正比例函数教案
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
11.2.1 正比例函数(优质课教案)一、教学目标1.能够理解正比例函数的定义,并能够根据定义筛选出函数中的正比例关系;2.能够通过图像和表格的方式表示正比例函数;3.能够根据给定的数据和框图绘制出对应的正比例函数图像。
二、教学准备1.讲义、课本;2.黑板、白板、彩色笔;3.学生练习册。
三、教学过程1. 导入(5分钟)通过生活中实际例子引入正比例函数的概念,如物体运动的速度与时间的关系、购买图书的单价与数量的关系等,让学生感受到正比例函数在生活中的应用。
2. 概念讲解(10分钟)通过板书和讲解,对正比例函数进行概念的讲解,包括定义、表达方式等。
强调正比例函数中的常数比例关系,即函数的解析式为 y = kx,k为常数。
3. 示范练习(20分钟)通过一些例题的讲解和解答,让学生理解如何筛选出正比例函数,并能够找到解析式中的常数k。
要求学生用图像和表格的方式表示正比例函数,并指导学生如何绘制图像。
4. 学生练习(25分钟)让学生在练习册上练习相关的习题,要求学生使用正确的方法和步骤解答问题,并要求学生通过图表绘制出函数的图像。
5. 提问讨论(10分钟)选择一些典型的习题,提问学生如何判断是否为正比例函数,并让学生用自己的语言解释正比例函数的概念。
鼓励学生积极思考和提问,加深对正比例函数的理解。
6. 小结(5分钟)对本节课内容进行小结,强调正比例函数的定义、特点和表达方式,并鼓励学生进行课后的巩固练习。
四、教学反思本节课通过引入生活中的实际例子,让学生对正比例函数有了初步的了解。
通过示范练习和学生练习,让学生掌握了筛选正比例函数的方法和绘制函数图像的技巧。
在提问讨论环节,学生也积极参与,能够较好地运用所学知识进行解答和解释。
整节课教学进程流畅,学生表现活跃,达到了预期的教学目标。
但教学过程中,有些学生还未能真正理解正比例函数和图像的关系,可能需要更多的练习和巩固。
以后教学中需要更加注重巩固和拓展练习的安排,确保学生对知识点的掌握和应用。
《正比例函数》教案(优秀6篇)在教学工作者开展教学活动前,就不得不需要编写教案,借助教案可以让教学工作更科学化。
那么应当如何写教案呢?以下内容是为您带来的6篇《《正比例函数》教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
《正比例》优秀教学反思篇一刚刚上完正比例的教学内容,有以下几点心得:1、比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比。
两个数相除叫做这两个数的比。
比有两种写法,一种是比号写法,另一种是用分数写法。
2、单刀直入(其实学生已经预习知道)主题,告诉学生什么叫做正比例:两个量发生变化后(可以变大爷可以变小),他们的比值不变我们就说这两个量成正比例。
老师例子说明,并且请学生互动找例子。
3、现在这个环节是比较重要的,我不认同书本上就靠表格天数据来认知正比例。
首先强调这两个量都可以作为比的前项后后项,但是最好是写出有意义的比;其次,要求学生针对每一对数据表格都要写出一个比,并且求出比值,从而加深对正比例的意义的理解,也强化了正比例的计算方法。
我觉得这个环节是非常非常重要的,比起空洞地填写表格要实在的多,学生通过这个活动基本上掌握了正比例的意义,能准确地判断正比例。
4、运用以上的知识和方法,请学生完成书上的作业。
检查结果基本上没有错误。
注意点:让学生自己找生活中的例子可能不是很准确;表达阐述正比例的关系中,有些例子需要加入前提,如直径和半径成正比例的前提是同圆或等圆。
《正比例》优秀教学反思篇二正比例这一内≮≮容是在学生学习了比和比例知识的基础上进行教学的,着重使学生理解正比例的意义。
从内容上看,正比例在整个小学阶段是一个较抽象的概念,学生不仅要理解其意义,还要学会判断两种量是否是成正比例的量,同时还要学会用含有字母的式子来表示正比例关系。
教师要渗透给学生一些函数的思想,为他们以后的初中学习打下基础。
在教学图象的同时,我密切联系学生已有的生活经验和学习经验,给学生提供了有利于探索和理解两个量之间变化规律的材料,使学生理解正比例关系图象的特征,并掌握其画法。
《正比例函数》教案一、教学目标:1.理解正比例函数的概念,掌握正比例函数的性质。
2.能够绘制正比例函数的图象,运用正比例函数解决实际问题。
3.了解正比例函数在日常生活和工作中的应用。
二、教学重点和难点:1.正比例函数的性质和特点。
2.正比例函数的图象及其特点。
3.能够运用正比例函数解决实际问题。
三、教学过程:步骤一:导入新知(5分钟)1.反思:回顾在上一节课中我们学习的线性函数,谈谈它的特点和性质。
2.引入新知:今天我们将学习正比例函数,正比例函数和线性函数有什么异同之处?步骤二:概念讲解(10分钟)1. 定义:什么是正比例函数?正比例函数是一种特殊的线性函数,其表达式为y=kx(k≠0),其中k为常数,叫做比例因子。
