极值点偏移问题
- 格式:pptx
- 大小:248.31 KB
- 文档页数:4
专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。
极值点偏移四种解题方法极值点偏移是数学中一个重要的概念,它指的是极值点在函数图像上偏移的现象。
本文将介绍四种解决极值点偏移问题的解题方法。
下面是本店铺为大家精心编写的5篇《极值点偏移四种解题方法》,供大家借鉴与参考,希望对大家有所帮助。
《极值点偏移四种解题方法》篇1一、定义法定义法是解决极值点偏移问题的一种基本方法。
该方法的主要思路是利用函数的定义式,通过分析函数在某一点处的导数值,来判断该点是否为极值点。
如果函数在某一点处的导数值等于零,则该点为极值点。
如果函数在某一点处的导数值不存在,则该点也可能是极值点。
二、导数法导数法是解决极值点偏移问题的另一种基本方法。
该方法的主要思路是利用函数的导数,通过分析函数在某一点处的导数值,来判断该点是否为极值点。
如果函数在某一点处的导数值等于零,则该点为极值点。
如果函数在某一点处的导数值不存在,则该点也可能是极值点。
三、极值判定法极值判定法是解决极值点偏移问题的一种重要方法。
该方法的主要思路是利用函数的极值判定条件,通过分析函数在某一点处的极值条件,来判断该点是否为极值点。
如果函数在某一点处满足极值条件,则该点为极值点。
四、图像法图像法是解决极值点偏移问题的一种直观方法。
该方法的主要思路是通过绘制函数的图像,来判断函数的极值点是否偏移。
如果函数的图像在某一点处发生变化,则该点可能是极值点。
如果函数的图像在某一点处出现拐点,则该点可能是极值点。
综上所述,极值点偏移四种解题方法分别为定义法、导数法、极值判定法和图像法。
《极值点偏移四种解题方法》篇2极值点偏移是高中数学中常见的问题之一,通常出现在导数相关的题目中。
极值点偏移指的是,在可导函数的一个区间内,如果存在一个极值点,且该极值点左右两侧的增减速度不同,那么这个极值点可能会偏移到区间的中点,从而造成函数图像的不对称。
解决极值点偏移问题的方法有很多种,以下是四种常见的解题方法: 1. 构造函数法:该方法的本质是构造一个新的函数,使得新函数的导数与原函数的导数之间存在一定的关系。
一:极值点偏移(俗称峰谷偏)问题的定义对于可导函数在区间(a,b)上只有一个极大(小)值点,方程(f(x)=m)的解分别为且<<b.则称函数f(x)在区间(a,b)上极值点偏移;(1)则称函数f(x)在区间(a,b)上极值点偏移;(2)则称函数f(x)在区间(a,b)上极值点偏移;二:极值点偏移的判定定理对于可导函数在区间(a,b)上只有一个极大(小)值点,方程的解分别为且<<b.(1)若则即函数f(x)在区间(a,b)上极大值点右偏;(即峰偏右)(2)若则即函数f(x)在区间上(a,b)极小值点左偏;(即谷偏左)(3)若则即函数f(x)在区间上(a,b)极大值点左偏;(即峰偏左)(4)若则即函数f(x)在区间上(a,b)极小值点右偏;(即谷偏右)x= x=y=mxy=f(x) x= x=拓展:1) 若)()(x b f x a f -=+,则)(x f 的图象关于直线2ba x +=对称;特别地,若)()(x a f x a f -=+(或f(x)=f(2a-x)),则)(x f 的图象关于直线a x =对称 2) 若函数f(x)满足有下列之一成立:①f(x)在递增,在(a,2a)递减,且f(a-x)<(>)f(a+x)(f(x)<(>)f(2a-x))②f(x)在(0,a)递减,在(a,2a)递增,且f(a-x)>(<)f(x+a)(f(x)>(<)f(2a-x))则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰谷偏函数)其中① 极大值左偏(或右偏)也称峰偏左(或右)②极小值偏左(或偏右)也称谷偏左(或右); 性质: 1))(x f 的图象关于直线a x =对称若则<=>,(=0,);2)已知函数是满足条件的极大值左偏(峰偏左)若则则,及极值点偏移解题步骤: ①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f( (F(x)=f()-f(,F(x)=f(x+)-f(, F(x)=f(x)-f()确定F(x)单调性③结合F(0)=0(F(-)=0,F(判断F(x)符号从而确定f(x+),f(( f(x+)与f( f(x)与f(的大小关系;答题模式: 已知函数y=f(x)满足,为函数y=f(x)的极值点,求证:①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f(确定F(x)单调性③判断F(x)符号从而确定f(x+),f( 的大小关系;假设F(x)在(0,+单调递增则F(x)>F(0)=0,从而得到x>0时f(x+)>f(④1.(2016年全国I 高考)已知函数有两个零点. 设x 1,x 2是的两个零点,证明:+x 2<2. 2. (2010年高考天津卷理科21)(本小题满分14分)已知函数f(x)=xe -x(x ∈R ).(Ⅰ) 求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x)(Ⅲ)如果12,x x ≠且12()(),f x f x =证明122x x +> 证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)2x e-令F(x)=f(x)-g(x),即2()(2)xx F x xe x e --=+-于是22'()(1)(1)x x F x x ee --=--当x>1时,2x-2>0,从而2x-2e 10,0,F x e -->>又所以’(x)>0,从而函数F (x )在[1,+∞)是增函数。
