第三章 函数概念及性质
- 格式:ppt
- 大小:1.75 MB
- 文档页数:45
第三章 函数的概念及性质3.1函数的定义及函数思想知识点一:函数的定义设A 、B 是两个非空的数集,对于集合A 中的每一个元素x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,则称f:A →B 为从集合A 到集合B 的一个函数。
记作:y=f(x),x ∈A 。
其中x 的取值集合A 叫定义域,函数值的集合{f(x)|x ∈A}叫值域。
函数的三要素:定义域,值域,对应关系。
注意:① x 是自变量,是函数图像上点的横坐标,x 的所有取值组成的集合是定义域。
②y 是函数值,是函数图像上点的纵坐标,y 的所有取值组成的集合是值域。
③对应关系f 是函数的核心,它是对自变量x 实施对应操作的“程序”或者“方法”,按照这一程序,从定义域A 中任取一个x ,可得到值域中唯一的y 值与之对应。
题型一:对函数概念的理解1、(多选)下列说法正确的是( )A 若两个函数的定义域和对应法则都相同,则他们是同一个函数B 若两个函数的定义域和值域都相同,则他们是同一个函数C 若两个函数的值域和对应法则都相同,则他们是同一个函数D 定义域中不同的x 可以对应值域中同一个函数值2、下列两个函数相同的是( )A f(x)=x , g(x)=()2x B f(x)=2x, g(x)=xx 22 C f(x)=x, g(x)=33x D f(x)=x, g(x)=2x 3、下列能构成从集合A 到集合B 的函数的是( )A A=R, B=}0|{>y y ,f: y=|x|B A=B=N, f: y=|x-3|C A={x|x>0}, B=R, f: y=x ±D A=R, B=R, f: y=x4、函数y=f(x)的图像与y 轴的交点个数可能是( )A 0个B 1个C 0个或1个D 不能确定5、下列式子能否确定y 是x 的函数?①x 2+y 2=1 ②111=-+-y x ③ y=x x -+-12知识点二:对函数解析式y=f(x)中f 符号的理解及函数思想①f(x)表示关于x 的代数式,不表示f 与x 相乘,表示对x 施加法则f 后的函数值。
高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
函数:,
定义域:的取值范围
函数的概念及其表示
值域:
闭区间,,开区间,,半开半闭区间,,,
函数的表示法:解析法、列表法、图象法分段函数
如果,当时,都有,那么就称函数在区间上单调递增
单调性:一般地,设函数的定义域为,区间:
当函数
在它的定义域上单调递增时,就称它是增函数
如果
,当时,都有,那么就称函数在区间上单调递减
当函数
在它的定义域上单调递减时,就称它是减函数
函数的基本性质
最值:一般地,设函数的定义域为,如果存在实数满足:
,都有
;
,使得
则称
是函数
的最大值
,都有;
,使得
则称是函数
的最小值
第三章函数的概念与性质
奇偶性:一般地,设函数的定义域为,如果,都有,且
,那么函数
就叫做偶函数图象关于
轴对称
,那么函数
就叫做奇函数
图象关于原点成中心对称
定义:
,其中是自变量,是常数
在
上都有定义,定义域与
的取值有关
幂函数
图象过点
和点
性质
在上是增函数
在上都有定义,定义域与
的取值有关
图象过点
在
上是减函数
函数的应用(一)
一次函数、二次函数、幂函数、分段函数模型
步骤:审题、建模、求模、还原。
第三章 函数的概念与性质章节复习一、本章知识结构二、本章重难点概念知识点1、函数及三要素(定义域、对应法则、值域) 一、函数的概念2、区间一般区间、特殊区间、 端点大小关系、开闭区间 1、函数概念中强调三性:“任意性”、“存在性”、“唯一性”; 2、定义域、值域的结果写成集合或区间形式; 3、对应关系包括一对一、多对一。
一、判断对应法则或图象是否是一个函数(非空性、任意性x 、唯一确定性y )二、判断两个函数是否是相同函数(定义域、对应法则) 三、求函数定义域(写成集合或区间形式)3、分段函数概念、表示方式、定义域、值域、图象4、复合函数(定义域、值域) 二、函数的表示法5、函数的单调性、单调区间 1、三种表示方法:解析法、列表法、图像法; 2、列表法表示的函数图象是一些孤立的点,函数图象呈现形式主要有2种:连续的曲线或孤立的点; 3、画函数图象方法:描点法(列表、描点、连线)6、函数的最大值、最小值7、函数的奇偶性8、幂函数(概念、图象、性质)三、题型1、求一般函数的定义域(写成集合或区间形式)函数类型定义域举例①整式函数R f(x)=x2+2x+3②分式函数分母不为0 f(x)=1 2x+3③偶次根式函数根号中式子≥0f(x)=√x2+2x−3④奇次根式函数R f(x)=√x2+2x+33⑤绝对值函数R f(x)=|x2+2x+3|⑥0次幂函数底数不为0 f(x)=(x2+2x−3)0⑦对数函数真数大于0 f(x)=log2(2x−3)⑧实际问题考虑实际意义正方形周长公式f(x)=4x(x>0)多个使函数有意义的条件用花括号连接,写成不等式组。
