实验6-5迈克尔逊干涉仪的原理与使用
- 格式:doc
- 大小:102.50 KB
- 文档页数:3
迈克尔逊干涉仪实验实验原理和实验内容1. 前言:干涉的奇妙世界大家好,今天咱们要聊的就是那个听起来高大上的“迈克尔逊干涉仪”,别被这个八字打住了,咱们的目的是轻松地来了解它,轻松得就像喝个茶。
一说到干涉,这个词可能让人想到波浪、水面、或者干脆就被“干扰”了心情。
其实,这个腻歪的东西在科学里可是一块宝藏!乍一听,这干涉仪好像高深莫测,实际上,它可不仅仅是出现在实验室里的神秘家伙,而是揭示了光的波动性和奇妙的一面。
1.1 干涉是什么?那么,干涉到底是个啥玩意儿呢?简单来说,就是两束光波在特定条件下相遇、重叠,产生的那种“你搅我、我搅你”的交融效果。
有点像咱们日常生活中朋友聚会时那种热火朝天的氛围,几个人一聊,气氛就一下子活跃起来了,对吧?不过,在光学里,这种“搅拌”可以让我们看到明暗相间的条纹,也就是所谓的干涉条纹。
1.2 迈克尔逊干涉仪的原理现在,咱们来说说这个干涉仪的“主角”迈克尔逊。
他可是个厉害角色,1890年就捣鼓出了这个小玩意儿,而且他一颗心就是想研究光的本质。
迈克尔逊干涉仪的原理,就像一个“光的分身术”。
仪器把一束光分成两条路,就像是分开了的姐妹,走向不同的方向。
然而,在两束光走了个来回之后,它们又会汇合在一起。
这个时候,如果两束光走的路程不一样,最后就会形成干涉现象。
咱们的迈克尔逊可真是个“分道扬镳”的聪明才子,没错吧?2. 实验内容:构造我们的干涉仪说了这些理论,小伙伴们一定想知道,咱们到底怎么把这个光的“阴谋”一一揭开呢?别着急,接下来我们就来构造一下这台干涉仪。
其实也不复杂,一个干涉仪大致需要一些简单的器材——一个光源、一个分光镜、两面镜子,以及一个接收器。
听起来像准备一顿美味大餐,其实就这么简单。
2.1 搭建仪器首先,咱们得找一个光源,通常用激光比较好,清晰又亮。
接着,用一个分光镜把这束激光“劈头盖脸”地给分成两束,一道走左边,一道走右边,嘿,姐妹分开后就精彩了!然后再用镜子将两束光分别反射回去,向着相同的方向走来,这过程就像两位舞者在场上翩翩起舞,越跳越带感。
迈克尔逊干涉仪的使用实验报告
实验目的,通过使用迈克尔逊干涉仪,观察干涉现象,了解干涉的基本原理,并掌握干涉仪的使用方法。
实验仪器与材料,迈克尔逊干涉仪、激光光源、准直器、反射镜、半透镜、干涉滤色片、光学平台等。
实验步骤:
1. 将激光光源与准直器对准,使光线尽可能垂直射入迈克尔逊干涉仪中。
2. 调整反射镜,使得光线分别经过两条光路,并在半透镜处发生干涉。
3. 观察干涉条纹的变化,通过调整反射镜和半透镜的位置,使得干涉条纹清晰可见。
4. 在实验过程中,可以加入干涉滤色片,观察不同波长的光在干涉仪中的干涉现象。
实验结果与分析:
在实验中,我们观察到了干涉条纹的变化,通过调整反射镜和
半透镜的位置,我们成功地使干涉条纹清晰可见,并且在加入干涉
滤色片后,观察到了不同波长的光在干涉仪中产生的不同干涉现象。
通过实验,我们进一步了解了干涉的基本原理,并掌握了干涉仪的
使用方法。
存在的问题与改进措施:
在实验中,我们发现在调整干涉仪的过程中,需要非常小心和
耐心,以确保干涉条纹的清晰度。
因此,在今后的实验中,我们需
要更加细心地操作仪器,以获得更加准确的实验结果。
总结与结论:
通过本次实验,我们成功地使用了迈克尔逊干涉仪,观察到了
干涉现象,并且掌握了干涉仪的使用方法。
这将有助于我们进一步
深入理解光学干涉现象,并为今后的实验和研究打下基础。
6- 迈克尔逊干涉仪实验报告引言:干涉是光学实验中的一种重要现象。
其中迈克尔逊干涉仪是一种利用分束器将光分为两路走不同路程,再合成的干涉仪。
本实验目的是通过迈克尔逊干涉仪对光的相位干涉进行实验研究,探究其在科学研究和实际应用中的作用。
实验仪器与实验原理:迈克尔逊干涉仪的主要组成部分为分束器、反射镜、透镜和检波器。
分束器将光分成两路光,在反射后分别经过不同的光程后,再合成在一个光学环境中,形成干涉条纹,进而研究光的相位差。