极值点偏移的问题(含答案)1.已知 $f(x)=\ln x-ax$,其中 $a$ 为常数。
1)若函数 $f(x)$ 在 $x=1$ 处的切线与 $x$ 轴平行,求$a$ 的值;2)当 $a=1$ 时,比较 $f(m)$ 和 $f(1)$ 的大小;3)$f(x)$ 有两个零点 $x_1$ 和 $x_2$,证明:$x_1\cdotx_2>e^2$。
变式:已知函数 $f(x)=\ln x-ax^2$,其中 $a$ 为常数。
1) 讨论 $f(x)$ 的单调性;2) 若有两个零点 $x_1$ 和 $x_2$,试证明:$x_1\cdotx_2>e$。
2.已知 $f(x)=x^2+ax+\sin (\pi x)$,$x\in(0,1)$。
1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。
3.已知 $f(x)=\ln x-ax^2+x$,其中 $a\in R$。
1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。
4.设 $a>0$,函数 $f(x)=\ln x-ax$,$g(x)=\ln x-\frac{2(x-1)}{x+1}$。
1)证明:当 $x>1$ 时,$g(x)>0$ 恒成立;2)若函数 $f(x)$ 无零点,求实数 $a$ 的取值范围;3)若函数$f(x)$ 有两个相异零点$x_1$ 和$x_2$,求证:$x_1\cdot x_2>e^2$。
极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。
在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。
而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。
本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。
1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。
在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。
但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。
比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。
举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。
解:求导得 $f'(x)=3x^2-6x$。
令导数为零,得到 $x=0$ 或 $x=2$。
根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。
但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。
也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。
这就是极值点偏移的思想。
2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。
当我们遇到优化问题时,常常需要求解函数的极值点。
而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。
举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。
解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。
则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。
问题转化为求 $x+y$ 的最大值。
