细胞膜的物质转运功能
- 格式:doc
- 大小:95.50 KB
- 文档页数:8
细胞膜的四种运输方式
单纯扩散、协助扩散、主动运输和胞吞胞吐是细胞膜的四种物质转运方式。
细胞膜的主要功能是选择性地交换物质,吸收营养物质,排出代谢废物,分泌与运输蛋白质。
1、单纯扩散:脂溶性物质由膜的高浓度侧向低浓度侧的扩散过程,称为单纯扩散。
不耗能,不需要载体。
如:水、尿素、二氧化碳等。
2、协助扩散:非脂溶性物质在膜蛋白的帮助下,顺浓度差或电位差跨膜扩散的过程,称为协助扩散。
不耗能,但是需要载体。
3、主动运输:离子或小分子物质在膜上“泵”的作用下,被逆浓度差或逆电位差的跨膜转运过程,称为主动转运(主动运输)。
主动运输需要消耗大量热量并且需要载体。
有选择透过性。
4、胞吞胞吐:是转运大分子或团块物质的有效方式。
物质通过细胞膜的运动从细胞外进入细胞内的过程,称胞吞。
包括吞噬和吞饮。
液态物质入胞为吞饮,如小肠上皮对营养物质的吸收;固体物质入胞为吞噬,如粒细胞吞噬细菌的过程。
细胞膜的物质转运功能、转运对象与特点细胞膜是细胞内部与外部环境之间的界面,扮演着物质转运的重要角色。
细胞膜的物质转运功能主要包括主动转运和被动扩散两类。
主动转运是指细胞通过耗费能量的方式将物质从浓度低的区域
转移到浓度高的区域,从而实现对物质的积累。
主动转运的一个例子是钠-钾泵,它能够将钠离子从细胞内部排出,同时将钾离子从外部
吸入。
被动扩散是指物质在细胞膜中沿着浓度梯度自由扩散,不需要耗费能量。
被动扩散的物质包括氧气、二氧化碳、水和一些小分子物质。
细胞膜的物质转运对象主要包括离子、小分子物质和大分子物质。
离子的转运主要通过离子通道实现,离子通道具有高度选择性,只能允许特定的离子通过。
小分子物质的转运则主要通过扩散和转运蛋白实现,转运蛋白可以选择性地将特定的物质从一个侧面转移到另一个侧面。
大分子物质的转运则需要通过胞吞作用或胞吐作用实现,这需要依赖于细胞膜上的特殊膜蛋白。
细胞膜的物质转运具有高度的选择性和特异性,这是由于细胞膜上的转运蛋白和离子通道具有特定的结构和功能。
同时,细胞膜的物质转运也受到许多因素的影响,如物质浓度、温度、pH值、离子浓
度和分子大小等。
对于细胞内部的物质代谢和外部环境的适应性具有重要的意义。
- 1 -。
试述细胞膜的物质转运功能
试述细胞膜的物质转运功能
细胞膜是细胞核心组分,它隔绝细胞内外两个物质环境,限制细胞的物质流动,起着保护细胞的作用。
细胞膜也是细胞代谢的主要场所,参与了物质的转运、传导和催化反应等一系列生理过程。
其中,细胞膜的物质转运功能是其最重要的功能之一。
细胞膜物质转运功能是指细胞膜通过不同的机制,将细胞外环境和细胞内环境的物质以及细胞膜本身的物质,通过膜质转运方式运移、聚集到另一侧细胞内外环境或膜质连接器网络连接的质路中,以满足细胞器和细胞的结构功能需求。
物质转运在细胞膜内有两种主要的机制:一种是游离转运,一种是动力转运。
游离转运是指细胞膜通过扩散、自由渗漏和静电势差等机制,使某些特定分子在细胞膜内外环境中自由的运动,不受任何限制,因此又称自由转运。
比如氯离子、水分子等小非蛋白质物质,可以通过膜质来游离转运。
动力转运是指细胞膜通过载体蛋白、酶、激素、膜通道等有序转运机制,将特定的分子或物质从细胞外环境转运到细胞内环境的过程,一般称为动力转运。
比如氯化钠、钾离子、糖类物质等大分子物质,可以通过细胞膜的动力转运运移。
细胞膜物质转运功能参与细胞的内部环境和外部环境之间的物
质交换,保持细胞内外的适宜环境,以及物质的进出,使细胞能够充分运用外部物质,并作出适应性反应,从而实现良好的生理功能。
