分割点,如图所示,那么线段PB的长约为()A.6.18B.0.382C.0.618D.3.82二、填空题6.如图,△ABC顶角是36°的等腰三角形(底与腰的比为的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=_____.7.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为_____cm(结果精确到0.1cm).8.黄金分割比是==0.61803398…,将这个分割比用四舍五入法精确到0.001的近似数是_____.9.校团委举办“五•四手抄报比赛”.手抄报规格统一设计成:长是0.8米的黄金矩形(黄金矩形的长与宽的比是1.6:1),则宽为_____米.10.如图,乐器上的一根弦AB=80cm,两个端点A、B固定在乐器板面上,支撑点C是靠近点B的黄金分割点(即AC是AB与BC的比例中项),支撑点D是靠近点A的黄金分割点,则AC=_____cm,DC=_____cm.11.如图,已知线段AB,点C在AB上,且有,则的数值为_____;若AB的长度与中央电视台演播厅舞台的宽度一样长,那么节目主持人应站在_____位置最好.三、解答题12.一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图,是一个参加空姐选拔的选手的身高情况,那么她应穿多高的鞋子才能好看?(精确到1cm)参考数据:黄金分割比为,=2.236.13.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.14.宽与长之比为:1的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.15.如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=AB,OD=2.(1)求∠CDB的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比.①写出图中所有的黄金三角形,选一个说明理由;②求弦CE的长;③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.16.若一个矩形的短边与长边的比值为(黄金分割数),我们把这样的矩形叫做黄金矩形.(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).17.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.初中数学黄金分割基础训练含答案参考答案与试题解析选择题1.解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.2.解:根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:,解得:y≈8cm.故选:C.3.解:设AB=1,AC=x,根据已知条件中的比例式得,则x2=1﹣x,x2﹣1+x=0,x=(负值舍去).则比值是.故选:A.4.解:设雷锋人体雕像下部的设计高度为xm,那么雕像上部的高度为(2﹣x)m.依题意,得,解得x1=﹣1+≈1.24,x2=﹣1﹣(不合题意,舍去).经检验,x=﹣1+是原方程的根.故选:C.5.解:根据题意得:AP≈0.618×10=6.18,则PB=AB﹣AP=10﹣6.18=3.82.故选:D.填空题6.解:根据题意可知,BC=AB,∵△ABC顶角是36°的等腰三角形,∴AB=AC,∠ABC=∠C=72°,又∵△BDC也是黄金三角形,∴∠CBD=36°,BC=BD,∴∠ABD=∠ABC﹣∠CBD=36°=∠A,∴BD=AD,同理可证DE=DC,∴DE=DC=AC﹣AD=AB﹣BC=AB﹣AB=6﹣2.故答案为:6﹣2.7.解:由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为:6.2.8.解:0.61803398在四舍五入后,精确到0.001的近似值为0.618.9.解:设宽为x米,则,解得:x=0.5.故本题答案为:0.5.10.解:由题意得:则AC=BD=AB=80×=40﹣40;AD=AB﹣BD=80﹣(40﹣40)=120﹣40;DC=AB﹣2AD=80﹣160.故答案为:40﹣40,80﹣160.11.解:设AC=x,则BC=AB﹣x,∴x:AB=(AB﹣x):x,解得:AC=x=,∴的数值为,∴点C是线段AB的黄金分割点,故主持人应站在点C位置最好.故答案为:;C.解答题12.解:设应穿xcm高的鞋子,根据题意,得.解得x=10cm.13.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.14.解:留下的矩形CDFE是黄金矩形.证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点,∴,即,∴矩形CDFE是黄金矩形.15.解:(1)∵AB是⊙O的直径,DE=AB,∴OA=OC=OE=DE,则∠EOD=∠CDB,∠OCE=∠OEC,设∠CDB=x,则∠EOD=x,∠OCE=∠OEC=2x,又∠BOC=108°,∴∠CDB+∠OCD=108°,∴x+2x=108,x=36°.∴∠CDB=36°.(2)①有三个:△DOE,△COE,△COD.∵OE=DE,∠CDB=36°,∴△DOE是黄金三角形;∵OC=OE,∠COE=180°﹣∠OCE﹣∠OEC=36°.∴△COE是黄金三角形;∵∠COB=108°,∴∠COD=72°;又∠OCD=2x=72°,∴∠OCD=∠COD.