(完整word版)⾼中数学极值点偏移问题极值点偏移问题沈阳市第⼗⼀中学数学组:赵拥权⼀:极值点偏移(俗称峰⾕偏)问题的定义对于可导函数y=f(x)在区间(a,b)上只有⼀个极⼤(⼩)值点x0,⽅程f(x)=0(f(x)=m)的解分别为x1,x2且a 若x1+x22≠x0,,则称函数f(x)在区间(a,b)上极值点x0偏移;(1)x1+x22>x0,则称函数f(x)在区间(a,b)上极值点x0左偏移;(2)x1+x22⼆:极值点偏移的判定定理对于可导函数y=f(x)在区间(a,b)上只有⼀个极⼤(⼩)值点x0,⽅程f(x)=0(f(x)=m)的解分别为x1,x2且a (1)若f(x1)2(2)若f(x1)2>x0即函数f(x)在区间上(a,b)极⼩值点x0左偏;(即⾕偏左)(3)若f(x1)>f(2x0?x2)则x1+x22>x0即函数f(x)在区间上(a,b)极⼤值点x0左偏;(即峰偏左)(4)若f(x1)>f(2x0?x2)则x1+x22拓展:1)若)()(x b f x a f -=+,则)(x f 的图象关于直线2ba x +=①f(x)在(0,a)递增,在(a,2a)递减,且f(a -x)<(>)f(a+x)(f(x)<(>)f(2a -x)) ②f(x)在(0,a)递减,在(a,2a)递增,且f(a -x)>(<)f(x+a)(f(x)> (<)f(2a -x))则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰⾕偏函数)其中①极⼤值左偏(或右偏)也称峰偏左(或右)②极⼩值偏左(或偏右)也称⾕偏左(或右);性质:1) )(x f 的图象关于直线a x =对称若x 1,x 2∈(0,2a)x 1≠x 2则 x 1+x 2=2a <=>f (x 1)=f(x 2),(f ′(x 1)+f ′(x 2)=0,f ′(x 1+x 22)=0);2)已知函数是满⾜条件的极⼤值左偏(峰偏左)若x 1,x 2∈(0,2a)x 1≠x 2则f (x 1)=f(x 2)则x 1+x 2>2a ,及f ′(x 1+x 22)<0极值点偏移解题步骤:①求函数f(x)的极值点x 0;②构造函数F(x)=f(x+x 0)-f(x 0?x) (F(x)=f(x 0?x )-f(x 0+x), F(x)=f(x+2x 0)-f(?x) , F(x)=f(x)-f(2x 0?x))确定F(x)单调性③结合F(0)=0(F(-x 0)=0,F(x 0)=0)判断F(x)符号从⽽确定f(x+x 0),f(x 0?x)( f(x+2x 0)与f(?x); f(x)与f(2x 0?x))的⼤⼩关系; 答题模式:已知函数y=f(x)满⾜f (x 1)=f(x 2),x 0为函数y=f(x)的极值点,求证:x 1+x 2<2x 0 ①求函数f(x)的极值点x 0;②构造函数F(x)=f(x+x 0)-f(x 0?x) 确定F(x)单调性③判断F(x)符号从⽽确定f(x+x 0),f(x 0?x) 的⼤⼩关系;假设F(x)在(0,+∞)上单调递增则F(x)>F(0)=0,从⽽得到x>0时f(x+x 0)>f(x 0?x) ④1.(2016年全国I ⾼考)已知函数有两个零点. 设x 1,x 2是的两个零点,证明:+x 2<2.2. (2010年⾼考天津卷理科21)(本⼩题满分14分)已知函数f(x)=xe -x(x ∈R ).(Ⅰ) 求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x)(Ⅲ)如果12,x x ≠且12()(),f x f x =证明122x x +> 证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)2x e-令F(x)=f(x)-g(x),即2()(2)xx F x xe x e --=+-于是22'()(1)(1)x x F x x ee --=--当x>1时,2x-2>0,从⽽2x-2e 10,0,F x e -->>⼜所以’(x)>0,从⽽函数F (x )在[1,+∞)是增函数。
极值点偏移问题 图说极值点偏移1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).考点一 对称变换对称变换,主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2>x 20,则令F (x )=f (x )-f ⎝ ⎛⎭⎪⎫x 20x .(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.[提醒] 若要证明f ′⎝ ⎛⎭⎪⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而得出该处导数值的正负.[典例] 已知函数h (x )与函数f (x )=x e x (x ∈R)的图象关于原点对称,如果x 1≠x 2,且h (x 1)=h (x 2),求证:x 1+x 2>2.[解题观摩] 由题意知,h (x )=-f (-x )=x e -x ,h ′(x )=e -x (1-x ),令h ′(x )=0,解得x =1.当x 变化时,h ′(x ),h (x )的变化情况如下表:由x 1≠x 2,不妨设x 1>x 2,根据h (x 1)=h (x 2),结合图象可知x 1>1,x 2<1, 令F (x )=h (x )-h (2-x ),x ∈(1,+∞), 则F ′(x )=(x -1)(e 2x -2-1)e -x ,因为x >1,2x -2>0,所以e 2x -2-1>0,则F ′(x )>0, 所以F (x )在(1,+∞)上单调递增, 所以当x >1时,F (x )>0,即当x >1时,h (x )>h (2-x ),则h (x 1)>h (2-x 1), 又因为h (x 1)=h (x 2),所以h (x 2)>h (2-x 1), 因为x 1>1,所以2-x 1<1, 所以x 2,2-x 1∈(-∞,1), 因为h (x )在(-∞,1)上是增函数,所以x2>2-x1,所以x1+x2>2.