细胞膜的物质转运功能
细胞膜的主要物质转运功能包括:
1. 跨膜转运:细胞膜能够将溶质跨越膜,从细胞外转移到细胞内或者从细胞内转移到细胞外。
膜内蛋白质通道和载体蛋白质等结构体可协助物质通过细胞膜。
2. 承运转运:细胞膜上存在一种被称为转运体的蛋白质,它们可将各种分子或离子穿过细胞膜,如糖类、氨基酸、脂质等。
3. 分泌:细胞膜可分泌各种物质,包括酶、激素等。
4. 吞噬:吞噬是指细胞膜通过改变形态将外界固体物质包裹在细胞内部形成胞吞体,其中溶酶体可降解吞噬的物质。
5. 呼吸作用:细胞膜可对货物进行透过和离子选择,支持细胞呼吸过程中的生成和消耗能量。
6. 细胞识别:细胞膜上的一些分子(如糖蛋白、黏蛋白等)具有特殊的受体,通过与外界分子进行特异性结合,完成细胞识别功能。
细胞膜的物质转运功能、转运对象与特点细胞膜是细胞内外物质交换的关键结构之一,它通过物质转运功能调节细胞内外营养物质的平衡。
细胞膜上的转运蛋白质是实现物质转运功能的关键分子,它们可以选择性地将特定物质从细胞内向外排放,或从外部环境转运进细胞内。
这些转运蛋白质还可以根据物质的输送方向进行分类,包括主动转运和被动转运两种类型。
细胞膜的物质转运对象包括各种有机小分子、离子和水分子等,可以通过不同类型的转运蛋白质实现其转运。
其中,氨基酸、糖类和核苷酸等有机小分子的转运常常由运载体蛋白质实现,而离子如钠、钾、钙、镁等则由离子通道蛋白质或离子泵蛋白质实现转运。
各种转运蛋白质在转运过程中具有一些共同的特点,如具有高度的选择性、灵敏性和饱和性等。
同时,它们的功能受到多种因素的影响,如温度、pH、化学物质等,这些因素可能会影响转运蛋白质的构象和活性,从而影响物质的转运效率。
总之,细胞膜的物质转运功能是维持细胞正常生理活动的一个重要组成部分,不同类型的转运蛋白质在其中发挥着不可替代的作用。
对于转运过程的深入研究,有利于我们更好地理解细胞的物质代谢和调控机制,为疾病的治疗研究提供更多的思路和途径。
- 1 -。
简述细胞膜的四种物质转运功能及其特点。
细胞膜是由磷脂双分子层、蛋白质和其他生物分子组成的生物膜,是细胞的外层保护层。
细胞膜对于细胞内外物质的转运起着至关重要的作用。
细胞膜的物质转运功能可分为主动转运和被动转运两类。
其中,主动转运分为主动转运和次级主
动转运,被动转运分为简单扩散和载体介导扩散。
下面将对这四种物质转运功能及其特点进行简要介绍。
1.主动转运:主动转运是指细胞膜通过ATP酶水解ATP的能量来推动物质跨
越膜,实现物质从低浓度区向高浓度区的转移。
主动转运分为直接和间接两种类型。
直接主动转运是通过一些特殊的跨膜蛋白质直接将离子或分子从低浓度区移动到高浓度区。
而间接主动转运则是通过某些离子的扩散向外释放能量,再利用这些能量驱动其他物质的转运。
2.次级主动转运:次级主动转运也是需要ATP酶提供能量的主动转运方式,但不同于直接主动转运,次级主动转运需要先将一种离子从高浓度区移动到低浓度区,同时把另一种物质跟随着移动到高浓度区。
该过程需要耗费ATP酶提供的能量。
常见的次级主动转运机制有钠离子-葡萄糖共转运、钠离子-钾离子共转运等。
3.简单扩散:简单扩散是指分子在不需要任何载体蛋白质帮助下,根据其自身
浓度梯度的差异从高浓度区移动到低浓度区的过程。
这种转运方式通常适用于小
分子和非极性分子,如氧气、二氧化碳和脂溶性分子等。
细胞膜的物质转运功能、转运对象与特点细胞膜是细胞内外环境的分界线,它除了具有维持细胞结构和形态的功能外,还承担了很多生命活动的关键任务,如物质转运。