本实验选用的迈克尔逊干涉仪光路如下:(1)准直光:由汞灯发出,经过凸透镜后成为平行光线。
(2)平板玻璃片:用于将平行光分成两束相互垂直地经过反射镜反向传播。
(3)待测物:常用的待测物为透明薄板。
(4)反射镜:反射光线使其改变方向。
(5)合成反射光:在两路光线进入存在相位差干涉的区域后,在反射镜上反射成为一路光线,进而在检测屏幕上产生干涉条纹。
实验步骤与实验结果:1. 线性度检查:使反射镜沿着检测屏幕方向移动,即保证反射镜像中心移动时干涉条纹线性分布。
结果:移动100次反射镜,干涉条纹线性,线间距与波长λ比例大小相等。
2. 确定干涉璀璨:注入汞灯光源,调整两个反射镜,使其距离相等,透射光线相遇前的光程相等,令条纹体现出明暗相间的亮度。
结果:明暗干涉线段发生变化的能量必须尽可能小。
3. 确定空气中两路光线的光程差:沿反射镜上下调节反射镜距离微调干涉条带展宽,经过微调后能够看到一阶条纹明暗相间的情况,再微一点可见的一级条带左端和右端的加亮区域刚开始相接收阻塞,当这一加亮区第一次完全保持不变,即表示第一阶的加亮区“连接”在一起,这时记下此时反射镜之间距离。
据相邻条带间差一现象可知,一阶干涉级别条纹宽度为λ /2 。
结果:空气中两路光线光程差为λ/2。
4. 确定疏水中两条光线的光程差:采用疏水薄板作为干涉片。
一级干涉条纹宽度为λ /2 ,得出空气中两路光线光程差λ/2,薄板厚度(光程差)d,直接得到疏水的折射率n(n ≌ 1.33):n = d / λ 。
迈克尔逊干涉仪的使用实验报告实验报告。
实验名称,迈克尔逊干涉仪的使用。
实验目的,通过使用迈克尔逊干涉仪,观察干涉条纹的形成及
其变化规律,了解干涉仪的原理和应用。
实验仪器,迈克尔逊干涉仪、激光器、平面镜、半反射镜、准
直器、测微器等。
实验原理,迈克尔逊干涉仪是利用干涉现象来测量光波的波长、光速等参数的仪器。
通过将光波分成两束,经过不同的光程后再合成,观察干涉条纹的变化来获取所需的参数。
实验步骤:
1. 将激光器放置在适当位置,使其发出的光线垂直射向准直器;
2. 调整准直器,使其将激光光线转为平行光束;
3. 将平行光束分为两束,分别经过半反射镜和平面镜后再次合成;
4. 观察干涉条纹的形成及其变化规律;
5. 调整半反射镜或平面镜的位置,再次观察干涉条纹的变化。
实验结果,通过实验观察,我们成功地观察到了干涉条纹的形
成及其变化规律。
随着半反射镜或平面镜位置的微调,干涉条纹的
间距和亮暗条纹的变化规律也得到了清晰的展示。
实验分析,通过实验,我们深入了解了迈克尔逊干涉仪的原理
和应用,掌握了干涉条纹的形成规律。
同时,我们也发现了实验中
可能存在的误差和不足之处,例如光路调整不精确、环境光干扰等,需要进一步改进和完善。
实验结论,本次实验通过使用迈克尔逊干涉仪,成功观察到了
干涉条纹的形成及其变化规律,加深了对干涉仪原理和应用的理解,为今后的实验和研究工作打下了良好的基础。
自查报告编写人,XXX。
日期,XXXX年XX月XX日。
迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。
2、掌握迈克尔逊干涉仪的调节方法。
3、观察等倾干涉、等厚干涉条纹,并测量激光的波长。
二、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、观察屏。
三、实验原理迈克尔逊干涉仪是一种利用分振幅法产生双光束干涉的精密光学仪器。
其原理基于光的干涉现象。
如图所示,光源 S 发出的光经过分光板 G1 分成两束,一束反射到平面镜 M1,另一束透过 G1 到达平面镜 M2。
两束光分别被 M1 和 M2 反射后,再次回到分光板 G1 并汇合,在观察屏 E 上形成干涉条纹。
当 M1 和 M2 严格垂直时,形成等倾干涉条纹。
此时,干涉条纹是一组同心圆环,条纹的级次以圆心为最高。
干涉条纹的明暗取决于两束光的光程差。
当 M1 和 M2 有一定夹角时,形成等厚干涉条纹。
