2018-2019学年河北省邯郸市大名县八年级(下)期末数学试卷含解析
- 格式:doc
- 大小:311.71 KB
- 文档页数:16
河北省邯郸市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·萧山开学考) 下列计算正确的是A .B .C .D .2. (2分)(2019·天河模拟) 下列各式计算正确的是()A . 3a3+2a2=5a6B .C . a4•a2=a8D . (ab2)3=ab63. (2分) (2019八上·西安月考) 若是正比例函数,则的值为()A . 0B . 1C .D . 24. (2分)(2019·海曙模拟) 下列判断正确的是()A . 高铁站对旅客的行李的检查应采取抽样调查B . 一组数据5、3、4、5、3的众数是5C . “掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上D . 甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据更稳定5. (2分) (2020九上·邓州期末) 如图,在平面直角坐标系中,直线OA过点(2,1),则cosα的值是()A .B .C .D . 26. (2分)(2018·广元) 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是()A . 先向左转130°,再向左转50°B . 先向左转50°,再向右转50°C . 先向左转50°,再向右转40°D . 先向左转50°,再向左转40°7. (2分) (2017八下·建昌期末) 下列命题中,不正确的是()A . 有一组邻边相等的平行四边形是菱形B . 有一个角是直角的平行四边形是矩形C . 对角线垂直的平行四边形是正方形D . 一组对边平行且相等的四边形是平行四边形8. (2分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A . (1,0)B . (3,0)C . (﹣3,0)D . (0,﹣4)9. (2分) (2019九上·上海开学考) △ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A .B .C .D .10. (2分) (2019九上·余杭期末) 如图,抛物线的开口向上,与轴交点的横坐标分别为和3,则下列说法错误的是()A . 对称轴是直线B . 方程的解是,C . 当时,D . 当,随的增大而增大二、填空题 (共8题;共9分)11. (1分) (2018八上·江阴期中) 二次根式有意义的条件是________12. (1分) (2016八下·洪洞期末) 在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知________的成绩更稳定.13. (1分) (2017八下·海淀期末) 第24届冬季奥林匹克运动会,将于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目40次的训练测试,每次测试成绩分别为5分,4分,3分,2分,1分五档. 甲乙两位同学在这个项目的测试成绩统计结果如图所示.根据上图判断,甲同学测试成绩的众数是________;乙同学测试成绩的中位数是________;甲乙两位同学中单板滑雪成绩更稳定的是________.14. (1分)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于________ .15. (1分) (2016八下·蓝田期中) 如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,若AC=9cm,BC=5cm,则△BCE的周长为________ cm.16. (1分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,CD∥AF,请你添加一个条件:________使四边形ABCD是平行四边形。
河北省邯郸市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列等式从左到右的变形是因式分解的是()A . 6a2b=2a•3abB . (a+3b)(a﹣3b)=a2﹣9C . 4x2+8x﹣1=4x(x+2)﹣1D . ax﹣ay=a(x﹣y)2. (2分)关于x的一元二次方程(m-1)x2+3x+m2-1=0的一根为0,则m的值是()A . ±1B . -1C . ±2D . -23. (2分)如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△EBF:S△ABF=9:21:49,则DE:EC=()A . 2:3B . 2:5C . 3:4D . 3:74. (2分)若当时,正比例函数与反比例函数的值相等,则与的比是().A . 16:1B . 4:1C . 1:4D . 1:165. (2分)如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A . 4sB . 3sC . 2sD . 1s6. (2分)如图,△ABC内接于⊙O,∠A=60°,BC=6 ,则的长为()A . 2πB . 4πC . 8πD . 12π7. (2分)(2016·孝感) 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A . 1B . 2C . 3D . 48. (2分) (2015八上·句容期末) 如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A . 3B . 4C . 5D . 79. (2分)(2017·博山模拟) 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A . (1,﹣1)B . (﹣1,﹣1)C . (,0)D . (0,﹣)10. (2分) (2020八下·西安月考) 将一根长为25厘米的筷子至于底面直径为5厘米,高为12厘米的圆柱形水杯中,设筷子漏在杯子外的长为h厘米,则h的取值范围是()A . 12≤h≤13B . 11≤h≤12C . 11≤h≤13D . 10≤h≤1211. (2分) (2019八上·朝阳期中) 下列邮票中的多边形中,内角和等于的是()A .B .C .D .12. (2分) (2019九上·灵石期中) 如图,A 、 B是曲线上的点,经过A、 B两点向x 轴、y轴作垂线段,若S阴影=1 则 S1+S2 =()A . 4B . 5C . 6D . 8二、填空题 (共4题;共4分)13. (1分)如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC 的中点,联结FB,那么tan∠FBC的值为________14. (1分) (2017九上·乐清期中) 一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是________.15. (1分) (2019八下·哈尔滨期中) 菱形有一个内角是120°,有一条对角线为6cm,则此菱形的边长是________cm.16. (1分)已知,则的值是________.三、解答题 (共4题;共47分)17. (5分)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?18. (15分)(2019·丹阳模拟) 如图,在平面直角坐标系中,函数(,是常数)的图像经过A(2,6),B(m,n),其中m>2.过点A作轴垂线,垂足为C,过点作轴垂线,垂足为,AC与BD交于点E,连结AD,,CB.(1)若的面积为3,求m的值和直线的解析式;(2)求证:;(3)若AD//BC ,求点B的坐标 .19. (12分) (2018九上·二道月考) 我们知道,解一元二次方程,可以把它转化为两个一元一次方程来解,其实用“转化”的数学思想,我们还可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)方程x3+x2﹣2x=0的解是x1=0,x2=________,x3=________.(2)用“转化”思想求方程 =x的解.(3)如图,已知矩形草坪ABCD的长AD=14m,宽AB=12m,小华把一根长为28m的绳子的一端固定在点B处,沿草坪边沿BA、AD走到点P处,把长绳PB段拉直并固定在点P处,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C处,求AP的长.20. (15分) (2020八上·辽阳期末) 已知:甲、乙两车分别从相距300km的A,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量的取值范围;(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;(3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共4题;共47分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、。
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