∴OD=CD,∴△COD是黄金三角形;②∵△COD是黄金三角形,∴,∵OD=2,∴OC=﹣1,∵CD=OD=2,DE=OC=﹣1,∴CE=CD﹣DE=2﹣(﹣1)=3﹣;③存在,有三个符合条件的点P1、P2、P3,如图所示,ⅰ以OE为底边的黄金三角形:作OE的垂直平分线分别交直线AB、CD得到点P1、P2;ⅱ以OE为腰的黄金三角形:点P3与点A重合.16.解:(1)如图.(2)探究:四边形EBCF是矩形,而且是黄金矩形.∵四边形AEFD是正方形,∴∠AEF=90°∴∠BEF=90°,∵四边形ABCD是矩形,∴∠B=∠C=90°∴∠BEF=∠B=∠C=90°,∴四边形EBCF是矩形.【方法1】设∴∴矩形EBCF是黄金矩形.【方法2】设,∴∴矩形EBCF是黄金矩形.(3)归纳:在黄金矩形内以短边为边作一个正方形后,所得到的另外一个四边形是矩形,而且是黄金矩形.17.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC•DC,∵BC=AD,∴AD2=AC•DC,∴点D是线段AC的黄金分割点.。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学复习难题训练:黄金分割专题训练一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D.0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割C. 如果线段AB被点C黄金分割,那么BC与AB的比叫做黄金比D. 0.618是黄金比的近似值8.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是()A. 点D是线段BC的黄金分割点B. 点E是线段BC的黄金分割点C. 点E是线段CD的黄金分割点D. EDBE =√5−12二、填空题9.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10.如果线段AB=10cm,P是线段AB的黄金分割点,那么线段BP=________cm.11.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(BC<AC).已知AB=4cm,则BC的长约为________cm.(结果精确到0.1)12.在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62cm,则其身长约为_______cm(保留两位小数)13.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则宽约为________(精确到1cm).15.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
优异当先翱翔梦想第 4 课时黄金切割一、目标导航1.黄金切割定义 :点 C 把线段 AB 分红两条线段AC 和 BC,假如 AC:AB=BC:AC,那么称线段 AB 被点C 黄金切割.点 C 叫做线段 AB 的黄金切割点, AC 与 AB 的比叫做黄金比.AC 5 10.618 .2.2AB二、基础过关1.若点 P 是 AB 的黄金切割点,则线段AP、 PB、 AB 知足关系式2.黄金矩形的宽与长的比大概为________(精准到0.001).3.电视节目主持人在主持节目时,站在舞台的黄金切割点处最自然得体,若舞台AB 长为 20m,试计算主持人应走到离 A 点起码 m 处?,假如他向 B 点再走m,也处在比较得体的地点.(结果精准到 0. 1m)三、能力提高4.有以下命题:①假如线段 d 是线段 a, b, c 的第四比率项,则有.a c;②假如点 C 是线段 AB b d的中点,那么AC 是 AB、 BC 的比率中项;③假如点 C 是线段 AB 的黄金切割点,且AC>BC,那么 AC 是 AB 与 BC 的比率中项;④假如点 C 是线段 AB 的黄金切割点, AC>BC ,且 AB=2,则 AC= 5-1.此中正确的判断有()A. 1个B.2 个C.3 个D.4 个5.已知点M将线段AB黄金切割 ( AM>BM) ,则以下各式中不正确的选项是 ( )A. AM∶ BM=AB∶ AM B.AM=5 1AB 2. = 51AB.≈0. 618ABC BMD AM2优异当先翱翔梦想6.已知 C 是线段AB 的黄金切割点(AC> BC),则AC∶BC = () A.( 5 -1)∶2B.(5+1)∶ 2C.( 3-5)∶2D.(3+ 5 )∶ 2 7.在长度为1的线段上找到两个黄金切割点P,Q.则PQ=()51C.5235A .B.35 D .2 28.已知线段 MN = 1 ,在 MN 上有一点 A,假如 AN =35.求证:点 A 是 MN 的黄金切割点.2四、聚沙成塔9.如图,以长为2 的线段 AB 为边作正方形 ABCD ,取 AB 的中点 P,连接 PD,在 BA 的延伸线上取点 F,使 PF=PD,以 AF 为边作正方形 AMEF ,点 M 在 AD 上.(1)求 AM 、DM 的长.(2)求证: AM2=AD ·DM .(3)依据( 2)的结论你能找出图中的黄金切割点吗?10.假如一个矩形( <)中,AB5 1ABCDAB BC≈0.618,那么这个矩形称为黄金矩形,黄金矩形BC2给人以美感.在黄金矩形ABCD内作正方形 CDEF,获得一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.优异当先翱翔梦想参照答案1. AP 2或 PB2;4. C;5. C;6. B;7. C;=BP·AB=AP·AB; 2. 0.618; 3. 7.6, 4.88 证得25 ;⑵略;⑶点M 是线段 AD 的黄金切割点;AM =AN·MN 即可; 9.⑴ AM = 5- 1; DM =3 -10.经过计算可得AE 5 1,因此矩形 ABFE 是黄金矩形.AB2。