细胞膜的物质转运功能是指它可以通过不同的转运方式将物质
从细胞内或细胞外传输到另一侧。
细胞膜的转运方式包括主动转运、被动转运和细胞吞噬。
主动转运是指细胞需要消耗能量才能将物质从低浓度区域向高
浓度区域转运,这一过程需要依靠转运蛋白和ATP等能源物质。
被动转运则是指物质沿着浓度梯度自发地向着浓度较低的方向转移,这里不需要消耗额外的能量。
细胞膜的转运对象极其广泛,包括氨基酸、葡萄糖、离子、脂质等多种物质,这些物质在细胞内或外部参与着细胞生命活动的方方面面。
不同的转运方式和转运对象都需要特定的转运蛋白才能实现。
细胞膜的物质转运具有很多特点,比如选择性、饱和性、竞争性等。
选择性是指转运蛋白具有对特定物质的选择性,只有特定的物质才能被转运,这一特性保证了细胞内外物质的平衡。
饱和性则指转运蛋白对物质的转运速率会随着物质浓度的增加而饱和,这一特性保证了细胞内外物质的平衡和稳定。
竞争性则是指不同的物质可能共享同一转运蛋白,竞争转运,这一特性有时可能会导致物质的竞争和排斥。
了解细胞膜物质转运的功能、转运对象和特点对于深入理解细胞生物学和分子生物学等学科具有重要的意义。
- 1 -。
第一节细胞膜的物质转运功能细胞内外的各种物质不断地交换,物质通过细胞膜转运的方式基本有以下四种。
(一)单纯扩散脂溶性的小分子物质从细胞膜的高浓度一侧向低浓度一侧移动的过程,称为单纯扩散。
人体内脂溶性的物质为数不多,比较肯定的有氧和二氧化碳等气体分子。
02、N2、C02、乙醇、尿素等都是以单纯扩散的方式进行跨膜转运的。
(二)易化扩散易化扩散指一些不溶于脂质或脂溶性很小的物质,在膜结构中一些特殊蛋白质分子的1.由载体介导的易化扩散 葡萄糖、氨基酸等营养性物质的进出细胞就属于这种类型的易化扩散。
以载体为中介的易化扩散有如下特点:①高度特异性;②有饱和现象;③有竞争性抑制。
①转运的方向始终是顺浓度梯度的,转运速度比仅从溶质物理特性所预期的要快得多。
②由于膜上载体和载体结合位点的数目都是有限的,因此转运速率会出现饱和现象。
③载体与溶质的结合具有化学结构特异性。
④化学结构相似的溶质经同一载体转运时会出现竞争性抑制。
葡萄糖是组织细胞的能源物质,它跨膜进入红细胞的过程是典型的经载体易化扩散。
2.由通道介导的易化扩散 通过通道扩散的物质主要是Na +、K +、Ca 2+、Cl -等离子。
通道具有一定的特异性,但它对离子的选择性没有载体蛋白那样严格。
通道蛋白质的重要特点是,随着蛋白质分子构型的改变,它可以处于不同的功能状态。
当它处于开放状态时,可以允许特定的离子由膜的高浓度一侧向低浓度一侧转移;当它处于关闭状态时,膜又变得对该种离子不能通透。
根据引起通道开放与关闭的条件不同,一般可将通道区分为电压门控通道和化学门控通道,化学门控通道也称配体门控通道。
不同的离子通道,一般都有其专一的阻断剂。
河豚毒能阻断Na +通道,只影响Na +的转运而不影响K+的转运。
四乙基铵能阻断K +通道,只影响K +的转运而不影响Na +的转运。
上述两种物质转运方式,都不需要细胞代谢供能,因而均属于被动转运。
静息状态下,K +由细胞内向细胞外扩散属于 A.单纯扩散B.载体介导易化扩散C.通道介导易化扩散D.原发性主动转运E.速发性主动转运[答疑编号111010101:针对该题提问]『正确答案』CNa +通过离子通道的跨膜转运过程属于 A.单纯扩散 B.易化扩散 C.主动转运 D.出胞作用 E.入胞作用[答疑编号111010102:针对该题提问]『正确答案』B记录神经纤维动作电位时,加人选择性离子通道阻断剂河豚毒,会出现什么结果:A.静息电位变小B.静息电位变大C.除极相不出现D.超射不出现E.复极相延缓[答疑编号111010103:针对该题提问]『正确答案』C(三)主动转运指细胞膜通过本身的某种耗能过程,将某物质的分子或离子由膜的低浓度一侧移向高浓度一侧的过程。