[关键点拨]本题证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x2,2-x1,其取值范围都为(-∞,1),若将所证不等式化为x1>2-x2,则x1,2-x2的取值范围都为(1,+∞),此时就必须利用函数h(x)在(1,+∞)上的单调性来求解.考点二消参减元消参减元的主要目的就是减元,进而建立与所求解问题相关的函数.主要是利用函数极值点乘积所满足的条件进行消参减元.其解题要点如下:[典例]已知函数f(x)=ln x-ax(a∈R).(1)求函数f(x)的单调区间;(2)当a=1时,方程f(x)=m(m<-2)有两个相异实根x1,x2,且x1<x2,求证:x1·x22<2.[解题观摩] (1)由题意得,f ′(x )=1x -a =1-ax x (x >0). 当a ≤0时,由x >0,得1-ax >0,即f ′(x )>0, 所以f (x )在(0,+∞)上单调递增. 当a >0时,由f ′(x )>0,得0<x <1a , 由f ′(x )<0,得x >1a ,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)证明:由题意及(1)可知,方程f (x )=m (m <-2)的两个相异实根x 1,x 2满足ln x -x -m =0,且0<x 1<1<x 2,即ln x 1-x 1-m =ln x 2-x 2-m =0.由题意,可知ln x 1-x 1=m <-2<ln 2-2,又由(1)可知,f (x )=ln x -x 在(1,+∞)上单调递减,故x 2>2. 令g (x )=ln x -x -m ,则g (x )-g ⎝ ⎛⎭⎪⎫2x 2=-x +2x 2+3ln x -ln 2.令h (t )=-t +2t 2+3ln t -ln 2(t >2), 则h ′(t )=-(t -2)2(t +1)t 3.当t >2时,h ′(t )<0,h (t )单调递减,所以h (t )<h (2)=2ln 2-32<0,所以g (x )<g ⎝ ⎛⎭⎪⎫2x 2.因为x 2>2且g (x 1)=g (x 2),所以h (x 2)=g (x 2)-g ⎝ ⎛⎭⎪⎫2x 22=g (x 1)-g ⎝ ⎛⎭⎪⎫2x 22<0,即g (x 1)<g ⎝ ⎛⎭⎪⎫2x 22. 因为g (x )在(0,1)上单调递增, 所以x 1<2x 22,故x 1·x 22<2.[关键点拨]本题第(2)问要证明的方程根之间的不等式关系比较复杂,此类问题可通过不等式的等价变形,将两个根分布在不等式两侧,然后利用函数的单调性转化为对应函数值之间的大小关系即可.显然构造函数的关键仍然是消掉参数,另外根据函数性质确定“x 2>2”是解题的一个关键点,确定其范围之后才能将x 1与2x 22化归到函数的同一个单调区间上,这也是此类问题的一个难点——精确定位.考点三 比(差)值换元比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,继而将所求解问题转化为关于t 的函数问题求解.[典例] 已知f (x )=x ln x -12mx 2-x ,m ∈R.若f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:x 1x 2>e 2(e 为自然对数的底数).[解题观摩] 欲证x 1x 2>e 2,只需证ln x 1+ln x 2>2.由函数f (x )有两个极值点x 1,x 2,可得函数f ′(x ) 有两个零点,又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不同实根.于是有⎩⎪⎨⎪⎧ln x 1-mx 1=0, ①ln x 2-mx 2=0, ②①+②可得ln x 1+ln x 2=m (x 1+x 2),即m =ln x 1+ln x 2x 1+x 2,②-①可得ln x 2-ln x 1=m (x 2-x 1), 即m =ln x 2-ln x 1x 2-x 1,从而可得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2,于是ln x 1+ln x 2=⎝ ⎛⎭⎪⎫1+x 2x 1ln x 2x 1x 2x 1-1.由0<x 1<x 2,设t =x 2x 1,则t >1.因此ln x 1+ln x 2=(1+t )ln tt -1,t >1.要证ln x 1+ln x 2>2,即证(t +1)ln tt -1>2(t >1),即证当t >1时,有ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1(t >1),则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,所以h (t )为(1,+∞)上的增函数. 因此h (t )>ln 1-2(1-1)1+1=0.于是当t >1时,有ln t >2(t -1)t +1.所以有ln x 1+ln x 2>2成立,即x 1x 2>e 2. [关键点拨]。