北师大版九年级数学上册第四章4.4.4黄金分割 同步测试题一、选择题1.已知点C 把线段AB 分成两条线段AC ,BC ,下列说法错误的是( )A .如果AC AB =BCAC ,那么线段AB 被点C 黄金分割B .如果AC 2=AB ·BC ,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么AC 与AB 的比叫做黄金比D .一条线段有两个黄金分割点2.已知点C 是线段AB 的黄金分割点,且AC >BC ,则下列各式中正确的是( )A .AB 2=AC ·BC B .BC 2=AC ·AB C .AC 2=BC ·ABD .AC 2=2AB ·BC3.已知AB =2 cm ,C 为AB 上的黄金分割点,且AC >BC ,则AC 的值为( )A .(5-1)cmB .0.618 cmC .(3-5)cmD.3-52cm4.若点C 是线段AB 的黄金分割点,且AC >BC ,则下列说法正确的有( )①AB =5+12AC ;②AC =3-52AB ;③AB ∶AC =AC ∶BC ;④AC ≈0.618AB. A .1个B .2个C .3个D .4个5.我们把宽与长的比值等于黄金比5-12的矩形称为黄金矩形.如图,在黄金矩形ABCD(AB >BC)的边AB 上取一点E ,使得BE =BC ,连接DE ,则AEAD等于( )A.22B.5-12C.3-52D.5+12二、填空题6.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,以PB,AB为边的矩形的面积为S1与S2的关系是S1=S2.7.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20 cm,那么相邻一条边的边长等于(105-10)cm.8.已知线段AB=4 cm,C为AB的黄金分割点,则AC的长为(25-2)cm或(6-25)cm.9.宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,FD的长为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中是黄金矩形的是矩形DCGH.10.如图,△ABC是顶角为36°的等腰三角形,若△ABC,△BDC,△DEC都是黄金三角形(底与腰的比为5-12的三角形是黄金三角形).已知AB=4,则DE=6-25.11.乐器上一根弦AB长80 cm,两个端点A,B固定在乐器板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则CD的长为(805-160)cm.9.如图,连接正五边形ABCDE的各条对角线围成一个新的五边形MNPQR.图中有很多顶角为36°的等腰三角形,我们把这种三角形称为“黄金三角形”,黄金三角形的底与腰之比为5-1 2.若AB=5-12,则MN=5-2.三、解答题12.如图,正方形ABCD的边长为2,点E是BC的中点,点F在BC的延长线上,且EF=DE,以CF为边作正方形CFGH,点H在CD边上.试说明点H是线段CD的黄金分割点.13.如图,以长为2 cm的线段AB为边作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AFEM,点M落在AD上.(1)试求AM,DM的长;(2)点M是线段AD的黄金分割点吗?请说明理由.14.如图,在△ABC中,AC=BC,在边AB上截取AD=AC,连接CD,若点D恰好是线段AB 的一个黄金分割点,且有AD>BD,求∠A的度数.15.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB于点E.若AE=BC,则点E是线段AB的黄金分割点吗?说明你的理由.参考答案1-5、CCACB6、S1=S2.7、(105-10)cm.8、(25-2)cm或(6-25)cm.9、矩形DCGH.10、6-25.11、5-2.12、解:∵点E是BC的中点,∴EC=1.∴EF=DE=22+12= 5. ∴CF=5-1.∵四边形CFGH是正方形,∴CH=CF=5-1.∴CHCD=5-12.∴点H是线段CD的黄金分割点.13、解:(1)在Rt△APD中,AP=1 cm,AD=2 cm,由勾股定理,得PD=AD2+AP2= 5 cm.∴AM=AF=PF-AP=PD-AP=(5-1)cm.∴DM=AD-AM=(3-5)cm.(2)点M是线段AD的黄金分割点,理由如下:∵AM2=(5-1)2=6-25,AD·DM=2×(3-5)=6-25,∴AM2=AD·DM.∴点M是线段AD的黄金分割点.14、解:∵点D是线段AB的一个黄金分割点,且AD>BD,∴AD2=BD·AB.∵AD=AC=BC,∴BC2=BD·AB,即BC∶BD=AB∶BC.∵∠CBD=∠ABC,∴△BCD∽△BAC.∴∠A=∠BCD.设∠A=x,则∠B=x,∠BCD=x,∴∠ADC=∠BCD+∠B=2x.∵AC=AD,∴∠ACD=∠ADC=2x.在△ABC中,x+(2x+x)+x=180°,解得x=36°,∴∠A=36°.15、解:点E是线段AB的黄金分割点.理由如下:连接EC.∵DE是AC的垂直平分线,∴EA=EC.又∵AE=BC,∴EC=BC.∴∠BEC=∠B.∵AB=AC,∴∠ACB=∠B.∴∠BEC=∠ACB.又∵∠B=∠B,∴△CEB∽△ACB.∴BEBC=BCAB,即BC2=BE·AB,又∵AE=BC,∴AE2=BE·AB.∴点E是线段AB的黄金分割点1、在最软入的时候,你会想起谁。