2、求复合函数的定义域①已知f(x)的定义域,求f(g(x))的定义域;②已知f(g(x))的定义域,求f(x)的定义域;③已知f(g(x))的定义域,求f(g(x))的定义域;④已知f(g(x))的定义域,求F(x)=f(g(x))+f(ℎ(x))的定义域关键:定义域是指自变量x的值相同对应法则f下的整体变量取值范围相同(空间不变原理)3、求简单函数的值域(写成集合或区间形式)函数类型定义域值域一次函数R R二次函数Ra>0时,[4ac−b24a,+∞)a<0时,(-∞,4ac−b24a]配方、画图、找最高点和最低点反比例函数(−∞,0)∪(0,+∞)(−∞,0)∪(0,+∞)分式函数分母不为0 配凑法(利用基本不等式求解)4、求函数的解析式①待定系数法②换元法/配凑法③方程组法/消元法 ④赋值法最后一定要考虑定义域,定义域不是R 一定要写出来5、函数单调性的判断、证明及应用 单调递增单调递减函数f(x)在区间D 上为增函数,x 1,x 2∈D ,且x 1≠x 2,则函数f(x)在区间D 上为减函数,x 1,x 2∈D ,且x 1≠x 2,则① x 1<x 2⟺f (x 1)<f(x 2) ① x 1<x 2⟺f (x 1)>f(x 2) ② (x 1−x 2)[f (x 1)−f(x 2)]>0 ② (x 1−x 2)[f (x 1)−f(x 2)]<0 ③f (x 1)−f(x 2)x 1−x 2>0 ③f (x 1)−f(x 2)x 1−x 2<0④ x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1) ④ x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) 即x 与f(x)的变化趋势相同, 自变量增量与函数值增量同号。
3.1.1 函数的概念考点学习目标核心素养函数的概念理解函数的概念,了解构成函数的三要素数学抽象求函数的定义域会求一些简单函数的定义域,并会用区间表示数学运算同一个函数掌握同一个函数,并会判断数学抽象求函数值和值域会求简单函数的函数值和值域,并会用区间表示值域数学运算问题导学预习教材P60-P66,并思考以下问题:1.函数的定义是什么?2.函数的自变量、定义域是如何定义的?3.函数的值域是如何定义的?4.区间的概念是什么?如何用区间表示数集?1.函数的有关概念■名师点拨对函数概念的3点说明(1)当A,B为非空数集时,符号f:A→B表示从集合A到集合B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”表示对应关系,在不同的函数中f的具体含义不一样.2.区间的概念及表示(1)区间定义及表示设a,b是两个实数,而且a<b.定义名称符号数轴表示{x|a≤x≤b} 闭区间[a,b]{x|a<x<b} 开区间(a,b){x|a≤x<b} 半开半闭区间[a,b){x|a<x≤b} 半开半闭区间(a,b](2)无穷概念及无穷区间表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a) ■名师点拨关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.判断正误(正确的打“√”,错误的打“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)已知定义域和对应关系就可以确定一个函数.( )(3)根据函数的定义,定义域中的每一个x可以对应着不同的y.( )(4)区间可以表示任何集合.( )答案:(1)×(2)√(3)×(4)×已知函数g(x)=2x2-1,则g(1)=( )A.-1 B.0C.1 D.2解析:选C.因为g(x)=2x2-1,所以g(1)=2-1=1.函数f(x)=14-x的定义域是( )A.(-∞,4) B.(-∞,4]C.(4,+∞) D.[4,+∞)解析:选A.由4-x>0,解得x<4,所以此函数的定义域为(-∞,4).已知全集U=R,A={x|1<x≤3},则∁U A用区间表示为________.解析:∁U A={x|x≤1或x>3},用区间可表示为(-∞,1]∪(3,+∞).答案:(-∞,1]∪(3,+∞)下图中能表示函数关系的是________.