此时,干涉条纹是一组平行于 M1 和 M2 交线的直线条纹。
根据光的干涉条件,两束光的光程差为:$\Delta = 2d\cos\theta$其中,d 是 M1 和 M2 反射镜到分光板 G1 镀膜面的距离差,θ 是入射光与 M1 反射镜法线的夹角。
当光程差为波长的整数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
通过测量干涉条纹的变化,可以计算出光的波长。
四、实验步骤1、仪器调节(1)调节迈克尔逊干涉仪的底座水平,使仪器处于稳定状态。
(2)打开激光器,使激光束大致垂直于干涉仪的入射窗口。
(3)调节 M1 和 M2 背后的三个调节螺丝,使 M1 和 M2 大致垂直。
(4)在观察屏上看到光斑后,放置扩束镜,使光斑变成均匀的扩展光源。
(5)调节 M1 或 M2 的位置,使观察屏上出现干涉条纹。
2、观察等倾干涉条纹(1)仔细调节 M1 和 M2 的垂直程度,使干涉条纹呈现为清晰的同心圆环。
(2)观察条纹的疏密和圆环的大小变化,记录现象。
3、测量激光波长(1)缓慢旋转微调手轮,使 M1 移动,观察干涉条纹的“冒出”或“缩进”现象。
实验6-5迈克尔逊干涉仪的原理与使用一、协议关键信息1、实验目的:深入理解迈克尔逊干涉仪的工作原理,掌握其使用方法,并进行相关实验测量。
2、实验设备:迈克尔逊干涉仪、光源、观察屏等。
3、实验步骤:仪器调整与校准。
测量干涉条纹的变化。
数据记录与处理。
4、安全注意事项:操作时避免碰撞仪器。
注意光源的使用安全。
二、协议内容11 引言本协议旨在规范和指导实验人员对迈克尔逊干涉仪的原理理解和使用操作,确保实验的准确性和安全性。
111 实验背景迈克尔逊干涉仪是一种用于精密测量光的波长、折射率等物理量的重要光学仪器。
通过对干涉条纹的观察和分析,可以获取有关光的特性和物质的光学参数等信息。
112 实验原理迈克尔逊干涉仪基于光的干涉原理工作。
由光源发出的光经过分光板分成两束,一束反射到固定反射镜,另一束透过分光板到达可移动反射镜。
两束光反射后重新在分光板处会合,产生干涉条纹。
干涉条纹的间距和形状取决于两束光的光程差。
12 实验设备与材料121 迈克尔逊干涉仪:包括分光板、固定反射镜、可移动反射镜、微调装置等。
122 光源:通常为单色光源,如氦氖激光器。
123 观察屏:用于观察干涉条纹。
124 测量工具:如游标卡尺、直尺等,用于测量可移动反射镜的移动距离。
13 实验准备131 检查仪器:确保迈克尔逊干涉仪各部件完好,无松动和损坏。
132 清洁光学元件:使用专用的清洁工具轻轻擦拭分光板、反射镜等光学元件,以保证良好的透光和反射性能。
133 调整仪器水平:使用水平仪调整干涉仪的底座,使其处于水平状态,以保证测量的准确性。
14 实验步骤141 仪器调整与校准粗调:使固定反射镜和可移动反射镜大致与分光板成 45 度角,通过观察屏上的光斑,调整反射镜的位置,使两束光大致重合。
细调:使用微调装置,仔细调整可移动反射镜,直到在观察屏上看到清晰的干涉条纹。
142 测量干涉条纹的变化缓慢移动可移动反射镜,观察干涉条纹的移动方向和间距变化。
实验六 迈克尔逊干涉仪的调整和使用实验性质:综合性实验 教学目的和要求:1. 了解迈克尔逊干涉仪的原理并掌握调节方法;2. 观察等倾干涉条纹的特点;3. 测定He-Ne 激光的波长。
教学重点与难点:对迈克尔逊干涉仪的工作原理与等倾干涉概念的理解;本实验仪器的正确调节与使用以及正确记录有效数字。
一.检查学生的预习情况检查学生预习报告:内容是否完整,表格是否正确。
二.实验仪器和用具:迈克尔逊干涉仪,氦氖激光器、毛玻璃屏 三.讲解实验原理:(一)实验仪器介绍1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。
其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。
1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。