4.2 黄金分割 同步练习◆基础训练一、选择题1.若3a=4b ,则(a-b ):(a+b )的值是( ).A .17B .C .-17D .-7 2.已知P 是线段AB 上一点,且AP :PB=2:5,则AB :PB 等于( ).A .7:5B .5:2C .2:7D .5:73.已知线段AB ,点P 是它的黄金分割点,AP>BP ,设以AP 为边的正方形的面积为S 1,•以PB 、AB 为边的矩形面积为S 2,则S 1与S 2的关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 2二、填空题4.若点C 是线段AB 的黄金分割点且AC>BC ,则______,AB BC AC AB==_______. 5.等边△ABC 中,AD ⊥BC ,AB=4,则高AD 与边长AB 的比是______.三、解答题6.求下列各式中的x :(1)7:4=11:x ; (2)2:3=(5-x ):x .7.已知a b =112,a c c b a b c-+=-求证:.◆能力提高一、填空题8.在线段AB上取一点P,使AP:PB=1:3,则AP:AB=______,BC:PB=______.9.如图,已知3,(1)2AB AC BC CEAD AE DE AE===则:=______,(2)若BD=10cm,则AD=______;(3)若△ADE的周长为16cm,则△ABC的周长为_______.二、解答题10.已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两个数的比例中项,那么第三个数是多少?11.在相同时刻的物高和影长成比例.已知上午9点时,高为1.5m的测杆的影长为2.5m,此时一古塔在地面的影长是50m,求古塔的高.如果上午10点时,1.5m•高的测杆的影长为2m,中午12点时,1.5m高的测杆的影长为1m,求古塔的影长是20m的时刻.◆拓展训练12.用厘米作为长度单位量一下几何作业本,求出长与宽的比.•如果你来设计作业本的大小,你能利用所学的知识设计一种既美观又实用的“黄金作业本”吗?答案:1.A 2.A 3.C 4.1344,2 6.(1)227(2)x=3 7.由已知得ac-ab=ab-bc ,∴ac+bc=2ab ,∴2112a b ab c a b c+=+=即. 8.1:4,4:3 9.(1)52 (2)4cm (3)24cm10.2或16或±.30m ,中午12点 12.略.。
苏科版2019-2020学年第二学期初三数学同步练习6.2黄金分割的同步练习题一、单选题1.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠ADE =∠B ,已知AE =6,37AD AB =,则EC 的长是( )A .4.5B .8C .10.5D .14 2.若23a b =,则a b b +的值为( ) A .23 B .53C .35D .32 3.下列各线段中,能成比例的是( )A .3cm 、5cm 、7cm 、9cmB .2cm 、5cm 、6cm 、8cmC .3cm 、6cm 、9cm 、18cmD .1cm 、3cm 、4cm 、6cm4.若长度分别为2,3,6,x 的四条线段是成比例线段,则x 的值为( )A .3B .6C .9D .125.如图,345////l l l ,1l 交3l 、4l 、5l 于点E 、A 、C ,2l 交3l 、4l 、5l 于点D 、A 、B ,以下结论错误的是( )A .EA DA AC AB = B .BA CA BD CE =C .CA DA CE DB =D .EA DA EC DB= 6.如图,在ABC ∆中,,D E 分别是,AB AC 边上的点,//DE BC ,若2,3,4AD AB DE ===,则BC 等于( )A .5B .6C .7D .87.已知线段MN =4cm ,P 是线段MN 的黄金分割点,MP >NP ,那么线段MP 的长度等于( )A .()cmB .(2)cmC .)cmD .1)cm 8.如果c a b k a b b c c a===+++,那么k 的值为( ). A .1- B .12C .2或1-D .12或1-二、填空题9.若34x y =,则23x y x y +=-_______. 10.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)11.已知:432x y z ==,则3x y z x-+=_____. 12.在比例尺为1:5000的地图上,量得甲,乙两地的距离为30cm,则甲,乙两地的实际距离是__________千米. 13.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是_____14.如图,在正方形ABCD 中,点E 是对角线BD 上一点,连接AE ,将DE 绕D 点逆时针方向旋转90︒到DF ,连接BF ,交DC 于点G ,若3DG =,2CG =,则线段AE 的长为___________.15.已知a 、b 、c 满足2a 3b 4c ==,且6a 9b 4c 20+-=,2a b c -+的值为______.16.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C ′处,最后按图3所示方式折叠,使点A 落在DE 的中点A ′处,折痕是FG ,若原正方形纸片的边长为6cm ,则FG =____cm .三、解答题17.已知:245x y z ==,求223x y z x y z +--+的值.18.已知a ,b ,c ,是△ABC 的三边,满足33a +=24b +=75c +,且a+b+c=24 (1)试求a ,b ,c 的值.(2)试求△ABC 的面积.19.如图,在四边形ABCD 中,//AD BC ,AC 与BD 交于点O ,过点B 作//BE CD 交CA 的延长线于点E .求证:2OC AO OE =⋅.20.