细胞膜的物质转运功能、转运对象与特点细胞膜是细胞的外层界面,它是细胞与外界之间的主要隔离层和物质转运的主要场所。
细胞膜的物质转运功能十分重要,它能够控制物质在细胞内外的分布和浓度,维持细胞内稳态和生命活动的正常进行。
细胞膜的物质转运对象包括水分子、离子、小分子有机物和大分子有机物等。
其中水分子能够通过细胞膜的扩散作用自由进出细胞,离子则需要通过离子通道和离子泵等转运蛋白质协助才能进出细胞。
小分子有机物可以通过扩散、运载蛋白和细胞膜脂质双层的间隙等方式进出细胞,而大分子有机物则需要通过内质网、高尔基体和溶酶体等细胞器的协同作用才能进出细胞。
细胞膜的物质转运特点主要包括选择性、饱和性和竞争性等。
选择性指的是细胞膜对不同物质的选择性通透性,仅允许某些物质进出细胞,而对其他物质则具有阻滞作用。
饱和性指的是运载蛋白等转运蛋白质对物质的转运速度随物质浓度的升高而逐渐饱和。
竞争性指的是不同物质之间对同一运载蛋白的竞争,可能会产生物质的转运竞争现象。
总之,细胞膜的物质转运功能、转运对象和特点是细胞学研究的重要内容,对于揭示细胞代谢、生长和发育等方面的机理具有重要意义。
- 1 -。
简述细胞膜的物质转运功能细胞膜是细胞内部和外部环境之间的重要界面,它不仅能够保护细胞内部结构,还具有物质转运的重要功能。
细胞膜通过多种机制,实现了物质在细胞内外之间的选择性转运,维持了细胞内环境的稳定。
细胞膜的物质转运功能主要由膜蛋白质介导。
膜蛋白质分为两类:通道蛋白和转运蛋白。
通道蛋白形成了细胞膜上的孔道,可以让特定溶质通过。
转运蛋白则通过与溶质结合,改变蛋白的构象,实现溶质的跨膜转运。
通道蛋白是一类高度选择性的蛋白质,能够实现溶质的高效传递。
通道蛋白可以根据溶质的大小、电荷和亲疏水性等特性选择性地让特定的物质通过。
例如,细胞膜上的离子通道能够实现离子的快速转运,维持细胞内外的电位差和离子浓度差。
此外,还有一些特定的通道蛋白,如水通道蛋白(水脑、水通道蛋白)能够实现水分子的快速转运,调节细胞的渗透压和细胞内外水分平衡。
另一类膜蛋白质是转运蛋白,它们能够与溶质结合,通过改变蛋白的构象来实现溶质的跨膜转运。
转运蛋白根据溶质的特性分为被动转运蛋白和主动转运蛋白。
被动转运蛋白利用溶质浓度梯度驱动溶质跨膜转运,而主动转运蛋白则需要耗费能量,反对溶质的浓度梯度,实现溶质的跨膜转运。
例如,葡萄糖转运蛋白是一种主动转运蛋白,它能够将葡萄糖从低浓度区域转运到高浓度区域,维持细胞内外葡萄糖浓度的平衡。
除了通道蛋白和转运蛋白,细胞膜还有其他一些物质转运机制。
一种重要的机制是胆固醇介导的转运。
胆固醇是细胞膜中重要的组成成分,它能够调节细胞膜的流动性和通透性。
胆固醇通过与膜磷脂相互作用,调节膜的流动性,影响溶质的跨膜转运。
细胞膜还可以通过囊泡运输和外泌体分泌等机制实现物质的转运。
囊泡运输是细胞内外物质交换的重要方式,通过囊泡的融合和分裂,实现物质的转运。
外泌体分泌是细胞释放物质的一种方式,细胞通过膜包裹物质,形成外泌体,然后释放到细胞外。
细胞膜的物质转运功能在维持细胞内外环境平衡、维持细胞正常功能发挥等方面起着重要作用。
细胞膜物质转运的方式及特点
细胞膜具有较为复杂的物质转运功能,常见的转运形式有:单纯扩散、易化扩散、主动转运、出胞和胞吞(入胞)作用.