2.性质:正比例函数的图象必经过原点(0,0);正比例函数的图象都通过同一点(如(1,k)或(k,1));正比例函数的图象总是经过第一象限;正比例函数的图象是一条直线,通过原点,且不会经过其他象限。
步骤三:绘制正比例函数的图象(15分钟)1.提示学生如何绘制正比例函数的图象:利用比例因子k的值来确定斜率,y轴上为k,x轴上为1/k的点,连接得到的点,绘制图象。
2.利用绘制的图象让学生发现正比例函数的性质,并让学生从图象中确定比例因子k的值。
步骤四:练习与巩固(20分钟)1.给出一组数据,让学生判断是否正比例关系,并求出比例因子k的值。
2.给出一个问题,让学生利用正比例函数求解,如:张璐每天跑步30分钟能消耗300卡路里的热量,如果她每天跑步60分钟,能消耗多少卡路里的热量?3.提供足够的练习题,让学生加深对正比例函数的理解和掌握。
步骤五:实际应用(15分钟)1.通过展示一些实际应用的例子,让学生了解正比例函数在生活和工作中的应用,如:手机话费与通话时间的关系、汽车行驶里程与耗油量的关系等。
2.让学生举例说明自己身边可能存在的正比例关系,引导学生思考正比例函数的实际应用。
步骤六:课堂小结(5分钟)1.对学生进行知识点的总结,强调正比例函数的定义、性质和图象特点。
《正比例函数的图象和性质》教案一、教学目标:1. 知识与技能:学生能够理解正比例函数的定义和图象特点。
学生能够运用正比例函数的性质解决实际问题。
2. 过程与方法:学生通过观察和分析正比例函数的图象,探索其性质。
学生通过合作交流,培养解决问题的能力。
3. 情感态度价值观:学生培养对数学的兴趣和好奇心,体验数学的乐趣。
学生培养团队合作意识,提高自我表达能力。
二、教学重点与难点:重点:正比例函数的定义和图象特点。
正比例函数的性质。
难点:理解和运用正比例函数的性质解决实际问题。
三、教学准备:教学课件或黑板。
正比例函数的图象和性质的相关素材。
练习题和作业。
四、教学过程:1. 导入:引导学生回顾已学过的函数知识,为新课的学习做好铺垫。
通过实际例子引入正比例函数的概念。
2. 探究正比例函数的定义和图象特点:引导学生观察正比例函数的图象,分析其特点。
学生通过合作交流,总结正比例函数的性质。
3. 讲解正比例函数的性质:引导学生理解正比例函数的性质,并能够运用到实际问题中。
通过例题和练习题,巩固学生对正比例函数性质的掌握。
4. 应用与拓展:给学生提供实际问题,让学生运用正比例函数的性质解决。
引导学生思考正比例函数在实际生活中的应用。
五、作业布置:根据课堂练习题和作业,布置相关的习题,巩固学生对正比例函数的图象和性质的理解。
鼓励学生进行思考和探索,培养学生的自学能力。
六、教学评估:1. 课堂提问:在教学过程中,教师应适时提问学生,了解学生对正比例函数图象和性质的理解程度。
通过学生的回答,教师可以及时发现问题,并进行针对性的讲解和辅导。
2. 练习题解答:在课堂练习环节,教师应观察学生的解答过程,了解学生对正比例函数图象和性质的应用能力。
对于学生解答中出现的问题,教师可以进行个别辅导,帮助学生纠正错误,提高解题能力。
3. 作业完成情况:教师应检查学生作业的完成情况,包括答案的正确性和解题过程的完整性。
通过作业反馈,教师可以了解学生对正比例函数图象和性质的掌握情况,为下一步教学提供参考。
正比例函数教案教案:正比例函数教学目标:1. 了解正比例函数的特点和性质;2. 掌握根据图像和实际情景,判断给定函数是否为正比例函数;3. 能够绘制正比例函数的图像;4. 能够使用已知条件,求解正比例函数的参数。
教学准备:1. PowerPoint课件;2. 涂鸦板或白板;3. 涂鸦板笔或白板笔;4. 教学素材:正比例函数的图像和实际应用问题。
教学过程:Step 1:导入知识1. 引入问题:小明用200元买了20本书,那么一本书的价格是多少?通过学生的思考和讨论,引出正比例函数的概念。
2. 提问:什么是正比例函数?有什么特点?学生回答:正比例函数是一种特殊的函数关系,两个变量之间的比例始终保持不变。
特点有:经过原点、图像是一条直线。
Step 2:理论讲解1. 展示PPT,介绍正比例函数的定义和特点。
2. 提示学生,在直角坐标系中绘制正比例函数y=kx的图像。
讲解如何根据给定的函数表达式绘制图像,并进行实例演示。
3. 提示学生,如何根据图像判断给定函数是否为正比例函数。
讲解如何通过图像的特点判断给定函数是否为正比例函数,并进行实例演示。
Step 3:实例探究1. 展示几个图像,要求学生判断其是否为正比例函数。
2. 展示几个实际问题,要求学生判断其是否能够用正比例函数来描述。
Step 4:练习1. 在涂鸦板上或白板上,给出一个正比例函数的图像,要求学生写出该函数的表达式。
2. 给出一个正比例函数的表达式,要求学生绘制该函数的图像。
3. 给出一个实际问题,要求学生用正比例函数来描述,并求解问题。
Step 5:总结总结正比例函数的特点和性质,强化学生对正比例函数的理解。
Step 6:拓展引导学生思考更多实际问题,能否用正比例函数来描述,以及如何求解问题。
Step 7:作业布置布置相关的作业,巩固学生对正比例函数的理解和运用。