邯郸市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018八上·叶县期中) 已知下列各式,是最简二次根式的是()A .B .C .D .2. (2分) (2019八上·西安月考) 若直角三角形两条直角边的边长分别为6和8,则斜边上的高是()A . 5B . 10C .D .3. (2分)(2019·海南模拟) 某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A . 36B . 45C . 48D . 504. (2分) (2017八上·宁波期中) 小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A .B .C .D .5. (2分)若正方形的对角线长为2 cm,则这个正方形的面积为()A . 4cm2B . 2cm2C . cm2D . 2cm26. (2分) (2019九上·辽阳期末) 在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A .B .C .D .7. (2分) (2018八下·肇源期末) 如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y= (x<0)的图象经过点C,则k的值为()A . 24B . -12C . -6D . ±68. (2分) (2017九上·宜昌期中) 使式子有意义的x的取值范围是()A . 且x≠1B . x≠1C .D . 且x≠19. (2分) (2015七上·广饶期末) 平面上A、B两点间的距离是指()A . 经过A,B两点的直线B . 射线ABC . A,B两点间的线段D . A,B两点间线段长度10. (2分)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=(k为常数,k≠0),其图象如图所示,则当气体的密度为3 kg/m3时,容器的体积为()A . 9 m3B . 6 m3C . 3 m3D . 1.5 m311. (2分)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1等于()A . 100°B . 110°C . 120°D . 130°12. (2分)(2018·赤峰) 如图,直线与x轴、y轴分别交于A,B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()A . 5B . 10C . 15D . 20二、填空题 (共4题;共9分)13. (1分) (2018九上·哈尔滨月考) 计算的结果是________.14. (5分)直线y=2x-1沿y轴向上平移3个单位,则平移后直线与x轴的交点坐标为________15. (2分)如图,一个无盖的圆柱纸盒:高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是________.16. (1分)(2019·铁岭模拟) 如图,菱形ABCD的面积为120cm2 ,正方形AECF的面积为50cm2 ,则菱形的边长________cm.三、解答题 (共8题;共81分)17. (10分) (2020八上·牡丹期末) 计算:(1)(2)18. (10分)有一辆装货的汽车,为了使一批货物进入车厢,使用了如图所示的架子.已知AC的3.0m,BC=1.0m.(1)求AB的长为多少?(提示:AC2+BC2=AB2)(2)如果架子的宽为2m,那么想在这个架子的四周包括地面包一层铁皮,至少需要多少m2的铁皮?19. (11分)哈市某区对初四的数学教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初四学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了多少名学生;(2)请将条形统计图补充完整,并求出在扇形统计图中“专注听讲”所占的扇形的圆心角度数;(3)如果该区有6000名初四学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?20. (5分)如图,以AB为直径作半圆O,点C为半圆上与A,B不重合的一动点,过点C作CD⊥AB于点D,点E与点D关于BC对称,BE与半圆交于点F,连CE.(1)判断CE与半圆O的位置关系,并给予证明.(2)点C在运动时,四边形OCFB的形状可变为菱形吗?若可以,猜想此时∠AOC的大小,并证明你的结论;若不可以,请说明理由.21. (10分) (2019九上·揭西期末) 直线与反比例函数(>0)的图象分别交于点 A (,4)和点B(8,),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当时,直接写出的解集;(3)若点P是轴上一动点,当△COD与△ADP相似时,求点P的坐标.22. (10分)(2018·乐山) 已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为________;(2)如图2,若k= ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k= ,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.23. (10分)(2018·安顺模拟) 经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x≤5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.24. (15分)(2017·渝中模拟) 如图1,在平面直角坐标系中,抛物线y= x2﹣ x+3 与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.(1)求S△ABD的值;(2)如图2,若点P是直线AD下方抛物线上一动点,过点P作PF∥y轴交直线AD于点F,作PG∥AC交直线AD于点G,当△PGF的周长最大时,在线段DE上取一点Q,当PQ+ QE的值最小时,求此时PQ+ QE的值;(3)如图3,M是BC的中点,以CM为斜边作直角△CMN,使CN∥x轴,MN∥y轴,将△CMN沿射线CB平移,记平移后的三角形为△C′M′N′,当点N′落在x轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x轴交于点W,请问△CST 是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共9分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共81分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、。
冀教版2018—2019学年度第二学期八年级期末检测数学试题含答案解析说明:1.本试卷共4页,满分120分。
2.请将所有答案填涂在答题卡上,答在试卷上无效。
一、选择题(本大题共16个小题,满分42分,其中1—10小题,每小题3分,11—16小题,每小题2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若2y x b =+−是正比例函数,则b 的值是( ) A.0 B.-2 C.2 D.-0.52.下列调查最适合用查阅资料的方法收集数据的是( ) A.班级推选班长 B.本校学生的到校时间 C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星3.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,那么得到的新图形相当于把原图形( )A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度4.如图所示,已知四边形ABCD 的对角线AC 、BD 相交于点O ,则下列能判断它是正方形的条件是( )A.AO BO CO DO ===,AC BD ⊥B.AB BC CD DA ===C.AO CO =,BO DO =,AC BD ⊥D.AB BC =,CD DA ⊥ 5.如果点P (-2,b )和点Q (a ,-3)关于x 轴对称,则a b +的值是( ) A.-1 B.1 C.-5 D.56.已知一次函数y kx b =+,若0k b +=,则该函数的图象可能( )A. B. C. D.7.函数y =x 的取值范围是( ) A.4x < B.4x ≠ C.4x > D.4x ≤ 8.下列调查中,适合普查的事件是( )A.调查华为手机的使用寿命B.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场)的节目收视率 9.设02k <<,关于x 的一次函数21y kx x =+−(),当12x ≤≤时的最大值是( ) A.22k − B.1k − C.k D.1k +10.在某次实验中,测得两个变量m 和v 之间的4组对应数据如右表,则m 与v 之间的关系最接近于下列各关系式中的( )A.2v m =B.21v m =+C.31v m =−D.31v m =+ 11.把n 边形变为n x +()边形,内角和增加了720°,则x 的值为( ) A.6 B.5 C.4 D.312.点P 是图①中三角形上一点,坐标为(a ,b ),图①经过变化形成图②,则点P 在图②中的对应点P’的坐标为( )A.1,2a b ⎛⎫⎪⎝⎭ B.(1,)a b − C.(2,)a b − D.11,22a b ⎛⎫⎪⎝⎭13.