证明极值点偏移问题的两种方法
极值点偏移是一种常见的数学问题,它指的是在某一函数的极值点处,函数值的变化率发生了变化,从而导致极值点的位置发生了偏移。
极值点偏移问题的解决方法有两种:一种是采用数值方法,即通过计算函数的一阶导数和二阶导数,来求解极值点的位置;另一种是采用几何方法,即通过几何图形来求解极值点的位置。
首先,采用数值方法解决极值点偏移问题。
首先,我们需要计算函数的一阶导数和二阶导数,然后根据一阶导数和二阶导数的值,来判断函数的极值点的位置。
如果一阶导数为0,而二阶导数不为0,则说明函数在该点处取得极值,而且极值点的位置没有发生偏移。
如果一阶导数不为0,而二阶导数为0,则说明函数在该点处取得极值,但是极值点的位置发生了偏移。
其次,采用几何方法解决极值点偏移问题。
首先,我们需要绘制函数的几何图形,然后根据几何图形的形状,来判断函数的极值点的位置。
如果函数的几何图形是一个凸函数,则说明函数在该点处取得极值,而且极值点的位置没有发生偏移。
如果函数的几何图形是一个凹函数,则说明函数在该点处取得极值,但是极值点的位置发生了偏移。
总之,极值点偏移问题的解决方法有两种:一种是采用数值方法,即通过计算函数的一阶导数和二阶导数,来求解极值点的位置;另一种是采用几何方法,即通过几何图形来求解极值点的位置。
这两种方法都可以有效地解决极值点偏移问题,但是在实际应用中,应根据具体情况选择合适的方法。
极值点偏移问题的几种思考方法覃文周 整理近几年来,高考全国卷和地方卷,屡次出现极值点偏移问题.极值点偏移问题出题灵活,题目难度大,可以说是高考导数压轴题的最高境界.有关极值点偏移问题,常见有三种解法:一是比值法.二是构造对称函数.三是利用已知的不等式(如:对数平均不等式,xe ≥1+ x +21x 2,㏑x ≤x -1(x >0)等).本文首先介绍极值点偏移的定义,图像类型;然后介绍极值点偏移的常见问题;再介绍构造对称性函数的一般思路;最后介绍一些经典问题的解法.一、极值点偏移定义简单来说,存在极值点的函数,如果图像不对称,则称之为极值点偏移. 二次函数,是左右对称的,所以抛物线不是极值点偏移.极值点偏移产生的原因是函数在极值点两侧的增减速度不一致.用数学语言来描述,就是:对于函数)(x f y =在区间(a ,)b 内只有一个极值点0x ,方程0)(=x f 的解为x 1,x 2,且a <x 1<x 2<b ,(1)若21(x 1+x 2)≠0x ,则称函数)(x f y =在区间(x 1,x 2)上极值点0x 偏移;(2)若21(x 1+x 2)>0x ,则称函数)(x f y =在区间(x 1, x 2)上极值点0x 左偏;简称极值点0x 左偏;(3)若21( x 1+ x 2)<0x ,则称函数)(x f y =在区间(x 1, x 2)上极值点0x 右偏;简称极值点0x 右偏.极值点偏移常见的4种图形是:二、极值点偏移的常见类型 极值点偏移常见的问题有4类:1、若函数f (x )存在两个零点x 1, x 2,即 f (x 1)= f (x 2)=0且x 1≠x 2 , 0x 是函数0)(=x f 区间(x 1, x 2)上的极值点.求证:x 1+ x 2>20x .2、若函数f (x )存在x 1, x 2,且x 1≠x 2满足f (x 1)= f (x 2),0x 是函数0)(=x f 区间(x 1, x 2)上的极值点.求证:x 1+ x 2>20x .3、若函数f (x )存在两个零点x 1,x 2, 即 f (x 1)= f (x 2)=0且x 1≠x 2,令0x =21( x 1+ x 2),求证:)(0x f '>0. 4、若函数f (x )存在x 1, x 2,且x 1≠x 2, 满足f (x 1)= f (x 2),令0x =21( x 1+ x 2),求证:)(0x f '>0.三、构造对称函数解极值点偏移问题的一般思路最关键的步骤是找到极值点,然后构造对称性函数,其固定套路如下: (1)求出函数f (x )的极值点x 0;(2)构造对称函数F (x )= f (x 0+x )- f (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F(0)= 0,判断F(x )的符号,从而确定f (x 0+x )、 f (x 0-x )的大小关系.四、经典问题的解法举例 1、已知函数f (x )=(x -2)ex+ a (x -1)2 (a >0)有两个零点x 1, x 2, 求证:x 1+ x 2 < 2.解析:)(x f '=(x -1)(e x+2a ).当a >0时e x+2a >0.由)(x f '=0得x =1.f (x )在区间(-∞,1)上单调减少,在区间(1,+∞)上单调增加.∴ f (x )在的极小值是f (1)= -e .∵f (2)= a >0,∴ f (x )在(1,2)内有一个零点.而-∞→x lim f (x )=+∞. ∴ f (x )在(-∞,1)内有一个零点.