如图,在平行四边形ABCD 中,点E 在边BC 上,CE =2BE ,AC 、DE 相交于点F .(1)求DF:EF的值;(2)如果u u rCB=ar,u u rCB=br,试用ar、br表示向量EFu u u r.21.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.22.如图,已知△ABC是等边三角形,以AC为斜边作Rt△ADC,∠ADC=90°,且AD∥BC,连结BD交AC于点E(1)求证:BC=2AD(2)若BC=4,求BE的长.23小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作⊥⊥,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=AB BD ED BD,CE=AC+CE的最小值.(1)我们知道当A、C、E在同一直线上时,AC+CE值等于,此时x= ;(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想;(选填:函数思想,分类讨论思想、类比思想、数形结合思想)(3)的最小值.参考答案1.B2.B3.C4.C5.C6.B7.B8.D9.109 -.10.211.7 412.1.5 13.4814.25 715.11 316.17.13.18.(1)a=6,b=10,c=8;(2)24 19.略.20.(1)3=2DFEF;(2)24515EF b a=-u u u v v v.21.(1);(2)△OMN是等腰三角形,22.(1)略;(2)BE=23.(1)10,43;(2)数形结合思想;(3)13。
第4课时 黄金分割一、目标导航1.黄金分割定义:点C 把线段AB 分成两条线段AC 和BC ,如果AC :AB =BC :AC ,那么称线段AB 被点C 黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2.618.0215≈-=AB AC .二、基础过关1.若点P 是AB 的黄金分割点,则线段AP 、PB 、AB 满足关系式 .2.黄金矩形的宽与长的比大约为________(精确到0.001).3.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 处?,如果他向B 点再走m ,也处在比较得体的位置.(结果精确到0.1m )三、能力提升4.有以下命题:①如果线段d 是线段a , b ,c 的第四比例项,则有d c b a =;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1.其中正确的判断有( )A . 1个B .2个C .3个D .4个5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A .AM ∶BM =AB ∶AM B .AM =215-AB C .BM =215-AB D .AM ≈0.618AB6.已知C是线段AB的黄金分割点(AC>BC),则AC∶BC = ( )A.(5-1)∶2 B.(5+1)∶2 C.(3-5)∶2 D.(3+5)∶2 7.在长度为1的线段上找到两个黄金分割点P,Q.则PQ=()A.215-B.53-C.25-D.253-8.已知线段MN = 1,在MN上有一点A,如果AN =253-.求证:点A是MN的黄金分割点.四、聚沙成塔9.如图,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连结PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM、DM的长.(2)求证:AM2=AD·DM.(3)根据(2)的结论你能找出图中的黄金分割点吗?10.如果一个矩形ABCD(AB<BC)中,215-=BCAB≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.参考答案1. AP 2=BP ·AB 或PB 2=AP ·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN ·MN 即可;9.⑴AM =5-1;DM =3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形.。
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC?AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC?AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC?AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD?AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE?AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD?AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.黄金分割专项练习30题参考答案: 1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD?AC,∴AD2=CD?AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD?AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)?10(3﹣)=(400﹣800)cm2.3.