其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。
2G 起补偿光程作用,称其为补偿板。
1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。
2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。
迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。
1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。
这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。
同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。
而仪器水平还可通过调整底座上三个水平调节螺丝来达到。
图11 ——主尺2 ——反射镜调节螺丝3 ——移动反射镜1M4 ——分光板1G5 ——补偿板2G6 ——固定反射镜2M7 ——读数窗 8 ——水平拉簧螺钉 9 ——粗调手轮10——屏11——底座水平调节螺丝确定移动反射镜1M 的位置有三个读数装置:①主尺——在导轨的侧面,最小刻度为毫米,如图:②读数窗——可读到0.01mm,如图:③带刻度盘的微调手轮,可读到0.0001mm,估读到105 mm,如图:2.迈克尔逊干涉仪的光路迈克尔逊干涉仪的光路如图2。
迈克尔逊干涉仪的使用实验报告实验名称,迈克尔逊干涉仪的使用。
实验目的,通过使用迈克尔逊干涉仪,观察干涉条纹的形成原理,掌握干涉仪的使用方法,以及了解干涉仪在实际应用中的意义。
实验仪器,迈克尔逊干涉仪、激光器、反射镜、半反射镜、屏
幕等。
实验原理,迈克尔逊干涉仪利用激光经半反射镜分为两束光,
分别经过两条光路后再次汇聚在半反射镜上,形成干涉条纹。
当两
束光的光程差为整数倍的波长时,会出现明暗交替的干涉条纹。
实验步骤:
1. 调整迈克尔逊干涉仪,使激光通过半反射镜分为两束光线。
2. 调整反射镜和半反射镜的位置,使两束光线再次汇聚在半反
射镜上。
3. 在屏幕上观察干涉条纹的形成情况。
4. 调整反射镜和半反射镜的位置,改变两束光线的光程差,观
察干涉条纹的变化。
实验结果,通过调整反射镜和半反射镜的位置,观察到明暗交
替的干涉条纹,并且改变光程差时,干涉条纹的间距和明暗程度发
生变化。
实验结论,通过本次实验,我对迈克尔逊干涉仪的使用方法有
了更深入的了解,并且对干涉条纹的形成原理有了直观的认识。
同
时也明白了干涉仪在实际应用中的重要性,例如在光学测量、干涉
仪表等方面有着广泛的应用。
存在问题,在实验过程中,由于对仪器操作不熟练,调整反射
镜和半反射镜的位置花费了较多的时间,需要加强对仪器的熟悉度
和操作技巧。
改进措施,下次在进行实验前,可以提前熟悉仪器的使用方法,加强对操作步骤的理解,以提高实验效率和准确性。
实验人员签名,__________ 日期,__________。
《迈克尔逊干涉仪的调节与使用》实验报告一、实验目的1.了解迈克尔逊干涉仪的结构原理并掌握调节方法。
2.观察等厚干涉、等倾干涉以及白光干涉。
3.测量氦氖激光的波长。
二、实验原理1.迈克尔逊干涉仪迈克尔逊干涉仪是一个分振幅法的双光干涉仪,其光路如下图所示,它反射镜M1、M2、分束镜P1和补偿板P2组成。
其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜P1的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。
迈克耳孙干涉仪的结构如图所示。
镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M的下端还附有两个互相垂直的微动拉簧螺丝,用以精确地调整M1的倾斜度。