不妨设x 1<1<x 2<2,令F (x )= f (1+x )- f (1-x ), 则)(x F '=)1()1(x f x f -'++'=ex (x x ee 12-)> 0∴F (x )在x >0时单调增加, F (x ) >F (0)=0. ∴ f (1+x ) > f (1-x )f (2- x 1)= f (1+(1- x 1))>f (1-(1- x 1))= f (x 1)= f (x 2),∵2- x 1>1, x 2>1,∴2- x 1>x 2. ∴x 1+ x 2 < 2. 2、已知函数f (x )=xe-x(x ∈R ).(1) 求f (x )单调区间.(2)已知函数g (x )的图像与函数f (x )的图像关于直线x=1对称. 求证:x >1时f (x )> g (x ).(3)如果函数f (x 1)= f (x 2)且x 1≠x 2.证明:x 1+ x 2 > 2.解:(1) )(x f '=e-x- x e-x=(1-x )e-x当x ∈(-∞,1)时,)(x f '>0,f (x )在 (-∞,1) 内单调增加; 当x ∈(1,+∞)时,)(x f '<0,f (x )在 (1,+∞) 内单调减少.f (x )在x=1时取得极大值f (1)= e -1.(2) 由题设可得:g (x )= f (2-x )= (2-x )ex-2.设F (x )= f (x )- g (x ),则)(x F '=)()(x g x f '-' =(1-x )e -x+(x -1) e x-2则)(x F '=)()(x g x f '-'=(1-x )e -x+(x -1) e x-2=(x -1) e -x(e 2(x-1)-1).当x >1时 )(x F '>0, F (x )在(1,+∞)上单调增加.F (x )= f (x )- g (x )>F (1)= 0 ∴f (x ) > g (x ).(3)由于f (x )在x=1时取得极大值f (1)=e-1>0.∵0lim →x f (x )=0, +∞→x lim f (x )=0. 不妨设0<x 1<1< x 2<2.(∵ 当x 2≥2时显然有x 1+ x 2 > 2)由(2)知当x >1时有f (x ) > g (x ) = f (2-x ) ∴ f (x 1)= f (x 2) > f (2- x 2),此时0<2- x 2<1, ∴x 1>2- x 2 ∴ x 1+ x 2 > 23、已知函数 f (x )=㏑x –ax 2 + (2-a ) x ,(x >0). (1) 讨论f (x )单调区间.(2)设a >0. 证明:当0< x <a1时 f (a1+x )> f (a1-x ).(3)如果函数f (x )的图像与x 轴相交于A 、B 两点,线段AB 的中点横坐标是x 0.证明:)(0x f '<0.解:(1))(x f '=x1–2ax +(2-a )=–x1(2x +1)(ax -1)若a ≤0,则)(x f '>0,f (x )在 (0,∞) 内单调增加。
高考重难突破一导数中的综合问题第4课时极值点偏移问题已知函数 图象顶点的横坐标就是极值点 0.(1)若 = 的两根的中点满足1+22=0 ,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数 在 =0两侧的函数值变化快慢相同,如图①.(2)若 = 的两根的中点1+22≠0 ,则极值点偏移,此时函数在 =0 两侧的函数值变化快慢不同,如图②、图③.技法一构造对称和(或差)法例1(2023·湖南郴州质量检测)已知函数=ln −122+1,若设函数的两个零点为1,2,证明:1+2>2.【证明】′=1−=1+1−>0,令′=0,解得=1.当0<<1时,′>0,在0,1上单调递增;当>1时,′<0,在1,+∞上单调递减,所以max=1=12>0,且当→0+时,→−∞,2=ln 2−1<0,则的两个零点1,2满足0<1<1<2<2.令=−2−,0<<1,则′=y+y2−=2K122−.当0<<1时,′>0,单调递增,所以<1=0,即<2−.因为0<1<1<2<2,所以0<2−2<1,所以2−2<2=1.又函数在0,1上单调递增,所以1>2−2,即1+2>2.对称变换求极值点偏移的步骤第一步:求导,获得的单调性,极值情况,求出的极值点0,再由1=2得出1,2的取值范围;第二步:构造辅助函数(对结论1+2><20,构造=−20−;对结论12><02,构造=−02,)求导,限定1或2的范围,判定符号,获得不等式;第三步:代入1(或2),利用1=2及的单调性证明结论.【对点训练】已知函数=−1e−,∈.设1,2是函数的两个零点,证明:1+2<0.证明:令=−1e−=0,则=−1e.设=−1e,则′=⋅e,当<0时,′<0,在−∞,0上单调递减,当>0时,′>0,在0,+∞上单调递增.所以min=0=−1,且→−∞时,→0,当>1时,>0.所以,当−1<<0时,有两个零点1,2,且12<0,1=2=0,不妨设1<0,2>0,则−2<0.令=−−=−1e+1+e−,则′=e−e−,当<0时,′=e−e−>0,此时在−∞,0上为增函数,所以<0,即=−−<0,即<−.因为−2<0,所以−2<2,因为1=2=0,所以−2<1,因为在−∞,0上为减函数,所以−2>1,即1+2<0.技法二消参减元法例2已知函数=−2e+−12有两个零点.(1)求的取值范围;【解】′=−1e+2−1=−1e+2.①设=0,则=−2e,只有一个零点.②设>0,则当∈−∞,1时,′<0;当∈1,+∞时,′>0.