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=, ∴AD 2=AC?CD .∴点D 是线段AC 的黄金分割点.(2)∵点D 是线段AC 的黄金分割点,∴AD=AC ,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB 作为三角形底边;②取AB 的一半作AB 的垂线AC ,连接BC ,在BC 上取CD=CA .③分别以A 点和B 点为圆心、以BD 为半径划弧,交点为E ;④分别连接EA 、EB ,则△ABE 即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC ﹣CD=﹣1,=. 5.解:(1)由于P 为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣; (2)如图,点P 是线段AB 的一个黄金分割点.6.解:(1)设AC=x ,则BC=AB ﹣AC=1﹣x ,∵AC 2=BC?AB ,∴x 2=1×(1﹣x ),整理得x 2+x ﹣1=0,解得x 1=,x 2=(舍去),所以线段AC 的长度为; (2)设线段AD 的长度为x ,AC=l ,∵AD 2=CD?AC ,∴x 2=l×(l ﹣x ),∴x 1=,x 2=(舍去),∴线段AD 的长度AC ;(3)同理得到线段AE 的长度AD ; 上面各题的结果反映:若线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),则C 点为AB 的黄金分割点7.解:D 是AC 的黄金分割点.理由如下:∵在△ABC 中,AB=AC ,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC?CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB?HB=2×(3﹣)=6﹣2,∴AH2=AB?HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC?DC,∵BC=AD,∴AD2=AC?DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD?AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB?HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB?HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在Rt△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN 就是平行四边形ABCD的黄金分割线.(9分)。
2020中考复习--黄金分割专题训练(一)一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D. 0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割C. 如果线段AB被点C黄金分割,那么BC与AB的比叫做黄金比D. 0.618是黄金比的近似值8.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是()A. 点D是线段BC的黄金分割点B. 点E是线段BC的黄金分割点C. 点E是线段CD的黄金分割点D. EDBE =√5−12二、填空题9.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10.如果线段AB=10cm,P是线段AB的黄金分割点,那么线段BP=________cm.11.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(BC<AC).已知AB=4cm,则BC的长约为________cm.(结果精确到0.1)12.在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62cm,则其身长约为_______cm(保留两位小数)13.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则宽约为________(精确到1cm).15.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
因为她的身材比例符合黄金分割,这也是人们追求的完美的比例。
人体结构就其整体而言,如果肚脐以上与肚脐以下两部分的比和肚脐以下与整体的比相等,就构成了黄金分割,肚脐眼就是黄金分割点,这个比值就是黄金分割比。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
如果把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,这个分割点就是黄金分割点,这个比值就是黄金分割比。
如图1,点C在线段AB上,若满足CB:AC=AC:AB,则称点C为线段AB的黄金分割点。
如图2,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D。
点D是线段AC的黄金分割点吗?说明理由。