四边形ABCD 中,3AB =,5CD =,M 、N 分别是边AD ,BC 的中点,则线段MN 的长的取值范围是( ) A.28MN <… B.28MN <… C.14MN <… D.14MN <…14.在平而直角坐标系中,已知平行四边形ABCD 的三个顶点坐标分别是A (m ,n ),B (2,-1),C (-m ,-n ),则关于点D 的说法正确的是( )甲:点D 在第一象限 乙:点D 与点A 关于原点对称丙:点D 的坐标是(-2,1) 丁:点D A.甲乙 B.乙丙 C.甲丁 D.丙丁15.如下图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax +…的解集为( ) A.3x … B.3x …C.32x …D.32x …16.如上图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE.设AP x =,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点E 、C 、D 作AB 的垂线) A.线段PD B.线段PC C.线段DE D.线段PE二、填空题(本大题满分10分,其中17、18每小题3分,19题4分)17.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若220A B ∠+∠=︒,则123∠+∠+∠=________. 18.学校位于小亮家北偏东35方向,距离为300m ,学校位于大刚家南偏东85°方向,距离也为300m ,则大刚家相对于小亮家的位置是________.19.如图在平面直角坐标系xOy 中,直线l 经过点A (-1,0),点A 1,A 2,A 3,A 4,A 5,…按所示的规律排列在直线l 上.若直线l 上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点A n (n 为正整数)的横坐标为2015,则n=________.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、演算步骤或证明过程)20.(本小题满分9分)佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示. (1)图象表示了哪两个变量的关系?(2)10时和11时,他分别离家多远?(3)他最初到达离家最远的地方是什么时间?离家多远?(4)11时到13时他行驶了多少千米?21.(本小题满分9分)如图,已知火车站的坐标为(2,2),文化馆的坐标为(-1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场,市场,超市的坐标;(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.22.(本小题满分10分)阅读可以增进人们的知识也能陶治人们的情操。
河北省邯郸市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019八下·大连月考) 与是同类二次根式的是()A .B .C .D .【考点】2. (2分) (2016九上·长春期中) 下列运算中,正确的是()A . 2 +3 =5B . ﹣a8÷a4=﹣a2C . (3a2)3=27a6D . (a2﹣b)2=a4﹣b2【考点】3. (2分)如图,长方形ABCD沿EF折叠后,梯形ABFE落到梯形A1B1FE的位置,若∠AEF=110°,则∠B1FC=()A . 30°B . 35°C . 40°D . 50°【考点】4. (2分)在平行四边形ABCD中,∠A=65°,则∠D的度数为()A . 105°B . 115°C . 125°D . 65°【考点】5. (2分)(2019·吉林模拟) 如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A . 100°B . 160°C . 80°D . 20°【考点】6. (2分) (2020九上·保定期中) 矩形具有而菱形不具有的性质是()A . 对边平行且相等B . 对角线垂直C . 对角线互相平分D . 对角线相等【考点】7. (2分)(2017·宁夏) 学校国旗护卫队成员的身高分布如下表:身高/cm159160161162人数71099则学校国旗护卫队成员的身高的众数和中位数分别是()A . 160和160B . 160和160.5C . 160和161D . 161和161【考点】8. (2分)如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()A . 12B . 24C . 8D . 6【考点】9. (2分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,这个一次函数的表达式是().A . y = 2x+3B . y = x-3C . y = x+3D . y = 3-x【考点】10. (2分) (2018八上·罗湖期末) 汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A .B .C .D .【考点】11. (2分)(2017·嘉兴) 一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A .B .C .D .【考点】12. (2分)在函数y=,y=x+5,y=-5x的图像中,是中心对称图形,且对称中心是原点的图像的个数有()A . 0B . 1C . 2D . 3【考点】二、填空题 (共8题;共8分)13. (1分) (2019八上·抚州月考) 如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若BC=10,AD=12,则AC=________.【考点】14. (1分) (2017八上·江都期末) 如图,在平面直角坐标系中,点,点,点是直线上一点,若,则点的坐标是________.【考点】15. (1分) (2019九下·锡山期中) 为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派________去.【考点】16. (1分)下列各种说法中错误的是________(填序号)①过一点有且只有一条直线与已知直线平行②在同一平面内,两条不相交的线段是平行线段③两条直线没有交点,则这两条直线平行④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.【考点】17. (1分)(2012·成都) 如图,AB是⊙O的弦,OC⊥AB于C.若AB= ,OC=1,则半径OB的长为________.【考点】18. (1分)已知方程x2-4x+3=0的两根为直角三角形的两直角边长,则其最小角的余弦值为________.【考点】19. (1分) (2017八上·盐城开学考) 如图所示,将含有30°角的三角板的直角顶点放在互相平行的两条直线其中一条上,若∠1=35°,则∠2的度数为________度【考点】20. (1分) (2020八上·自贡期末) 是△ 的中线,, ;把△ 沿直线折叠,使点落在点的位置,连接 ,则的长为 ________ .【考点】三、解答题 (共6题;共41分)21. (5分) (2019八上·阜新月考) 计算(1)(2)【考点】22. (11分)(2020·南宁模拟) 为了了解学生对“预防新型冠状病毒”知识的掌握情况,学校组织了一次线上知识培训,培训结束后进行测试,在全校2000名学生中,分别抽取了男生,女生各15份成绩,整理分析过程如下,请补充完整.(收集数据)15名男生测试成绩统计如下:(满分100分)78,90,99,93,92,95,94,100,90,85,86,95,75,88,9015名女生测试成绩统计如下:(满分100分)77,82,83,86,90,90,92,91,93,92,92,92,92,98,100(整理、描述数据)70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5男生111552女生012372(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:性别平均数众数中位数方差男生90909044.9女生9032.8在表中: ________. ________;(2)若规定得分在80分以上(不含80分)为合格,请估计全校学生中“预防新型冠状病毒”知识测试合格的学生有多少人?(3)通过数据分析得到的结论,你认为男生和女生中谁的成绩比较好?请说明理由.【考点】23. (2分)如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为vcm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:(1)一个长方体的体积是多少cm3?;(2)求图2中线段AB对应的函数关系式;(3)求注水速度v和圆柱形水槽的底面积S.【考点】24. (2分)(2017·义乌模拟) 已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B.点A、B关于原点O的对称点分别是点C,D.若点A,B,C,D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的解析式;(2)如图2,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣x+5,伴随四边形的面积为20,求此抛物线的解析式;(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.