解析:由于③中的2与1和3同时对应,故③不是函数. 答案:①②④函数的概念(1)如图可作为函数y =f (x )的图象的是( )(2)下列三个说法:①若函数的值域只含有一个元素,则定义域也只含有一个元素; ②若f (x )=5(x ∈R ),则f (π)=5一定成立; ③函数就是两个集合之间的对应关系. 其中正确说法的个数为( ) A .0 B .1 C .2D .3(3)已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作是从A 到B 的函数关系的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x【解析】 (1)观察图象可知,A ,B ,C 中任取一个x 的值,y 有可能有多个值与之对应,所以不是函数图象.D 中图象是函数图象.(2)①错误.若函数的值域只含有一个元素,则定义域不一定只含有一个元素; ②正确.因为f (x )=5,这个数值不随x 的变化而变化,所以f (π)=5; ③错误.函数就是两个非空数集之间的对应关系.(3)对于A 中的任意一个元素,在对应关系f :x →y =18x ;f :x →y =14x ;f :x →y =12x 下,在B 中都有唯一的元素与之对应,故能构成函数关系.对于A 中的元素8,在对应关系f :x →y=x 下,在B 中没有元素与之对应,故不能构成函数关系.【答案】 (1)D (2)B (3)D(1)判断所给对应关系是否为函数的方法 ①先观察两个数集A ,B 是否非空;②验证对应关系下,集合A 中x 的任意性,集合B 中y 的唯一性. (2)根据图形判断对应关系是否为函数的步骤 ①任取一条垂直于x 轴的直线l ; ②在定义域内平行移动直线l ;③若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.1.下列图形中可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选C.由函数的定义知选C.2.下列对应关系是集合P 上的函数的是________.①P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; ②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对P 中的三角形求面积与集合Q 中的元素对应.解析:②显然正确,由于①中的集合P 中的元素0在集合Q 中没有对应元素,并且③中的集合P 不是数集,从而①③不正确.答案:②求函数的定义域求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =3-x |x |-5.【解】 (1)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧3-x ≥0,|x |-5≠0,解得x ≤3,且x ≠-5,即函数的定义域为{x |x ≤3,且x ≠-5}.(1)求函数定义域的常用方法①若f (x )是分式,则应考虑使分母不为零; ②若f (x )是偶次根式,则被开方数大于或等于零;③若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合; ④若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集; ⑤若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.(2)第(1)题易出现化简y =x +1-1-x ,错求定义域为{x |x ≤1},在求函数定义域时,不能盲目对函数式变形.求下列函数的定义域.(1)f (x )=x -1·4-x +2; (2)y =(x +1)|x |-x ;(3)f (x )=x +3+1x +2. 解:(1)要使此函数有意义,应满足⎩⎪⎨⎪⎧x -1≥0,4-x ≥0,解得1≤x ≤4,所以此函数的定义域是{x |1≤x ≤4}. (2)因为00无意义,所以x +1≠0, 即x ≠-1.①作为分母不能为0,二次根式的被开方数不能为负, 所以|x |-x >0,即x <0.②由①②可得函数y =(x +1)|x |-x 的定义域是{x |x <0且x ≠-1}.(3)要使此函数有意义,则⎩⎪⎨⎪⎧x +3≥0,x +2≠0⇒⎩⎪⎨⎪⎧x ≥-3,x ≠-2⇒x ≥-3且x ≠-2.所以f (x )的定义域为{x |x ≥-3且x ≠-2}.