所以在−∞,1上单调递减,在1,+∞上单调递增.又1=−e<0,2=>0,取满足<0且<ln2,则>2−2+−12=2−32g>0,故存在两个零点.③设<0,由′=0得=1或=ln−2.若≥−e2,则l n−2≤1,故当∈1,+∞时,′>0,因此在1,+∞上单调递增.又当≤1时,<0,所以不存在两个零点.若<−e2,则l n−2>1,故当∈ 1,ln−2时,′<0;当∈ln−2,+∞时,′>0.因此在1,ln−2上单调递减,在ln−2,+∞上单调递增.又当≤1时,<0,所以不存在两个零点.综上,的取值范围为0,+∞.(2)设1,2是的两个零点,证明:1+2<2.证明:不妨设1<2,由(1)知1∈−∞,1,2∈1,+∞,2−2∈−∞,1,又在−∞,1上单调递减,所以1+2<2等价于1>2−2,即2−2<0.由于2−2=−2e2−2+2−12,而2=2−2e2+2−12=0,所以2−2=−2e2−2−2−2e2.设=−x2−−−2e,则′=−1e2−−e.所以当>1时,′<0,而1=0,故当>1时,<0.从而2=2−2<0,故1+2<2.消参减元,主要是利用导数把函数的极值点转化为导函数的零点,进而建立参数与极值点之间的关系,消参或减元,从而简化目标函数.其基本解题步骤如下:(1)建立方程:利用函数的导函数,建立极值点所满足的方程,抓住导函数中的关键——导函数解析式中使导函数变号的因式部分;(2)确定关系:根据极值点所满足的方程,建立极值点与方程系数之间的关系;(3)构建函数:根据消参、减元后式子的结构特征,构造相应的函数;(4)求解问题:利用导数研究所构造的函数的单调性、极值、最值等,解决相应的问题.【对点训练】已知函数=122−+En .若函数有两个极值点1,2,证明:1+2>−ln 22−34.证明:由题意得,′=−1+=2−r>0.因为函数有两个极值点1,2,所以方程2−+=0在0,+∞上有两个不同的实数根1,2,则&1+2=1>0,&12=>0,且=1−4>0,所以0<<14.由题意得1+2=1212−1+En 1+1222−2+En 2 =1212+22−1+2+En12=121+22−12−1+2+En12=12−−1+En =En −−12.令ℎ=En −−12 0<<14,则ℎ′=ln <0,所以ℎ在0,14上单调递减,所以ℎ>ℎ14=−ln 22−34,所以1+2>−ln 22−34.技法三比(差)值换元法例3已知函数=Bln +(,为实数)的图象在点1,1处的切线方程为=−1.(1)求实数,的值及函数的单调区间;【解】′=1+ln >0,由题意得&′1==1,&1==0,解得&=1,&=0.令′=1+ln =0,解得=1e.当>1e时,′>0,在1e,+∞ 上单调递增;当0<<1e时,′<0,在0,1e上单调递减.所以的单调递减区间为0,1e,单调递增区间为1e,+∞ .(2)设函数=+1,证明:1=21<2时,1+2>2.证明:由(1)得=En >0,故=+1=ln +1>0,由1=21<2,得l n 1+11=ln 2+12,即2−112=ln21>0.要证1+2>2,即证1+2⋅2−112>2ln21,即证21−12>2ln21.设21=>1,则需证−1>2ln >1.令ℎ=−1−2ln >1,则ℎ′=1+12−2= 1−12>0.所以ℎ在1,+∞上单调递增,则ℎ>ℎ1=0,即−1>2ln .故1+2>2得证.比(差)值换元的目的也是消参,就是先根据已知条件建立极值点之间的关系,然后利用两个极值点之比(或差)作为变量,实现消参、减元的目的.设法用两个极值点的比值或差值表示所求解的不等式,进而转化为相应的函数问题求解,多用来研究含对数(或指数)式的函数的极值点偏移问题.其基本解题步骤如下:(1)建等式:利用极值点所满足的条件建立两个关于极值点1,2的方程;(2)设比差:根据两个数值之间的大小关系,选取两数之商或差作为变量,建立两个极值点之间的关系;(3)定关系:用一个极值点与比值或差值表示另一个极值点,代入方程.通过两个方程之差或商构造极值点与比值或差值之间的关系,进而通过解方程用比值或差值表示两个极值点;(4)构函数:将关于极值点的目标代数式用比值或差值表示出来,构造相应的函数;(5)解问题:利用导数研究所构造的函数的单调性、极值、最值等,解决相应的问题.【对点训练】已知函数=e−B有两个零点1,21<2.证明:2−1<21−2.证明:由题意得&e1=B1,&e2=B2,令=2−1>0,两式相除得e=e2−1=21=1+1,即1=e−1>0,欲证2−1<21−2,即证<2 e−1 −2,即证2+2r2e<2.记ℎ=2+2r2e>0,ℎ′=2r2e− 2+2r2 ee2=−2e<0,故ℎ在0,+∞上单调递减,所以ℎ<ℎ0=2,即2+2r2e<2,所以2−1<21−2得证.。
导数及其应用 专题七:极值点偏移问题一、知识储备1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210xx x +≠。
如下图所示。
图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。