17.如图,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长.(2)求证:AM2=AD·DM,并根据你在求学中的感悟,说说M点是线段AD上的什么点?,A点是线段BF上的什么点?AB,在DA上截取DE=DB,在18.如图,线段AB=2,BD⊥AB于点B,且BD=12AB上截取AC=AE.求证:点C是线段AB的黄金分割点.19.黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618.这个比值,被称为黄金分割数.我国著名数学家华罗庚普及并做出重要贡献的优选法中有一种0.618法也应用了黄金分割数.定义:点C在线段AB上,若满足AC2=BC⋅AB,则称点C为线段AB的黄金分割点(如图1).如图2,△ABC中,AB=AC=1,∠A=36∘,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.20.如图①,在线段AB上找一点C,点C把线段AB分为AC和CB两段,其中BC是较短的一段,如果BC·AB=AC2,那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、建筑等艺术领域.如图②,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,求太和门到太和殿的距离(√5的近似值取2.2).21.定义:底与腰的比是√5−12的等腰三角形叫做黄金等腰三角形.如图,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1.(1)证明:AB2=AA1⋅AC;(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)(3)应用:已知AC=,作A1B1//AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2//AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3//AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示A n−1A n.(n为大于1的整数,直接回答,不必说明理由)22.如图1,点C将线段AB分成两部分,如果ACAB =BCAC,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果S1S =S2S1,那么称直线l为该图形的黄金分割线.(1)如图2,在△ABC中,若点D为AB边上的黄金分割点,研究小组猜想:直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)三角形的中线是该三角形的黄金分割线吗?请直接回答“是”或者“不是”.(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF//CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)类似“黄金分割线”得“黄金分割面”定义:截面a将一个体积为V的图形分成体积为V1,V2的两个图形,且V1V =V2V1,则称截面a为该图形的黄金分割面.问题:如图4,在长方体ABCD−EFGH中,T是线段AB上的黄金分割点,请你说明经过点T且平行于平面BCGF的截面QRST是长方体的黄金分割面.答案和解析1.D解:由于P为线段AB=1的黄金分割点,且PA>PB,则PA=0.618×1=0.618.2.A解:根据题意得:上球体到塔底部的距离为较长的线段时,则它到塔底部的距离为0.618×468≈289.2米;3.A解:设整个线段长为1,较长段为x,可以列出的方程为1−xx =x1,4.A解:∵线段AB=4,点C是AB黄金分割点,AC>BC,∴BC=4×3−√52=6−2√5,AC=AB−BC=4−(6−2√5)=2√5−2.5.B解:一条线段的黄金分割点有2个.6.C解:∵四边形ABCD是正方形,∴∠EAB=90°,设正方形ABCD的边长为2a,∵E为AD的中点,∴AE=a,在Rt△EAB中,由勾股定理得:BE=√AE2+AB2=√a2+(2a)2=√5a,∵EF=BE,∴EF=√5a,∴AF=EF−AE=√5a−a=(√5−1)a,即AF=AH=(√5−1)a,∴S1=AF×AH=(√5−1)a×(√5−1)a=6a2−2√5a2,S2=S正方形ABCD −S长方形ADIH=2a×2a−2a×(√5−1)a=6a2−2√5a2,即S1=S2,7.C解:根据黄金分割的定义可知A、B、D正确;C、如果线段AB被点C黄金分割(AC>BC),那么AC与AB的比叫做黄金比,所以C 错误.8.D解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,∵∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,∴∠BAD=∠DAE=∠EAC=36°,∴△BDA∽△BAC,∴BDBA =BABC,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC−∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC−CD=BC−AB,则BC−BABA =√5−12,即BDBA=BABC=√5−12.故D错误;9.23解:根据黄金比的值得:37×√5−12=37×0.618≈23℃.10.(5√5−5)或(15−5√5)解:∵点P是线段AB的黄金分割点,若BP是较长的线段,若AB=10cm,∴BPBA =√5−12,∴√5−12×10=5√5−5(cm).