M2镜所在的导轨拖板由精密丝杠带动,可沿导轨前后移动。
M2镜的位置由三个读数尺所读出的数值的和来确定:主尺、粗调手轮和微调手轮。
在迈克尔逊干涉仪上可以实现等倾和等厚两种干涉。
为了分析方便,可将反射镜M1成像到M2的光路中。
2.He-Ne激光波长的测定如图1所示,当M1’、M2相互平行,即M1和M2相互严格垂直时,在E处可以观察到等倾干涉;在等倾干涉时,如果在迈克尔逊干涉仪上反射镜M1和M2到分束镜的距离差为d时,反射镜和M1’形成一个厚度为d的空气膜,其光程差如图2所示,当光线的入射角为i时,两反射镜反射光线的光程差为:Δ=2d cos i′=2d√n2−sin2i其中,n为两臂中介质的折射率,i和i'分别为光线入射到M2和M1上的入射角,当迈克尔逊干涉仪的两臂中介质相同时,i=i’。
当两臂中介质的折射率一定,且d不变时,光程差只取决于入射角i,在E处观察时,对于相同入射角的光,形成一个以光轴为中心的圆环。
当为波长的整数倍时是亮条纹。
由此,迈克尔逊干涉仪中,等倾干涉条纹级次是中间大外边小。
迈克尔逊干涉仪的使用实验报告
实验目的,通过使用迈克尔逊干涉仪,观察干涉条纹的形成和变化,了解干涉仪的原理和性能。
实验器材,迈克尔逊干涉仪、激光器、反射镜、分束镜、测量仪器等。
实验步骤:
1. 将激光器放置在迈克尔逊干涉仪的一端,使激光光束通过分束镜被分成两束光线。
2. 一束光线经过一系列的反射后,再次汇聚到分束镜上,与另一束光线相遇并产生干涉。
3. 观察干涉条纹的形成和变化,调整干涉仪的各个部件,如反射镜的位置和角度,以观察干涉条纹的变化。
4. 使用测量仪器测量干涉条纹的间距和角度,记录实验数据。
实验结果,通过实验观察和测量,我们观察到了干涉条纹的形成和变化,并且成功记录了干涉条纹的间距和角度数据。
实验结论,通过本次实验,我们对迈克尔逊干涉仪的原理和性能有了更深入的了解,同时也掌握了干涉条纹的观察和测量方法。
这对于我们进一步学习和应用干涉仪具有重要的意义。
存在的问题,在实验过程中,我们遇到了一些操作上的困难,需要更加熟悉和掌握干涉仪的使用方法。
同时,在测量数据的准确性上还有待提高。
改进方案,在今后的实验中,我们将加强对干涉仪的理论知识学习,提高操作技能,以及加强实验数据的准确性和可靠性。
实验人员签名,_________ 日期,_________。
实验6—5 迈克尔逊干涉仪的原理与使用
一.实验目的
(1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。
(2).观察各种干涉条纹,加深对薄膜干涉原理的理解。
(3).学会用迈克尔逊干涉仪测量物理量。
二.实验原理
1.迈克尔逊干涉仪光路
如图所示,从光源S 发出的光线经半射镜
的反射和透射后分为两束光线,一束向上
一束向右,向上的光线又经M1 反射回来,
向右的光线经补偿板后被反射镜M2反射
回来
在半反射镜处被再次反射向下,最后两束光线在
观察屏上相遇,产生干涉。
2.干涉条纹
(1).点光源照射——非定域干涉
如图所示,为非定域干涉的原理图。
点S1是光源
相对于M1的虚像,点S2’是光源相对于M2所成
的虚像。
则S1、S2`所发出的光线会在观察屏上形
成干涉。
当M1和M2相互垂直时,有S1各S2`到点A 的
光程差可近似为:
i d L cos 2=∆ ①
当A 点的光程差满足下式时
λk i d L ==∆cos 2 ②
A 点为第k 级亮条纹。
由公式②知当i 增大时cosi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的
(2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。
①.M1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉
②.M1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。
当M1与M2夹角很小,且入射角也很小时,光程差可近似为