同一个函数(1)给出下列三个说法:①f (x )=x 0与g (x )=1是同一个函数;②y =f (x ),x ∈R 与y =f (x +1),x ∈R 可能是同一个函数;③y =f (x ),x ∈R 与y =f (t ),t ∈R 是同一个函数.其中正确说法的个数是( )A .3B .2C .1D .0(2)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3.其中表示同一个函数的是________(填上所有同一个函数的序号).【解析】 (1)①错误.函数f (x )=x 0的定义域为{x |x ≠0},函数g (x )=1的定义域是R ,不是同一个函数;②正确.y =f (x ),x ∈R 与y =f (x +1),x ∈R 两函数定义域相同,对应关系可能相同,所以可能是同一个函数;③正确.两个函数定义域相同,对应关系完全一致,是同一个函数.所以正确的个数有2个.(2)①定义域不同,f (x )的定义域为{x |x ≠0},g (x )的定义域为R .不相等. ②对应关系不同,f (x )=1x,g (x )=x .不是同一个函数.③定义域、对应关系都相同.同一个函数.④对应关系不同,f (x )=|x +3|,g (x )=x +3.不是同一个函数. 【答案】 (1)B (2)③判断两个函数为同一个函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是同一个函数,即使定义域与值域都相同,也不一定是同一个函数.(2)函数是两个非空数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.(3)在化简解析式时,必须是等价变形.下列各组函数表示同一个函数的是( )A .f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0与g (x )=|x |B .f (x )=1与g (x )=(x +1)0C .f (x )=x 2与g (x )=(x )2D .f (x )=x +1与g (x )=x 2-1x -1解析:选A.A 项中两函数的定义域和对应关系相同,为同一个函数;B 项中,f (x )的定义域为R ,g (x )的定义域为(-∞,-1)∪(-1,+∞);C 项中f (x )的定义域为R ,g (x )的定义域为[0,+∞);D 项中,f (x )的定义域为R ,g (x )的定义域为(-∞,1)∪(1,+∞).B ,C ,D 三项中两个函数的定义域都不相同,所以不是相等函数.故选A.求函数值和值域已知f (x )=12-x (x ∈R ,x ≠2),g (x )=x +4(x ∈R ).(1)求f (1),g (1)的值; (2)求f (g (x )).【解】 (1)f (1)=12-1=1,g (1)=1+4=5.(2)f (g (x ))=f (x +4)=12-(x +4)=1-2-x =-1x +2(x ∈R ,且x ≠-2).1.(变设问)在本例条件下,求g (f (1))的值及f (2x +1)的表达式. 解:g (f (1))=g (1)=1+4=5.f (2x +1)=12-(2x +1)=-12x -1⎝ ⎛⎭⎪⎫x ∈R ,且x ≠12. 2.(变条件)若将本例g (x )的定义域改为{0,1,2,3},求g (x )的值域.解:因为g (x )=x +4,x ∈{0,1,2,3},所以g (0)=4,g (1)=5,g (2)=6,g (3)=7.所以g (x )的值域为{4,5,6,7}.(1)求函数值的方法①先要确定出函数的对应关系f 的具体含义;②然后将变量取值代入解析式计算,对于f (g (x ))型函数的求值,按“由内到外”的顺序进行,要注意f (g (x ))与g (f (x ))的区别.(2)求函数值域的常用方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.1.已知函数f (x )=x -1,且f (a )=3,则a =________. 解析:因为f (x )=x -1, 所以f (a )=a -1. 又因为f (a )=3, 所以a -1=3,a =16. 答案:162.求下列函数的值域:(1)y =2x +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =3x -1x +1;(4)y =x +x .解:(1)因为x ∈R ,所以2x +1∈R , 即函数的值域为R .(2)配方:y =x 2-4x +6=(x -2)2+2,因为x ∈[1,5),如图所示.