∵点P是线段AB的黄金分割点,若BP是较短的线段,若AB=10cm,BP=10−(5√5−5)=15−5√5(cm),11.1.5解:由题意知AC :AB =BC :AC , ∴AC :AB ≈0.618,∴BC ≈AB(1−0.618)=1.528≈1.5(cm) ∴BC =1.512.3.47解:设身长xcm ,根据黄金分割的定义得:x 5.62=0.618,解得:x ≈3.47.13.8cm解:根据已知条件得下半身长是165×0.6=99cm , 设需要穿的高跟鞋是ycm ,则根据黄金分割的定义得: 8,618.016599≈=++y yy经检验y =8是方程的解14.12cm解:设宽为xcm ,由题意得, x :20=√5−12,解得x =10√5−10≈12.15.√5−12(或0.618)解:∵点C 为线段AB 的黄金分割点,, ∴AC =√5−12AB , ∴P 点出现在线段AC 上的概率为:ACAB=√5−12≈0.618.16.解:点D 是线段AC 的黄金分割点,理由如下:∵AB =AC ,∠A =36°, ∴∠ABC =∠C =180∘−36∘2=72°,又∵BD 平分∠ABC ,∴∠DBC =∠ABD =12∠ABC =12×72°=36°,∴∠BDC =∠A +∠ABD =36°+36°=72°,AD =BD .∴∠BDC=∠C,BD=BC.∵∠C=∠C,∠DBC=∠BAC,∴△BCD∽△ACB,∴CD:CB=BC:AC,即:CD:AD=AD:AC,∴点D是线段AC的黄金分割点.17.(1)解:在Rt△APD中,PA=12AB=1,AD=2,∴PD=√AD2+AP2=√5,∴AM=AF=PF−PA=PD−PA=√5−1,DM=AD−AM=2−(√5−1)=3−√5;(2)证明:∵AM2=(√5 −1)2=6−2√5 ,AD⋅DM=2(3−√5 )=6−2√5,∴AM2=AD⋅DM;(3)点M是AD的黄金分割点.点A是BF的黄金分割点.理由如下:∵AM2=AD⋅DM,∴AMAD =DMAM=√5−12,∴点M是AD的黄金分割点;同理可得:AB2=AF⋅BF,∴AFAB =ABBF=√5−12,∴点A是BF的黄金分割点.18.证明:∵AB=2,BD=12AB,∴BD=1.∵BD⊥AB于点B,∴AD=√AB2+BD2=√5,∴AE=AD−DE=√5−1,∴AC=AE=√5−1,∴AC=√5−12AB,∴点C是线段AB的黄金分割点.19.(1)证明:∵AB=AC=1,,∵BD平分∠ABC交AC于点D,,,∴DA=DB,BD=BC,∴AD=BD=BC,∴∠DBC=∠A=36º∴△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD⋅AC,∴AD2=CD⋅AC,∴点D是线段AC的黄金分割点;(2)解:设AD=x,则CD=AC-AD=1-x,∵AD2=CD⋅AC,∴x2=1-x,解得x1=√5-12,x2=-√5-12,即AD的长为√5-12.20.解:设太和门到太和殿的距离为x丈,由题意可得,x2=100(100−x)解得,x1=−50+50√5,x2=−50−50√5(舍去)则x≈−50+50×2.2=60,答:太和门到太和殿的距离为60丈.21.(1)证明:∵AC=BC,∠C=36°,∴∠A=∠ABC=72°,∵BA1平分∠ABC,∴∠ABA1=12∠ABC=36°,∴∠C=∠ABA1,又∵∠A=∠A,∴△ABC∽,△AA1B∴ABAA1=ACAB,即AB2=AC·AA1;(2)解:△ABC是黄金等腰三角形,理由:由(1)知,AB2=AC·AA1,设AC=1,∴AB2=AA1,又由(1)可得:AB=A1B,∵∠A1BC=∠C=36°,∴A1B=A1C,∴AB=A1C,∴AA1=AC−A1C=AC−AB=1−AB,∴AB2=1−AB,设AB=x,即x2=1−x,∴x2+x−1=0,解得:x 1=−1+√52,x 2=−1−√52(不合题意舍去), ∴AB =√5−12, 又∵AC =1, ∴ABAC =√5−12, ∴△ABC 是黄金等腰三角形;(3)解:由(2)得;当AC =a ,则AA 1=AC −A 1C =AC −AB =a −AB=a −−1+√52a =(√5−12)2a , 同理可得:A 1A 2=A 1C −A 1B 1=AC −AA 1−A 1B 1=a −(√5−12)2a −√5−12A 1C =a −(√5−12)2a −√5−12[a −(√5−12)2a] =(√5−12)3a.故A n−1A n =(√5−12)n+1a.22.解:(1)直线CD 是△ABC 的黄金分割线.理由如下: 设△ABC 的边AB 上的高为h .则S △ADC =12AD ⋅ℎ,S △BDC =12BD ⋅ℎ,S △ABC =12AB ⋅ℎ, ∴S △ADC S △ABC =AD AB ,S △BDC S △ADC =BDAD . 又∵点D 为边AB 的黄金分割点,∴ADAB=BD AD , ∴S △ADC S △ABC =S △BDC S △ADC. 故直线CD 是△ABC 的黄金分割线.(2)不是.∵三角形的中线将三角形分成面积相等的两部分,∴s 1=s 2=12s ,即s 1s ≠s2s 1, 故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF//CE ,∴△DFC 和△DFE 的公共边DF 上的高也相等,∴S △DFC =S △DFE ,∴S △ADC =S △ADF +S △DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵S△ADCS△ABC =S△BDCS△ADC,∴S△AEFS△ABC =S四边形BEFCS△AEF.因此,直线EF也是△ABC的黄金分割线.(4)∵T是线段AB上的黄金分割点,∴ATAB =TBAT,∵V1=AT·AE·AD,V2=TB·BC·BF,V=AB·AE·AD,又∵AE=BF,AD=BC,∴V1V =AT·AE·ADAB·AE·AD=ATAB,V2V1=TB·BC·BFAT·AE·AD=TBAT,∴V1V =V2V1,∴经过点T且平行于平面BCGF的截面QRST是长方体的黄金分割面.。