用含b 的代数式表示m,n的值.【考点】25. (11分) (2020八上·包河期中) 某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y(元)与x之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.【考点】26. (10分)(2017·虎丘模拟) 如图,在边长为4的正方形ABCD中,P是BC边上一动点(不与B、C两点重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上取一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接AM、AN.(1)若P为BC的中点,则sin∠CPM=________;(2)求证:∠PAN的度数不变;(3)当P在BC边上运动时,△ADM的面积是否存在最小值,若存在,请求出PB的长;若不存在,请说明理由.【考点】参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共8题;共8分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共41分)答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、略答案:25-2、略考点:解析:略答案:26-1、答案:26-2、答案:26-3、考点:解析:。
2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
河北省邯郸市大名县2018-2019学年八年级下学期数学期末考试试卷一、单选题(共16题;共32分)1.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布统计图2.己知一次函数,若随的增大而增大,则的取值范围是()A. B. C. D.3.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A. B. C. D.4.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B. 1 C. D. 25.如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是A. B. C. D.6.一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A. 4条B. 5条C. 6条D. 7条7.如图1,在矩形中,动点从点出发,沿方向运动至点处停止,设点运动的路程为,△BCE的面积为,如果关于的函数图象如图2所示,则当时,点应运动到()A. 点处B. 点处C. 点处D. 点处二、填空题(共3题;共3分)8.一个多边形的内角和与外角和的比是4:1,则它的边数是________.9.如图,折线ABC是某市在2018年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费________元.10.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=________,对角线AC的长为________.三、解答题(共7题;共57分)11.如图,在中,AD是BC边上的中线,E是AD的中点,延长BE到F,使,连接AF、CF、DF.(1)求证:;(2)若,试判断四边形ADCF的形状,并证明你的结论.12.如图,直线l经过点A(1,6)和点B(﹣3,﹣2).(1)求直线l的解析式,直线与坐标轴的交点坐标;(2)求△AOB的面积.13.“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.14.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.15.如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是________.16.如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.17.某商店经销某种玩具,该玩具每个进价20 元,为进行促销,商店制定如下“优惠” 方案:如果一次销售数量不超过5 个,则每个按50 元销售:如果一次销售数量超过5 个,则每增加一个,所有玩具均降低 1 元销售,但单价不得低于30 元,一次销售该玩具的单价y(元)与销售数量x(个)之间的函数关系如下图所示.(1)结合图形,求出m的值;射线BC所表示的实际意义是什么;(2)求线段AB满足的y与x之间的函数解析式,并直接写出自变量的取值范围;(3)当销售15个时,商店的利润是多少元.答案解析部分一、单选题1.【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】根据题意,得要求直观反映台州市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.【点评】此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.2.【答案】A【解析】【解答】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1。
数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018-2019学年下学期期末原创卷A 卷八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版八下全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.为了了解所加工的一批零件的长度,抽取了其中200个零件的长度,在这个问题中,200个零件的长度是 A .总体B .个体C .总体的一个样本D .样本容量2.如图,笑脸盖住的点的坐标可能为A .(5,2)B .(3,–4)C .(–2,3)D .(–4,–6)3.下列各图象中,不能表示y 是x 的函数的是A .B .C .D .4.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为 A .20B .25C .30D .1005.在平行四边形ABCD 中,∠D 、∠C 的度数之比为3∶1,则∠A 等于 A .45°B .135°C .50°D .130°6.如图,是一次函数y =kx +b 的图象,则k 、b 的符号是A .k >0,b <0B .k <0,b >0C .k <0,b <0D .k >0,b >07.点A (m –4,1–2m )在第四象限,则m 的取值范围是 A .m >12B .m >4C .m <4D .12<m <4 8.小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是A .全班总人数为45人B .体重在50千克55~千克的人数最多C .学生体重的众数是14D .体重在60千克65~千克的人数占全班总人数的199.已知一次函数y =3x +2,函数图象上有两点A (–1,y 1)、B (2,y 2),则y 1与y 2的大小关系为 A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定10.如图,P 为矩形ABCD 边上的一个动点,沿ABCD 方向运动,P 点运动的路程为x ,PAD △的面积为y ,则y 与x 的函数关系用图象表示大致是数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .B .C .D .11.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为A .(2,3)B .(2,2)C .(3,2)D .(0,3)12.点P (x ,y )在第二象限内,且|x |=2,|y |=3,则点P 关于原点对称的点的坐标为A .(2,–3)B .(–2,–3)C .(3,–2)D .(–3,2)13.菱形具有而矩形不具有性质是A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分且相等14.一个多边形的内角和是720°,这个多边形的边数是A .4B .5C .6D .715.如图,△ABC 称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2019个三角形的周长为A .201912B .201812C .201721 D .20162116.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离S (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据题目和图象所提供的信息,下列说法正确的是A .乙比甲先到达B 地 B .乙在行驶过程中没有追上甲C .乙比甲早出发半小时D .甲的行驶速度比乙的行驶速度快第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.