所以所求函数的值域为[2,11). (3)借助反比例函数的特征求.y =3(x +1)-4x +1=3-4x +1(x ≠-1), 显然4x +1可取0以外的一切实数, 即所求函数的值域为{y |y ≠3}. (4)设u =x (x ≥0),则x =u 2(u ≥0),y =u 2+u =⎝ ⎛⎭⎪⎫u +122-14(u ≥0).由u ≥0,可知⎝ ⎛⎭⎪⎫u +122≥14,所以y ≥0.所以函数y =x +x 的值域为[0,+∞).1.若f (x )=x +1,则f (3)=( ) A .2 B .4 C .2 2D .10解析:选A.因为f (x )=x +1,所以f (3)=3+1=2. 2.对于函数f :A →B ,若a ∈A ,则下列说法错误的是( ) A .f (a )∈BB .f (a )有且只有一个C .若f (a )=f (b ),则a =bD .若a =b ,则f (a )=f (b )解析:选C.根据函数的定义可知,A ,B ,D 正确;C 错误. 3.若[0,3a -1]为一确定区间,则a 的取值范围是________.解析:根据区间表示数集的方法原则可知,3a -1>0,解得a >13,所以a 的取值范围是⎝ ⎛⎭⎪⎫13,+∞. 答案:⎝ ⎛⎭⎪⎫13,+∞4.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.答案:(1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 5.已知函数f (x )=6x -1-x +4.(1)求函数f (x )的定义域(用区间表示); (2)求f (-1),f (12)的值.解:(1)根据题意知x -1≠0且x +4≥0,所以x ≥-4且x ≠1, 即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.[A 基础达标]1.下列对应关系是从集合M 到集合N 的函数的是( ) A .M =R ,N ={x ∈R |x >0},f :x →|x | B .M =N ,N =N *,f :x →|x -1| C .M ={x ∈R |x >0},N =R ,f :x →x 2D .M =R ,N ={x ∈R |x ≥0},f :x →x解析:选C.对于A ,集合M 中x =0时,|x |=0,但集合N 中没有0;对于B ,集合M 中x =1时,|x -1|=0,但集合N 中没有0;对于D ,集合M 中x 为负数时,集合N 中没有元素与之对应;分析知C 中对应是集合M 到集合N 的函数.2.下列四个图中,不是以x 为自变量的函数的图象是( )解析:选C.根据函数定义,可知对自变量x 的任意一个值,都有唯一确定的实数(函数值)与之对应,显然选项A ,B ,D 满足函数的定义,而选项C 不满足,故选C.3.区间(-3,2]用集合可表示为( ) A .{-2,-1,0,1,2} B .{x |-3<x <2} C .{x |-3<x ≤2}D .{x |-3≤x ≤2}解析:选C.由区间和集合的关系,可得区间(-3,2]可表示为{x |-3<x ≤2},故选C.4.已知函数f (x )=x 21+|x -1|,则f (-2)=( )A .-1B .0C .1D .2解析:选C.由题意知f (-2)=(-2)21+|-2-1|=44=1.故选C.5.若函数y =x 2-3x 的定义域为{-1,0,2,3},则其值域为( )A .{-2,0,4}B .{-2,0,2,4}C .{y |y ≤-94}D .{y |0≤y ≤3} 解析:选A.依题意,当x =-1时,y =4;当x =0时,y =0;当x =2时,y =-2;当x =3时,y =0,所以函数y =x 2-3x 的值域为{-2,0,4}.6.将函数y =31-1-x 的定义域用区间表示为________. 解析:由⎩⎨⎧1-x ≥0,1-1-x ≠0解得x ≤1且x ≠0, 用区间表示为(-∞,0)∪(0,1].答案:(-∞,0)∪(0,1]7.若f (x )=5x x 2+1,且f (a )=2,且a =________. 解析:令5a a 2+1=2,即2a 2-5a +2=0,解得a =12或a =2,故a 的值为12或2. 答案:12或2 8.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.解析:由题意知,对a ∈A ,|a |∈B ,故函数值域为{1,2,3,4}.答案:{1,2,3,4}9.已知f (x )=1-x 1+x(x ∈R ,且x ≠-1),g (x )=x 2-1(x ∈R ). (1)求f (2),g (3)的值;(2)求f (g (3))的值及f (g (x )).