1、单纯扩散:脂溶性小分子在膜两侧浓度差驱动下,顺浓度差从高浓度向低浓度转运的过程。
特点是不需要消耗能量,不需要膜蛋白参与。
2、易化扩散:非脂溶性小分子或离子在膜蛋白的帮助下,顺浓度差从高浓度向低浓度转运的过程。
特点是相对单纯扩散而言,需要消耗的能量较低,也需要膜蛋白的帮助。
根据参与的膜蛋白不同,易化扩散可以分为载体运输和通道运输。
3、主动转运:小分子或离子在膜蛋白的帮助下,逆浓度差从低浓度向高浓度转运的过程。
特点是相对单纯扩散而言,需要消耗更多的能量,也需要膜蛋白的帮助。
主动转运有多种类型,如钠泵、钙泵、质子泵等。
4、出胞和入胞:大分子或团块物质通过细胞膜的运动从细胞内排至细胞外的过程为出胞,例如消化酶的分泌、激素的分泌、神经递质的释放等过程;大分子或团块物质通过细胞膜的运动从细胞外进入细胞内的过程为入胞,包括吞饮和吞噬两种形式,例如中性粒细胞消灭细菌的过程。
★细胞膜的物质转运功能:▲具有特异感受结构的通道蛋白质完成的跨膜信号传递由酪氨酸激酶受体完成的跨膜信号转导细胞膜中的酪氨酸激酶受体的肽链有一个α螺旋,跨膜一次,膜外部分与相应的配体特异结合后,可激活膜内侧肽段的蛋白激酶活性,引发此肽段中酪氨酸残基的磷酸化,或促进其它蛋白质底物中的酪氨酸残基的磷酸化,由此引发各种细胞内功能的改变。
★ 静息电位:静息时,质膜两侧存在着外正内负的电位差,称为静息电位(restingpotential ,RP ) 骨骼肌:-90mV ;神经细胞:-70mV ;平滑肌细胞:-55mV产生机制:在静息状态下,细胞膜对K+具有较高的通透性是形成静息电位的最主要因素。
细胞膜内K+浓度约相当于细胞外液的30倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜扩散。
当逐渐增大的电位差驱动力与逐渐减小的浓度差驱动力相等时,便达到了稳态。
此时的膜电位处于K+的平衡电位(E K +=-90~-100mv ),电位差的差值即平衡电位,平衡电位决定着离子的流量。
当细胞外液中K+浓度增加(高钾)时,膜内外K+的浓度差减小,K+因浓度差外移的驱动力降低,K+外流减少。
故达到稳态时,K+平衡电位的绝对值减小;反之亦然。
而细胞膜对Na+亦有一定的通透性,扩散内流的Na+可以部分抵消由K+扩散外流所形成的膜内负电位。
所以,EK+=-90~-100mv,而RP=-70~-90mv 。
可见,细胞外液Na+浓度对RP 的影响不大。
除了以上两个方面,还有钠泵的生电作用。
钠泵使细胞内高钾、细胞外高钠。
若钠泵受抑制,膜内外K+的浓度差减小,K+外流减少,K+影响静息电位水平的因素:(1)细胞膜对K+和Na+的相对通透性,如果膜对钾离子的通透性相对增大,静息电位将增大;(2)细胞外液K+的浓度,细胞外钾离子浓度升高,将使E K 的负值减小,导致静息电位相应减小;(3)钠泵的活动,活动增强将使膜发生一定程度的超极化。
细胞膜的物质转运功能佚名一切动物细胞都被一层薄膜所包被,称为细胞膜或质膜(plasma membrane),它把细胞内容物细胞周围环境(主要是细胞外液)分隔开来,使细胞能相对地独立于环境而存在。
很明显,细胞要维持正常的生命活动,不仅细胞的内容物不能流失,而且其化学组成必须保持相对稳定,这就需要在细胞和它所和的环境之间有起屏障作用的结构;但细胞在不断进行新陈代谢的过程中,又需要经常由外界得到氧气和营养物质。