四边形ABCD 中,∠A +∠B =180°,添加一个条件__________,则使四边形ABCD 成为平行四边形. 18.如果一盒圆珠笔有12支,售价24元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是__________.19.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,…,依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位长度;当n 被3除,余数为1时,则向右走1个单位长度;当n 被3除,余数为2时,则向右走2个单位长度.当他走完第8步时,棋子所处位置的坐标是__________;当他走完第2018步时,棋子所处位置的坐标是__________. 三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)(1)某多边形的内角和与外角和的总和为2160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和. 21.(本小题满分9分)如图是一个平面直角坐标系,按要求完成下列各小题.(1)写出图中的六边形ABCDEF 顶点在坐标轴上的点的坐标;(2)说明点B 与点C 的纵坐标有什么特点?线段BC 与x 轴有怎样的位置关系?(3)写出点E 关于y 轴的对称点E ′的坐标,并指出点E ′与点C 有怎样的位置关系.数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)已知y 与x +2成正比例,且当x =2时,y =4.(1)y 与x 之间的函数关系式. (2)当x =4时,求y 的值. (3)当y =7时,求x 的值.23.(本小题满分9分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下) (1)请把条形统计图补充完整;(2)扇形统计图中D 级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A 级学生人数约为多少人? 24.(本小题满分10分)如图:五边形ABCDE 中,AB ∥CD ,BC ⊥AB ,AB =BC =8,CD =5.(1)说明∠A ,∠E ,∠D 之间的数量关系;(2)平移五边形ABCDE ,使D 点移动到C 点,画出平移后的五边形A'B'C'CE',并求出顺次连接A 、A'、E'、C 、D 、E 、A 各点所围成的图形的面积;(3)在∠BAE 和∠E'CD 的内部取一点F ,使∠EAF =13∠EAB ,∠FCE'=13∠DCE',求∠AFC 与∠AED 之间的数量关系.25.(本小题满分10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min .小东骑自行车以300m/min 的速度直接回家,两人离家的路程y (m )与各自离开出发地的时间x (min )之间的函数图象如图所示.(1)家与图书馆之间的路程为__________m ,小玲步行的速度为__________m/min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.26.(本小题满分11分)如图,正方形OACB 的边OB 、OA 分别在x 、y 轴上,点C 坐标为(8,8),将正方形OACB 绕点A 逆时针旋转角度α(0°<α<90°),得到正方形ADEF ,ED 交线段BC 于点Q ,ED 的延长线交线段OB 于点P ,连接AP 、AQ . (1)求证:△ACQ ≌△ADQ ;(2)求∠PAQ 的度数,并判断线段OP 、PQ 、CQ 之间的数量关系,并说明理由;(3)连接BE 、EC 、CD 、DB 得到四边形BECD ,在旋转过程中,四边形BECD 能否是矩形?如果能,请求出点P 的坐标,如果不能,请说明理由.。
2018-2019学年度八年级(下)期末数学试卷(二)班级 姓名一、选择题(本大题共12个小题;共36分.在每题的四个选项中,只有一项是符合要求的) 1.若二次根式有意义,则x 应满足的条件是( )A.x=B.x <C.x ≥D.x ≤2.下列各式中,最简二次根式是( ) A.B.C.D.3.能够判定一个四边形是矩形的条件是( )A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直 4.适合下列条件的△ABC 中,直角三角形的个数为( )①a=,b=,c=;②a=6,b=8,c=10;③a=7,b=24,c=25;④a=2,b=3,c=4.A.1个B.2个C.3个D.4个5.正比例函数y=kx(k <0)的图象上两点A(x 1,y 1)、B(x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( ) A.y 1+y 2>0 B.y 1+y 2<0 C.y 1﹣y 2>0 D.y 1﹣y 2<06.下列条件之一能使菱形ABCD 是正方形的为( ) ①AC ⊥BD ②∠BAD=90° ③AB=BC ④AC=BD.A.①③B.②③C.②④D.①②③ 7.一次函数y=kx ﹣b 的图象(其中k <0,b >0)大致是( )A. B. C. D.8.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( ) A.3.5,3 B.3,4 C.3,3.5 D.4,39.直线y=kx +b 交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx +b ≥0的解集为( ) A.x ≥﹣8 B.x ≤﹣8 C.x ≥13 D.x ≤13 10.如图所示:数轴上点A 所表示的数为a,则a 的值是( )A. +1B.﹣+1C.﹣1D.11.如图,矩形ABCD 中,点E,F 分别是AB 、CD 的中点,连接DE 和BF,分别取DE 、 BF 的中点M 、N,连接AM,CN,MN,若AB=,BC=,则图中阴影部分的面积为( ) A.4 B.2 C.2 D.212.如图,周长为16的菱形ABCD 中,点E,F 分别在AB,AD 边上,AE=1,AF=3,P 为BD 上一动点,则线段EP +FP 的长最短为( )A.3B.4C.5D.6二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上) 17. = .18.数据﹣2,﹣1,0,3,5的方差是 .19.如右图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为 .20.如图,已知直线l 1:y=k 1x +4与直线l 2:y=k 2x ﹣5交于点A,它们与y 轴的交点分别为点B,C,点E,F 分别为线段AB 、AC 的中点,则线段EF 的长度为 .三、解答题(本大题共6个小题,共52分.解答应写出文字说明,说理过程或演算步骤) 21.计算(1)(2).22.如图,在△ABC 中,点D 、E 分别是边BC 、AC 的中点,过点A 作AF ∥BC 交DE 的延长线于F 点,连接AD 、CF.(1)求证:四边形ADCF 是平行四边形;(2)当△ABC 满足什么条件时,四边形ADCF 是菱形?为什么?第11题图 第12题图 第20题图 第19题图23. 如图1所示为一上面无盖的正方体纸盒,现将其剪开展成 平面图,如图2所示,已知展开图中每个正方形的边长为1, (1)求线段A ′C ′的长度;(2)试比较立体图中∠BAC 与展开图中∠B ′A ′C ′的大小关系? 并写出过程.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了 h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.25.某商场统计了每个营业员在某月的销售额,统计图如下,根据统计图中给出的信息,解答下列问题: (1)设营业员的月销售额为x(单位:万元),商场规定:当x <15时为不称职,当15≤x <20时,为基本称职,当20≤x <25为称职,当x ≥25时为优秀.称职和优秀的营业员共有多少人?所占百分比是多少?(2)根据(1)中规定,所有称职以上(职称和优秀)的营业员月销售额的中位数、众数和平均数分别是多少? (3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.某慈善单位欲购买三种类型的门票共张奖励品学兼优的留守学生设购买种票张种票张数是A 种票的3倍还多7张,C 种票y 张,根据以上信息解答下列问题: (1)直接写出x 与y 之间的函数关系式;(2)设购票总费用为W 元,求W(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?2018-2019学年度八年级(下)期末数学试卷(二)参考答案与试题解析一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每题的四个选项中,只有一项是符合要求的) 1.若二次根式有意义,则x 应满足的条件是( )A.x=B.x <C.x ≥D.x ≤【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件得出x 的取值范围. 【解答】解:∵要使有意义,∴5﹣2x ≥0, 解得:x ≤.故选:D.2.已知平行四边形ABCD 的周长为32,AB=4,则BC 的长为( ) A.4 B.12 C .24 D .28【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB +BC)=32,即可求出答案. 