2、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.[提醒] 若要证明122x x f +⎛⎫'⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负. 二、例题讲解1.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性;(2)当1m =时,若在()f x 定义域内存在两实数1x ,2x 满足12x x <且()()12f x f x =,证明:122x x +>.【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得m x m =,当0mx m <<时,()0f x '>,当m x m >时,()0f x '<,于是得()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减;(2)分析 :如图:1201x x <<< 要证122x x +> 只需证:122x x -<由于101x <<,则112x <-即只需证1212x x <-< 如图,只需证12(2)()f x f x ->;由于()()12f x f x = 只需证11(2)()f x f x ->此时可构造函数()()(2)F x f x f x =--(即用x 替代了上式1x ) 只需证:在01x <<,()()(2)0F x f x f x =--<。
高中数学极值点偏移问题极值点偏移问题极值点偏移问题是指可导函数 $y=f(x)$ 在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=m$ 的解分别为$x_1,x_2$ 且 $ax$,则称函数 $f(x)$ 在区间 $(a,b)$ 上极值点$x$ 右偏移。
极值点偏移的判定定理是指对于可导函数 $y=f(x)$ 在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=m$ 的解分别为 $x_1,x_2$ 且 $a<x_1<x_2<b$,有以下判定条件:1)若 $f(x_1)<f(2x-x_2)$,则极值点偏移为峰偏右。
2)若 $f(x_1)>f(2x-x_2)$,则极值点偏移为谷偏左。
3)若 $f(x_1)>f(2x-x_2)$,则极值点偏移为峰偏左。
4)若 $f(x_1)<f(2x-x_2)$,则极值点偏移为谷偏右。
拓展内容:1)若 $f(a+x)=f(b-x)$,则函数 $f(x)$ 的图像关于直线$x=\dfrac{a+b}{2}$ 对称;特别地,若 $a+b=2a$,则函数$f(x)$ 的图像关于直线 $x=a$ 对称。
2)若函数$f(x)$ 满足$\forall x\in(0,a)$ 有下列之一成立:① $f(x)$ 在 $(0,a)$ 递增,在 $(a,2a)$ 递减,且 $f(a-x))f(a+x)$($f(x))f(2a-x)$)。
② $f(x)$ 在 $(0,a)$ 递减,在 $(a,2a)$ 递增,且 $f(a-x)>((<)f(2a-x)$)。
则函数 $f(x)$ 在 $(0,2a)$ 的图像关于直线 $x=a$ 偏移(偏对称,俗称峰谷偏函数)。
其中,①极大值左偏(或右偏)也称峰偏左(或右);②极小值偏左(或偏右)也称谷偏左(或右)。
已知函数y=f(x)满足f(x1)=f(x2),x1和x2为函数y=f(x)的极值点,证明:x1+x2>2x首先,求函数f(x)的极值点x。
极值点偏移问题的三种常见解法极值点偏移问题的三种常见解法包括:1.梯度下降法:使用梯度下降法来找到损失函数的最小值。
2.牛顿法:使用牛顿法来找到损失函数的最小值。
3.拟牛顿法:使用拟牛顿法来找到损失函数的最小值。
4.L-BFGS:Limited-memory BFGS算法是一种拟牛顿算法,它具有高效率和稳定性。
它通过限制记忆来减小计算复杂度。
5.Adam: Adam算法是一种基于梯度下降法的优化算法,它在梯度下降法的基础上使用了动量和RMSProp算法。
6.Adagrad: Adagrad算法是一种自适应学习率的优化算法,它根据每个参数的梯度大小来调整学习率。
7.RMSProp:RMSProp算法是一种基于梯度下降法的优化算法,它通过指数加权平均来调整学习率。
8.Adadelta : Adadelta算法是一种自适应学习率的优化算法,它在Adagrad的基础上进行了改进。
9.共轭梯度法(Conjugate gradient method):是一种迭代算法,用于求解无约束优化问题的最优解。
该算法在每一步都是选择一个共轭方向来更新当前的近似解。
10.共轭牛顿法(Conjugate Newton Method):基于牛顿法的优化算法,在每一步都是选择一个共轭方向来更新当前的近似解。
它比牛顿法的收敛速度更快.11.B royden-Fletcher-Goldfarb-Shanno(BFGS) 算法: 是一种拟牛顿算法,通过逼近Hessian矩阵来更新近似解。
12.线性共轭梯度(Linear conjugate gradient):是一种特殊的共轭梯度算法,用于求解线性方程组的最优解。
这些算法均可用于求解优化问题中的极值点,每个算法都有自己的优缺点和适用范围,取决于问题的具体情况和需求来选择合适的算法。