排出细胞的代谢产物,而这些物质的进入和排出,都必须经过细胞膜,这就涉及到物质的跨膜转运过程。
因此,细胞膜必然是一个具有特殊结构和功能的半透性膜,它允许某些物质或离子有选择的通过,但又能严格地限制其他一些物质的进出,保持了细胞内物质成分的稳定。
细胞内部也存在着类似细胞膜的膜性结构。
组成各种细胞器如线粒体、内质网等的膜性部分,使它们与一般胞浆之间既存在某种屏障,也进行着某些物质转运。
膜除了有物质转运功能外,还有跨膜信息传递和能量转换功能,这些功能的机制是由膜的分子组成和结构决定的。
膜成分中的脂质分子层主要起了屏障作用,而膜中的特殊蛋白质则与物质、能量和信息的跨膜转运和转换有关。
既然膜主要是由脂质双分子层构成的,那么理论上只有脂溶性的物质才有可能通过它。
但事实上,一个进行着新陈代谢的细胞,不断有各种各样的物质(从离子和小分子物质到蛋白质等大分子,以及团块性固形物或液滴)进出细胞,包括各种供能物质、合成细胞新物质的原料、中间代谢产物和终产物、维生素、氧和二氧化碳,以及Na+、K+、 Ca2+离子等。
它们理化性质各异,且多数不溶于脂质或其水溶性大于其脂溶性。
这些物质中除极少数能够直接通过脂质层进出细胞外,大多数物质分子或离子的跨膜转运,都与镶嵌在膜上的各种特殊的蛋白质分子有关;至于一些团块性固态或液态物质的进出细胞(如细胞对异物的吞噬或分泌物的排出),则与膜的更复杂的生物学过程有关。
现将几种常见的跨膜物质转运形式分述如下:(一)单纯扩散溶液中的一切分子都处于不断的热运动中。
这种分子运动的平均动能,与溶液的绝对温度成正比。
在温度恒定的情况下,分子因运动而离开某一小区的量,与此物质在该区域中的浓度(以mol/L计算)成正比。
因此,如设想两种不同浓度的同种物质的溶液相邻地放在一起,则高浓度区域中的溶质分子将有向低浓度区域的净移动,这种现象称为扩散。
物质分子移动量的大小,可用通量表示,它指某种物质在每秒内通过每平方厘米的假想平面的摩尔或毫尔数。
在一般条件下,扩散通量与所观察平面两侧的浓度差成正比;如果所涉及的溶液是含有多种溶质的混合溶液,那么每一种物质的移动方向和通量,都只决定于各该物质的浓度差,而与别的物质的浓度或移动方向无关。
但要注意的是,在电解质溶液的情况下,离子的移动不仅取决于该离子的浓度也取决于离子所受的电场力。
在生物体系中,细胞外液和细胞内液都是水溶液,溶于其中的各种溶质分子,只要是脂溶性的,就可能按扩散原理作跨膜运动或转运,称为单纯扩散。
这是一种单纯的物理过程,区别于体内其他复杂的物质转运机制。
但单纯扩散不同于上述物理系统的情况是:在细胞外液和细胞内液之间存在一个主要由脂质分子构成的屏障,因此某一物质跨膜通量的大小,除了取决于它们在膜两侧的浓度外,还要看这些物质脂溶性的大小以及其他因素造成的该物质通过膜的难易程度,这统称为膜对该物质的通透性。
人体体液中存在的脂溶性物质的数量并不很多,因而靠单纯扩散方式进出细胞膜的物质也不很多。
比较肯定的是氧和二氧化碳等气体分子,它们能溶于水,也溶于脂质,因而可以靠各自的浓度差通过细胞膜甚或肺泡中的呼吸膜(参见第五章)。
体内一些甾体(类固醇)类激素也是脂溶性的,理论上它们也能够靠单纯扩散由细胞外液进入胞浆,但由于分子量较大,近来认为也需要膜上某种特殊蛋白质的“协作”,才能使它们的转运过程加快。