【解答】解:∵四边形ABCD 是平行四边形, ∴AB=CD,AD=BC,∵平行四边形ABCD 的周长是32, ∴2(AB +BC)=32, ∴BC=12. 故选B.3.下列各式中,最简二次根式是( ) A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可. 【解答】解:被开方数含分母,不是最简二次根式,A 错误;=2不是最简二次根式,B 错误;=x不是最简二次根式,C 错误;,是最简二次根式,D 正确,故选:D.4.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x +1上的有( ) A.1个 B.2个 C.3个 D.4个【考点】一次函数图象上点的坐标特征.【分析】把四个点的坐标分别代入直线解析式,看其是否满足解析式,可判断其是否在直线上. 【解答】解:在y=2x +1中,当x=1时,代入得y=3,所以点(1,2)不在直线上, 当x=2时,代入得y=5,所以点(2,3)不在直线上, 当x=0时,代入得y=1,所以点(0,1)在直线上,当x=﹣2时,代入得y=﹣4+3=﹣1,所以点(﹣2,3)不在直线上, 综上可知在直线y=2x +1上的点只有一个, 故选A.5.能够判定一个四边形是矩形的条件是( )A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直 【考点】矩形的判定.【分析】根据矩形的判定定理逐一进行判定即可.【解答】解:A 、对角线互相平分且相等的四边形是矩形,故正确; B 、对角线互相垂直平分的是菱形,故错误;C 、对角线相等且互相垂直的四边形不一定是矩形,故错误;D 、对角线互相垂直的四边形不一定是矩形,故错误, 故选A.6.适合下列条件的△ABC 中,直角三角形的个数为( ) ①a=,b=,c=; ②a=6,b=8,c=10; ③a=7,b=24,c=25; ④a=2,b=3,c=4.A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”由此即可得出结论. 【解答】解:①∵a=,b=,c=), ∵()2+()2≠();∴满足①的三角形不是直角三角形;②a=6,b=8,c=10,∵62+82=102,∴满足②的三角形是直角三角形;③a=7,b=24,c=25,∵72+242=252,∴满足③的三角形为直角三角形;④a=2,b=3,c=4.∵22+32≠42,∴满足④的三角形不是直角三角形.综上可知:满足②③的三角形均为直角三角形.故选B.7.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S甲2=36,S乙2=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定【考点】方差.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵甲、乙两组的平均成绩相同,方差分别是S甲2=36,S乙2=30,∴S甲2>S乙2,∴乙组比甲组的成绩稳定;故选B.8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<0【考点】一次函数图象上点的坐标特征;正比例函数的图象.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.9.下列条件之一能使菱形ABCD是正方形的为()①AC⊥BD ②∠BAD=90°③AB=BC ④AC=BD.A.①③B.②③C.②④D.①②③【考点】正方形的判定. 【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABCD是菱形,∴当∠BAD=90°时,菱形ABCD是正方形,故②正确;∵四边形ABCD是菱形,∴当AC=BD时,菱形ABCD是正方形,故④正确;故选:C.10.一次函数y=kx﹣b的图象(其中k<0,b>0)大致是()A. B. C. D.【考点】一次函数的图象.【分析】利用一次函数图象的性质分析得出即可.【解答】解:∵一次函数y=kx﹣b的图象(其中k<0,b>0),∴图象过二、四象限,﹣b<0,则图象与y轴交于负半轴,故选:D.11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3B.3,4C.3,3.5D.4,3【考点】中位数;算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【解答】解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=3.5,中位数为:3.故选:A.12.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为()A.x≥﹣8B.x≤﹣8C.x≥13D.x≤13【考点】一次函数与一元一次不等式.【分析】把A(﹣8,0),B(0,13)两点代入解析式解答,再利用一次函数与一元一次不等式的关系解答即可.【解答】解:由直线y=kx +b 交坐标轴于A(﹣8,0),B(0,13)两点可以看出,x 轴上方的函数图象所对应自变量的取值为x ≥﹣8,故不等式kx +b ≥0的解集是x ≥﹣8. 故选:A.13.如图所示:数轴上点A 所表示的数为a,则a 的值是( )A.+1 B.﹣+1 C.﹣1 D.【考点】勾股定理;实数与数轴.【分析】先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标. 【解答】解:图中的直角三角形的两直角边为1和2, ∴斜边长为:=,∴﹣1到A 的距离是,那么点A 所表示的数为:﹣1. 故选C.14.如图,矩形ABCD 中,点E,F 分别是AB 、CD 的中点,连接DE 和BF,分别取DE 、 BF 的中点M 、N,连接AM,CN,MN,若AB=,BC=,则图中阴影部分的面积为( )A.4B.2C.2D.2【考点】矩形的性质.【分析】利用三角形中线的性质以及平行线的性质得出S △AEM =S △AMD ,S △BNC =S △FNC ,S 四边形EBNM =S 四边形DMNF ,即可得出答案.【解答】解:∵点E 、F 分别是AB 、CD 的中点,连接DE 和BF,分别取DE 、BF 的中点M 、N, ∴S △AEM =S △AMD ,S △BNC =S △FNC ,S 四边形EBNM =S 四边形DMNF , ∴图中阴影部分的面积=×AB ×BC=××=2.故选B.15.如图,周长为16的菱形ABCD 中,点E,F 分别在AB,AD 边上,AE=1,AF=3,P 为BD 上一动点,则线段EP +FP 的长最短为( )A.3B.4C.5D.6【考点】轴对称-最短路线问题;菱形的性质. 【分析】在DC 上截取DG=FD=AD ﹣AF=4﹣3=1,连接EG,则EG 与BD 的交点就是P.EG 的长就是EP +FP 的最小值,据此即可求解.【解答】解:在DC 上截取DG=FD=AD ﹣AF=4﹣3=1,连接EG,则EG 与BD 的交点就是P. ∵AE=DG,且AE ∥DG,∴四边形ADGE 是平行四边形, ∴EG=AD=4. 故选B.16.如图,在平面直角坐标系中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,点B 在第一象限,直线y=与边AB 、BC 分别交于点D 、E,若点B 的坐标为(m,1),则m 的值可能是( )A.﹣1B.1C.2D.4【考点】一次函数图象上点的坐标特征.【分析】求出点E 和直线y=﹣x +2与x 轴交点的坐标,即可判断m 的范围,由此可以解决问题. 【解答】解:∵B 、E 两点的纵坐标相同,B 点的纵坐标为1, ∴点E 的纵坐标为1, ∵点E 在y=﹣x +2上, ∴点E 的坐标(,1),∵直线y=﹣x +2与x 轴的交点为(3,0), ∴由图象可知点B 的横坐标<m <3,∴m=2. 故选C.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上) 17.=.【考点】二次根式的乘除法.【分析】直接利用二次根式的除法运算法则化简求出即可. 【解答】解:===.故答案为:.18.数据﹣2,﹣1,0,3,5的方差是.【考点】方差.【分析】先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可. 【解答】解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1, 则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.19.如右图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为 20cm 2 .【考点】勾股定理.【分析】根据阴影部分的面积等于以AC 、CB 为直径的两个半圆的面积加上△ABC 的面积再减去以AB 为直径的半圆的面积列式并整理,再利用勾股定理解答.【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S △ABC ﹣π(AB)2,=(AC 2+BC 2﹣AB 2)+S △ABC ,在Rt △ABC 中,AC 2+BC 2=AB 2, ∴阴影部分的面积=S △ABC =20cm 2.故答案为:20cm 2.20.