解:(1)因为f (x )=1-x 1+x ,所以f (2)=1-21+2=-13. 因为g (x )=x 2-1,所以g (3)=32-1=8.(2)依题意,知f (g (3))=f (8)=1-81+8=-79, f (g (x ))=1-g (x )1+g (x )=1-(x 2-1)1+(x 2-1)=2-x 2x2(x ≠0). 10.已知函数y =kx +1k 2x 2+3kx +1的定义域为R ,求实数k 的值. 解:函数y =kx +1k 2x 2+3kx +1的定义域即使k 2x 2+3kx +1≠0的实数x 的集合.由函数的定义域为R ,得方程k 2x 2+3kx +1=0无解.当k =0时,函数y =kx +1k 2x 2+3kx +1=1,函数定义域为R , 因此k =0符合题意;当k ≠0时,k 2x 2+3kx +1=0无解,即Δ=9k 2-4k 2=5k 2<0,不等式不成立.所以实数k 的值为0.[B 能力提升]11.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (72)等于( )A .p +qB .3p +2qC .2p +3qD .p 3+q 2 解析:选B.因为f (ab )=f (a )+f (b ),所以f (9)=f (3)+f (3)=2q , f (8)=f (2)+f (2)+f (2)=3p ,所以f (72)=f (8×9)=f (8)+f (9)=3p +2q .12.若函数f (x )的定义域为[-2,1],则g (x )=f (x )+f (-x )的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2≤x ≤1,-2≤-x ≤1,即-1≤x ≤1. 故g (x )=f (x )+f (-x )的定义域为[-1,1].答案:[-1,1]13.求下列函数的值域.(1)y =x -1(x ≥4);(2)y =2x +1,x ∈{1,2,3,4,5};(3)y =x +2x -1;(4)y =x 2-2x -3(x ∈[-1,2]).解:(1)因为x ≥4,所以x ≥2,所以x -1≥1,所以y ∈[1,+∞).(2)y ={3,5,7,9,11}.(3)设u =2x -1,则u ≥0,且x =1+u 22, 于是,y =1+u 22+u =12(u +1)2≥12, 所以y =x +2x -1的值域为⎣⎢⎡⎭⎪⎫12,+∞. (4)y =x 2-2x -3=(x -1)2-4,因为x ∈[-1,2],作出其图象(图略)可得值域为[-4,0].14.已知函数f (x )=x 2-mx +n ,且f (1)=-1,f (n )=m ,求f (-1),f (f (-1))的值及f (f (x ))的表达式.解:由题意知⎩⎪⎨⎪⎧1-m +n =-1,n 2-mn +n =m , 解得⎩⎪⎨⎪⎧m =1,n =-1,所以f (x )=x 2-x -1,故f (-1)=1,f (f (-1))=-1,f (f (x ))=f (x 2-x -1)=(x 2-x -1)2-(x 2-x -1)-1=x 4-2x 3-2x 2+3x +1.[C 拓展探究]15.(2019·石家庄检测)已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)由(1)中求得的结果,你发现f (x )与f ⎝ ⎛⎭⎪⎫1x 有什么关系?并证明你的发现. (3)求2f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017+f (2 018)+f ⎝ ⎛⎭⎪⎫12 018的值.解:(1)因为f (x )=x 21+x 2,所以f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)由(1)可发现f (x )+f ⎝ ⎛⎭⎪⎫1x =1.证明如下: f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1,是定值.(3)由(2)知,f (x )+f ⎝ ⎛⎭⎪⎫1x =1, 因为f (1)+f (1)=1,f (2)+f ⎝ ⎛⎭⎪⎫12=1, f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1, … f (2 018)+f ⎝ ⎛⎭⎪⎫12 018=1, 所以2f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017+f (2 018)+f ⎝ ⎛⎭⎪⎫12 018=2 018.。