(二)易化扩散有很多物质虽然不溶于脂质,或溶解度甚上,但它们也能由膜的高浓度一侧向低浓度一侧较容易地移动。
这种有悖于单纯扩散基本原则的物质转运,是在膜结构中一些特殊蛋白质分子的“协助”下完成的,因而被称为易化扩散(facilitated diffusion)。
例如,糖不溶于脂质,但细胞外液中的葡萄糖可以不断地进入一般细胞,适应代谢的需要;Na+ 、K+、Ca+等离子,虽然由于带有电荷而不能通过脂质双分子层的内部疏水区,但在某些情况下可以顺着它们各自的浓度差快速地进入或移出细胞。
这些都是易化扩散的例子。
易化扩散的特点是:物质分子或离子移动的动力仍同单纯扩散时一样,来自物质自身的热运动,所以易化扩散时物质的净移动只能是由它们的高浓度区移向低浓度区,但特点是它们不是通过膜的脂质分子间的间隙通过膜屏障,而是依靠膜上一些具有特殊结构的蛋白质分子的功能活动,完成它们的跨膜转运。
由于蛋白质分子结构上的易变性(包括其构型和构象的改变)和随之出现的蛋白质功能的改变,因而使易化扩散得以进行,并使它处于细胞各种环境因素改变的调控之下。
由载体介导的易化扩散这种易化扩散的特点是膜结构中具有可称为载体(carrier)的蛋白质分子,它们有一个或数个能与某种被转物相结合的位点或结构域(指蛋白质肽链中的某一段功能性氨基酸残基序列),后者先同膜一侧的某种物质分子选择性地结合,并因此而引起载体蛋白质的变构作用,使被结合的底物移向膜的另一侧,如果该侧底物的浓度较低,底物就和载体分离,完成了转运,而载体也恢复了原有的构型,进行新一轮的转运,其终止点是最后使膜两侧底物浓度变得相等。
上面提到的葡萄糖进入一般细胞,以及其他营养性物质如氨基酸和中间代谢产物的进出细胞,就属于这种类型的易化扩散。
以葡萄糖为例,由于血糖和细胞外液中的糖浓度经常保持在相对恒定的水平,而细胞内部的代谢活动不断消耗葡萄糖而使其胞浆浓度低于细胞外液,于是依靠膜上葡萄糖载体蛋白的活动,使葡萄糖不断进入细胞,且其进入通量可同细胞消耗葡萄糖的速度相一致不同物质通过易化扩散进出细胞膜,都需要膜具有特殊的载体蛋白。
以载体为中介的易化扩散都具有如下的共同特性:(1)载体蛋白质有较高的结构特异性,以葡萄糖为例,在同样浓度差的情况下,右旋葡萄糖的跨膜通量大大超过左旋葡萄糖(人体内可利用的糖类都是右旋的);木糖则几乎不能被载运。
(2)饱和现象,即这种易化扩散的扩散通量一般与膜两侧被转运物质的浓度差成正比,但这只是当膜两侧浓度差较小时是如此;如果膜一侧的浓度增加超过一定限度时,再增加底物浓度并不能使转运通量增加。
饱和现象的合理解释是:膜结构中与该物质易化扩散有关的载体蛋白质分子的数目或每一载体分子上能与该物质结合的位点的数目是固定的,这就构成了对该物质的量并不能使载运量增加,于是出现了饱和。
(3)竞争性抑制,即如果某一载体对结构类似的A、B两种物质都有转运能力,那么在环境中加入B物质将会减弱它对A物质的转运能力,这是因为有一定数量的载体或其结合位点竞争性地被B所占据的结果。
目前已经有多种载体从不同动物的各类细胞膜提纯或克隆(clone)。
与葡萄糖易化扩散有关的蛋白质的一级结构由一条含近500个氨基酸的肽链组成,而且此肽链有12个疏水性跨膜а-螺旋(二级结构),多次贯穿膜内外,并互相吸引靠拢,形成球形蛋白质分子(三级结构),但其转运葡萄糖时的具体变构过程尚不完全清楚。