)2
1(2)2sin 1(2cos 222i d i d i d L -≈-=≈∆③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。
3.定量测量
(1).长度及波长的测量
由公式②可知,在圆心处i=0
0, cosi=1,这时 λk d L ==∆2 ④
从数量上看如d 减小或增大N 个半波长时,光程差L ∆就减小或增大N 个整波长,对
应就有N 条条纹缩进中心或冒出。
即2λ
N d =∆
这时数出N 的数,就可求得d ∆。
反之,如果测出d ∆,并数出条纹变化数N ,就可测出光源的波长。
(2).两谱线精细结构的测量
形成暗条纹的条件是
2)12(cos 2λ
+==k i d ⑤
如果光源为非单色光,而是含有两个相邻的波长λ1、λ2,且λ1>λ2,则两种波长的
光形成的干涉条纹位置不同。
当移动平面镜M1与M2`间距为d1时,会出现波长λ1的k1级明条纹与波长
λ2级暗条纹位置重合,这时条纹的对比度最小,有 λλ22111)21(2+==k k d ⑥
当M1继续移动时,两个重合的条纹慢慢错开,条纹的对比度又继续增加,当条纹的对比度再次最小时,有
221
212)1()(2λ+++=+=k k k k d ⑦
式⑦减去⑥得
2112)1()(2λλ+==-k k d d ⑧
令12d d d -=∆,同时,当λ1、λ2很接近时,取221_λλλ+=或21λλ则
d ∆=-=∆-2221λλλλ ⑨
由上式可知,如果平均波长已知,只需在干涉仪上测出连续两次对比度最小时M1的位置,即可求得该光波的波长差λ∆。
(3).均匀透明介质的折射率或厚度测量
定域干涉的等厚干涉现象,干涉条纹的明暗和间隔与波长有关。
当用白光扩展光源时,不同波长所产生的干涉条纹明暗相互交错重叠,所以一般中能在中心条纹两旁看到对称的几条彩色的直条纹,稍远就看不见干涉条纹了。
利用这一待点,可以测量均匀透明介质的折射率或厚度。
光通过折射为n 、厚度为l 的透明介质时,其光程比通过同厚度的空气层要大l(n-1)。
当白光干涉的中央条纹出现在干涉仪的平面镜M1中央后,如果在G1与M1间插入一折射率为n 、厚度为l 的均匀薄玻璃片,则经M1与M2反射相健美操的两光束获得的附加光程差为
)1(2`-=∆n l
由于附加光程差的影响,使得白光干涉中央条纹位置发生变化,条纹模糊。
档案库将平面镜
1向G1方向移动一段距离,满足2`∆
=∆d ,则白光干涉中央条纹将重新回到原来位置。
这时
2`∆=∆d =l (n-1)
根据上式,测量平面镜1前移的距离d ∆,就可以测量薄玻璃片的厚度l 或折射率n 。
三.实验器材
迈克尔逊干涉仪及附件,He-Ne 激光器,扩束镜,光源等。
四.实验内容
1. 必做内容
(1).干涉仪的调节
调节干涉仪使在观察屏上可看到干涉条纹。
再调拉簧螺丝,使干涉条纹处于光场中心,则M1与M2`完全平行。
(2).观察与分析He-Ne 激光的非定域干涉现象,并测量激光波长。
1) 观察M1与M2严格垂直产生等倾干涉时,d ≈0情况的干涉条纹及前后移动平
面镜M1时条纹的变化情况。
2) 移动观察屏的位置,观察条纹是否都清晰,扒断干涉条纹是否定域。
3) 按2λ
N d =∆测量波长,N 要大于50.
4) 观察M1与M2不严格垂直时等厚干涉的条纹。
2.选做内容
(1)用钠黄光与毛玻璃形成扩展光源,观察分析定域干涉现象,并测量钠黄光谱线的波长差。
1) M1与M2严格垂直产生等倾干涉时,在原观察屏上能否观察到干涉条纹
去掉观察屏用眼睛直接观察能否看到干涉条纹解释原因。
2) 观察在移动平面镜M1时,干涉条纹由清晰变模糊,由模糊再变清晰的周
期过程,解释原因,同时测量其周期d ∆。
3) 按式d ∆=-=∆-2221λλλλ求出钠黄光的波长差。
4) 观察M1与M2不严格垂直时的现象。
(2)白光干涉现象的观察,并设计出以下内容的测量方法:
1) 测量平板玻璃折射率。
2) 测量滤光片的中心波长0λ和半通带宽度λ∆。