如图,已知直线l 1:y=k 1x +4与直线l 2:y=k 2x ﹣5交于点A,它们与y 轴的交点分别为点B,C,点E,F 分别为线段AB 、AC 的中点,则线段EF 的长度为.【考点】三角形中位线定理;两条直线相交或平行问题.【分析】根据直线方程易求点B 、C 的坐标,由两点间的距离得到BC 的长度.所以根据三角形中位线定理来求EF 的长度.【解答】解:如图,∵直线l 1:y=k 1x +4,直线l 2:y=k 2x ﹣5, ∴B(0,4),C(0,﹣5), 则BC=9.又∵点E,F 分别为线段AB 、AC 的中点, ∴EF 是△ABC 的中位线, ∴EF=BC=. 故答案是:.三、解答题(本大题共6个小题,共66分.解答应写出文字说明,说理过程或演算步骤) 21.计算 (1)(2).【考点】二次根式的混合运算. 【分析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可. 【解答】解:(1)原式=(2)2﹣()2 =20﹣3 =17; (2)原式=2﹣﹣﹣=﹣.22.如图,在△ABC 中,点D 、E 分别是边BC 、AC 的中点,过点A 作AF ∥BC 交DE 的延长线于F 点,连接AD 、CF.(1)求证:四边形ADCF 是平行四边形;(2)当△ABC 满足什么条件时,四边形ADCF 是菱形?为什么?【考点】菱形的判定;平行四边形的判定.【分析】(1)首先利用平行四边形的判定方法得出四边形ABDF 是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案; (2)利用直角三角形的性质结合菱形的判定方法得出即可. 【解答】(1)证明:∵点D 、E 分别是边BC 、AC 的中点, ∴DE ∥AB, ∵AF ∥BC,∴四边形ABDF 是平行四边形, ∴AF=BD,则AF=DC, ∵AF ∥BC,∴四边形ADCF 是平行四边形;(2)当△ABC 是直角三角形时,四边形ADCF 是菱形, 理由:∵点D 是边BC 的中点,△ABC 是直角三角形, ∴AD=DC,∴平行四边形ADCF 是菱形.23.如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示,已知展开图中每个正方形的边长为1,(1)求线段A ′C ′的长度;(2)试比较立体图中∠BAC 与展开图中∠B ′A ′C ′的大小关系?并写出过程.【考点】几何体的展开图.【分析】(1)由长方形中最长的线段为对角线,从而可根据已知运用勾股定理求得最长线段的长;(2)要确定角的大小关系,一般把两个角分别放在两个三角形中,然后根据三角形的特点或者全等或者相似形来解.【解答】解:(1)如图(1)中的A ′C ′,在Rt △A ′C ′D ′中,∵C ′D ′=1,A ′D ′=3,由勾股定理得, ∴(2)∵立体图中∠BAC 为平面等腰直角三角形的一锐角, ∴∠BAC=45°.在平面展开图中,连接线段B ′C ′,由勾股定理可得:A'B'=,B'C'=.又∵A ′B ′2+B ′C ′2=A ′C ′2,由勾股定理的逆定理可得△A'B'C'为直角三角形. 又∵A ′B ′=B ′C ′,∴△A ′B ′C ′为等腰直角三角形. ∴∠B ′A ′C ′=45°.∴∠BAC 与∠B ′A ′C ′相等. 24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了 0.5 h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.【考点】一次函数的应用.【分析】(1)利用图象得出CD 这段时间为2.5﹣2=0.5,得出答案即可;(2)利用D 点坐标为:(2.5,80),E 点坐标为:(4.5,300),求出函数解析式即可; (3)利用OA 的解析式得出,当60x=110x ﹣195时,即可求出轿车追上货车的时间.【解答】解:(1)利用图象可得:线段CD 表示轿车在途中停留了:2.5﹣2=0.5小时;(2)根据D 点坐标为:(2.5,80),E 点坐标为:(4.5,300), 代入y=kx +b,得:,解得:,故线段DE 对应的函数解析式为:y=110x ﹣195(2.5≤x ≤4.5);(3)∵A 点坐标为:(5,300), 代入解析式y=ax 得, 300=5a, 解得:a=60,故y=60x,当60x=110x ﹣195,解得:x=3.9,故3.9﹣1=2.9(小时),答:轿车从甲地出发后经过2.9小时追上货车.25.某商场统计了每个营业员在某月的销售额,统计图如下,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x <15时为不称职,当15≤x <20时,为基本称职,当20≤x <25为称职,当x ≥25时为优秀.称职和优秀的营业员共有多少人?所占百分比是多少?(2)根据(1)中规定,所有称职以上(职称和优秀)的营业员月销售额的中位数、众数和平均数分别是多少? (3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.【考点】条形统计图;加权平均数;中位数;众数.【分析】(1)首先求出称职、优秀层次营业员人数,进而根据百分比的意义求解; (2)根据中位数、众数和平均数的意义解答即可;(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右. 【解答】解:(1)由图可知营业员优秀人数为2+1=3(人),由图可知营业员总人数为1+1+1+1+1+2+2+5+4+3+3+3+2+1=30(人), 则称职的有18人,所占百分比为×100%=70%;(2)中位数是22万元; 众数是20万元; 平均数是:=22(万元).(3)这个奖励标准应定月销售额为22万元合适.因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖.某慈善单位欲购买三种类型的门票共张奖励品学兼优的留守学生设购买种票张种票张数是A 种票的3倍还多7张,C 种票y 张,根据以上信息解答下列问题: (1)直接写出x 与y 之间的函数关系式;(2)设购票总费用为W 元,求W(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?【考点】一次函数的应用.【分析】(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;(3)根据题意得到不等式组,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.【解答】解:(1)根据题意,x+3x+7+y=100,所以y=93﹣4x;(2)w=80x+120(3x+7)+150(93﹣4x)=﹣160x+14790;(3)依题意得解得20≤x≤22,因为整数x为20、21、22,所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=﹣160x+14790,因为k=﹣160<0,所以y随x的增大而减小,=22×(﹣160)+14790=11270,所以当x=22时,y最小即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.。
河北省邯郸市大名县2018-2019学年八年级(下)期末数学试卷一、单选题(本大题共16个小题,共42分.1-10小题各3分,11-16小题各2分)1.(3分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数分布统计图2.(3分)直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.以上都不对3.(3分)函数y=的自变量x的取值范围是()A.x≥0且x≠2B.x≥0C.x≠2D.x>24.(3分)已知一次函数y=(k﹣1)x+2,若y随x的增大而增大,则k的取值范围是()A.k>1B.k<1C.k<0D.k>05.(3分)某平行四边形的对角线长为x、y,一边长为6,则x与y的值可能是()A.4和7B.5和7C.5和8D.4和176.(3分)一个正多边形形的内角和是1440°,则它的每个外角的度数是()A.30°B.36°C.45°D.60°7.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6B.5C.4D.38.(3分)如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A.B.C.D.9.(3分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为()A.40°B.50°C.60°D.70°10.(3分)若直线y=kx+2经过第一、二、四象限,则化简|k﹣2|的结果是()A.2+k B.2﹣k C.k﹣2D.不能确定11.(3分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1C.D.212.(2分)如图,在同一直角坐标系中,函数y1=3x和y2═﹣2x+m的图象相交于点A,则不等式0<y2<y1的解集是()A.0<x<1B.0<x<C.1<x<D.1<x≤13.(2分)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条14.(2分)如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是()A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF15.