[课件]试验设计与数据分析01PPT
- 格式:ppt
- 大小:251.50 KB
- 文档页数:34
第三部分试验设计与数据分析方法对于化工、化学、制药、生物、材料等学科专业,经常要通过实验与观测来找寻研究对象的变化规律,通过对规律的研究来达到各种目的,如提高产量、提高性能、降低各类消耗等。
通过科学的试验设计,能够用较少的试验次数达到预期的试验目的,大大节省人力和物力的消耗;随之进行合理的分析和处理伴随试验过程所产生的大量数据,才能获得研究对象的变化规律,达到科研和生产的目的。
本章在《分析化学》的基本实验数据处理的基础上,重点介绍最常用的正交试验设计法和正交实验数据的两种基本分析方法:极差分析法、方差分析法。
一、正交试验设计在科学研究和工业生产实践中往往需要考虑众多影响因素,需要研究多个因子对试验指标值的效应。
通常因素的水平数常多于2个,尽管多因素完全方案可以综合研究各因子的简单效应、主效应及因子间的交互效应,但是,当试验因子数增多或因子的水平数增加时,往往会使试验方案的规模过大而难以全面实施,当各因素的水平数相同,均为m时,因素数k与试验次数n的关系为n=m k,例如对于3因素4水平的试验如果进行每个因素的每个水平均进行水平组合进行全面试验至少要做43=64次试验,如果是5因素4水平的试验,进行全面试验至少为45=1024次试验,随着因素数的增加,试验次数增加的更快,同时带来大量的待分析试验数据。
实践证明,正交试验设计(简称正交设计)就是在保证因素水平搭配均衡的前提下,利用已经制成的一系列正交表从完全方案中选出若干个处理组合以构成部分实施方案,从而减小试验规模,并保持效应综合可比之特点。
在实际操作中,通过利用正交表科学安排设计试验,在不影响全面了解对象中诸多因素对其性能指标影响的条件下,大大减少试验次数,同时也减少了统计分析的工作量,达到了提高试验效率的目的。
1. 正交表类型和特点(1) 正交表的格式在正交试验设计中,常把正交表写成表格的形式。
为使用方便,便于记忆,正交表的名称一般简记为L n(m1×m2×…×m k),其中L为正交表代号,n代表正交表的行数或试验处理组合数,即利用该正交表安排试验时,应实施的试验处理组合数;m1×m2×…×m k表示正交表共有k列(最多可安排的因素数),每列的水平数分别为m1,m2,…,m k。