2.由通道介导的易化扩散它们常与一些带电的离子如Na+、 K+ Ca+、 CI+等由膜的高浓度一侧向膜的低浓度一侧的快速移动有关。
对于不同的离子的转运,膜上都有结构特异的通道蛋白质参与,可分为别称为Na+通道、K+通道、Ca+通道等;甚至对于同一种离子,在不同细胞或同一细胞可存在结构和功能上不同的通道蛋白质,如体内至少已发现有三种以上的Ca+通道和7种以上的K+通道等,这种情况与细胞在功能活动和调控方面的复杂化和精密化相一致。
通道蛋白质有别于载体的重要特点之一,是它们的结构和功能状态可以因细胞内外各种理化因素的影响而迅速改变:当它们处于开放状态时,有关的离子可以快速地由膜的高浓度一侧移向低浓度一侧;其离子移动的速度是如此之大,因而在关于通道蛋白的分子结构还知之甚少时,就推测是在这种蛋白质的内部出现了一条贯通膜内外的水相孔道使离子能够顺着浓度差(可能还存在着电场力的作用)通过这一孔道,因而其速度远非载体蛋白质的运作速度所能比拟。
这是称为通道(channel)的原因。
通道对离子的选择性,决定于通道开放时它的水相孔道的几何大小和孔道壁的带电情况,因而对离子的选择性没有载体蛋白那样严格。
大多数通道的开放时间都十分短促,一般以数个或数十个ms计算,然后进入失活或关闭状态。
于是又推测在通道蛋白质结构中可能存在着类似闸门(gate)一类的基团,由它决定通道的功能状态。
许多的离子通道蛋白质已经用分子生物学的技术被克隆,对其结构的研究已证实了上述推测。
通道的开放造成了带电离子的跨膜移动,这固然是一种物质转运形式;但通道的开放是有条件的、短暂的,百离子本身并不像葡萄糖等是一些代谢物,从生理意义上看,载体和通道活动的功能不尽相同。
当通道的开放引起带电离子跨膜移动时(如Na+、Ca2+进入膜内或K+移出膜外),移动本身形成跨膜电流(即离子电流);而移位的带电离子在不导电的脂质双分子层(具有电容器的性质)两侧的集聚,将会造成膜两侧电们即跨膜电位的改变,而跨膜电位的改变以及进入膜内的离子、特别是Ca2+,将会引起该通道所在细胞一系列的功能改变。
由此可见,通道的开放并不是起转运代谢的作用,而离子的进出细胞,只是把引起通道开放的那些外来信号,转换成为通道所在细胞自身跨膜电位的变化或其他变化,因而是细胞环境因素影响细胞功能活动的一种方式。
(三)主动转运主动转运指细胞通过本身的某种耗能过程,将某种物质的分子或离子由膜的低浓度一侧移向高浓度一侧的过程。
按照热力学定律,溶液中的分子由低浓度区域向高浓度区域移动,就像举起重物或推物体沿斜坡上移,或使电荷逆电场方向移动一样,必须由外部供给能量。
在膜的主动转运中,这能量只能由膜或膜所属的细胞来供给,这就是主动的含义。
前述的单纯扩散和易化扩散都属于被动转运,其特点是在这样的物质转运过程中,物质分子只能作顺浓度差、即由膜的高浓度一侧向低浓度一侧的净移动,而它所通过的膜并未对该过程提供能量。
被动转运时物质移动所需的能量来自高浓度所含的势能(图3左),因而不需要另外供能(图3右)。
被动转运最终可能达到的平衡点是膜两侧该物质的浓度差为零的情况;如果被动转运的是某种离子,则离子移动除受浓度差的影响外,还受当时电场力的影响,亦即当最终的平衡点达到时,膜两侧的电-化学势*的差为应为零。
主动转运与此不同,由于膜以某种方式提供了能量,物质分子或离子可以逆浓度或逆电-化学势差而移动。