(2分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到()A.点C处B.点D处C.点B处D.点A处16.(2分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等二、填空题(17、18每题3分,19题有2个空,每空2分,共10分)17.(3分)一个正多边形的内角和与外角和的比是4:1,则它的边数是.18.(3分)如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费元.19.(3分)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=,对角线AC的长为.三、解答题(本题共7个小题,共68分)20.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,延长BE到F,使BE=EF,连接AF、CF、DF.(1)求证:AF=BD;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(8分)如图,直线a经过点A(1,6),和点B(﹣3,﹣2).(1)求直线a的解析式;(2)求直线与坐标轴的交点坐标;.(3)求S△AOB22.(9分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.23.(10分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.(10分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C.(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是.25.(11分)如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.26.(12分)某商店经销某种玩具,该玩具每个进价20元,为进行促销,商店制定如下“优惠”方案:如果一次销售数量不超过5个,则每个按50元销售:如果一次销售数量超过5个,则每增加一个,所有玩具均降低1元销售,但单价不得低于30元,一次销售该玩具的单价y(元)与销售数量x(个)之间的函数关系如下图所示.(1)结合图形,可以求出m的值为;射线BC所表示的实际意义为;(2)求线段AB满足的y与x之间的函数解析式,并直接写出自变量的取值范围;(3)当销售15个时,商店的利润是元.参考答案与试题解析一、单选题(本大题共16个小题,共42分.1-10小题各3分,11-16小题各2分)1.解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:B.2.解:直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.故选:B.3.解:由题意得,x≥0且x﹣2≠0,解得x≥0且x≠2.故选:A.4.解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选:A.5.解:三三角形两边之和大于第三边所以两条对角线的一半与要同时满足:1、+>6,2、+6>,3、+6>,得:x=5,y=8,故选:C.6.解:设这个多边形的边数为n,则(n﹣2)×180°=1440°,解得n=10.外角:360°÷10=36°,故选:B.7.解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE∥BC,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.8.解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选:A.9.解:∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠FEC,由翻折不变性可知:∠FEA=∠FEC,∵∠1=70°,∴∠FEA=70°,故选:D.10.解:∵直线y=kx+2经过第一、二、四象限,∴k<0,∴|k﹣2|=2﹣k,故选:B.11.解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.12.解:当x=1时,y=3x=3,则A(1,3),把A(1,3)代入y2═﹣2x+m得﹣2+m=3,解得m=5,所以y2═﹣2x+5,解方程﹣2x+5=0,解得x=,则直线y2═﹣2x+m与x轴的交点坐标为(,0),所以不等式0<y2<y1的解集是1<x<.故选:C.13.解:根据题意,得(n﹣2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9﹣3=6条,故选:C.14.解:∵正方形ABCD中,∴∠ABE=∠BCF=90°,AB=BC,在△ABE与△BCF中,∴△ABE≌△BCF(SAS),∴AE=BF,∠AEB=∠BFC,∠BAE=∠CBF,∵∠DAE+∠BAE=90°,∠BFC+∠FBC=90°,∴∠DAE=∠BFC,∠BAE+∠ABG=90°,∴AE⊥BF,故ABD正确;∠AEB=∠BFC,∠AEB+∠BFC>90°,故选:C.15.解:当E在AB上运动时,△BCE的面积不断增大;当E在AD上运动时,BC一定,高为AB不变,此时面积不变;当E在DC上运动时,△BCE的面积不断减小.∴当x=7时,点E应运动到高不再变化时,即点D处.故选:B.16.解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.二、填空题(17、18每题3分,19题有2个空,每空2分,共10分)17.解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.18.解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.4(元).答:每多行驶1km,要再付费1.4元.19.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°﹣60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==5,即AC=10.故答案为:120°;10.三、解答题(本题共7个小题,共68分)20.(1)证明:∵AE=ED,BE=EF,∴四边形ABDF是平行四边形,∴AF=BD.(2)结论:四边形ADCF是菱形.理由:∵AB⊥AC,∴∠CAB=90°,∵CD=DB,∴AD=BC=DC,∵四边形ABDF是平行四边形,∴AF∥CD,AF=BD,∴AF=CD,∴四边形AFCD是平行四边形,∵DA=DC,∴四边形AFCD是菱形.21.解:(1)设直线a的解析式为y=kx+b,∵直线a经过点A(1,6),和点B(﹣3,﹣2),∴,解得,∴直线a的解析式为y=2x+4;(2)令x=0,得y=4;令y=0得x=﹣2,∴直线与坐标轴的交点坐标(﹣2,0)(0,4);(3)设直线a与y轴交于点C,∴S △AOB =S △AOC +S △COB =×4×3+×4×1=8.22.解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D ”的扇形圆心角的度数为×360°=72°;(3)1200×=420, 所以估计“最想去景点B “的学生人数为420人.23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,MN =AD ,在RT △ABC 中,∵M 是AC 中点,∴BM =AC ,∵AC =AD ,∴MN =BM .(2)解:∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°,由(1)可知,BM =AC =AM =MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=24.解:(1)∵y2=x+3,∴当y2=0时,x+3=0,解得x=﹣4,当x=0时,y2=3,∴直线y2=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(2)解方程组,得,则点C坐标为(﹣2,);(3)如果y1>y2,那么x的取值范围是x<﹣2.故答案为x<﹣2.25.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∵PA=PE,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°,∵∠ABC=90°,∴∠EPC=90°;(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵PA=PE,∴∠DAP=∠DCP,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°.26.解:(1)m=5+(50﹣30)÷1=25,射线BC所表示的实际意义为当一次销售数量超过25个时,每个均按30元销售,故答案为:25、当一次销售数量超过25个时,每个均按30元销售;(2)设线段AB满足的y与x之间的函数解析式为y=kx+b,,得,即线段AB满足的y与x之间的函数解析式是y=﹣x+55(5≤x≤25);(3)当y=15时,15=﹣x+55,得x=40,∴此时商店的利润为:15×[40﹣20]=300(元),故答案为:300.。