Step 8:课堂反思总结本堂课的教学效果,回顾教学过程中的不足之处,并对以后的教学进行改进。
《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
正比例函数优质课教案及教学反思一、教学目标:1. 知识与技能:(1)理解正比例函数的定义及其基本性质;(2)能够熟练运用正比例函数解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生发现正比例函数的规律;(2)培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点:1. 教学重点:(1)正比例函数的定义及其基本性质;(2)运用正比例函数解决实际问题。
2. 教学难点:(1)正比例函数的图象与性质;(2)如何将实际问题转化为正比例函数问题。
三、教学准备:1. 教师准备:(1)正比例函数的相关教学素材;(2)多媒体教学设备。
2. 学生准备:(1)掌握一次函数的相关知识;(2)具备一定的观察、分析、归纳能力。
四、教学过程:1. 导入新课:(1)复习一次函数的知识,为学生搭建知识框架;(2)通过实例引入正比例函数的概念。
2. 探究正比例函数的性质:(1)引导学生观察、分析正比例函数的图象;(2)引导学生发现正比例函数的性质。
(2)板书正比例函数的定义及其性质。
4. 运用正比例函数解决实际问题:(1)教师出示实际问题,引导学生转化为正比例函数问题;(2)学生独立解答,教师巡回指导。
5. 课堂小结:(1)教师引导学生回顾本节课所学内容;(2)学生分享学习收获。
五、教学反思:1. 教学内容:(1)正比例函数的定义及其性质是否讲清楚;(2)实际问题与正比例函数的联系是否明确。
2. 教学方法:(1)观察、分析、归纳等方法是否有效;(2)学生参与度如何,是否充分发挥了学生的主动性。
3. 教学效果:(1)学生对正比例函数的理解和运用程度;(2)学生的学习兴趣和科学精神是否得到培养。
4. 改进措施:(1)针对教学难点,采取何种措施帮助学生突破;(2)如何更好地激发学生的学习兴趣和主动性。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和课堂表现。
正比例函数教案正比例函数教案一、教学内容本节课讲解正比例函数的概念与性质,并通过实例演示如何求解正比例函数的具体表达式。
二、教学目标1.了解正比例函数的概念与性质;2.能够找出具备正比例关系的实例,并求解其表达式;3.能够解决一些简单的实际问题,运用正比例函数进行分析与求解。
三、教学过程1. 导入新知识,导入新知识的环节可以通过提问或例子来引入,例如:“小明去市场买苹果,他发现,苹果的价格与购买的数量存在一定的规律性,你们能猜出这种规律是什么吗?”;2. 引出正比例函数的概念,利用上述例子,介绍苹果的价格与购买的数量之间的关系是正比例关系;3. 定义正比例函数的概念,即函数y=kx,其中k为常数;4. 通过实例演示如何求解正比例函数的具体表达式,例如将苹果的价格和购买的数量对应起来,列出表格,找到规律性,并得出函数表达式;5. 练习,让学生自行找例子,进行求解;6. 引入实际问题,例如地铁票价与乘坐的里程数之间的关系,让学生进行分析与求解;7. 检查与讨论,让学生上台展示他们的解答过程与答案,并进行讨论;8. 给出总结与归纳,总结正比例函数的定义与性质;9. 作业布置,规定时间内完成作业。
四、教学流程及方法本节课采用引导式教学方法,通过问题导入,引出正比例函数的概念;再通过实例演示的方式,让学生发现正比例函数的规律与性质;最后通过实际问题帮助学生综合运用所学知识。
五、教学资源1. PowerPoint或黑板、粉笔等教学工具;2. 相关的实例与练习题。
六、教学评价1. 在课堂上观察学生的学习状态,是否能够积极思考、回答问题;2. 练习题的完成情况;3. 学生的思维深度与能力是否有所提升。
七、教学后续1. 引导学生进行拓展学习,深入了解正比例函数的应用领域;2. 鼓励学生自主学习,参加一些数学竞赛;3. 随时进行课堂小结,巩固所学内容。
正比例函数
知识技能目标
1.理解一次函数和正比例函数的概念;
2.根据实际问题列出简单的一次函数的表达式.
过程性目标
1.经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;
2.探求一次函数解析式的求法,发展学生的数学应用能力.
教学过程
一、创设情境
问题1小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,
并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s 是t的函数,t是自变量,s是因变量.
问题2小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.
分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3以上问题1和问题2表示的这两个函数有什么共同点?
二、探究归纳
上述两个问题中的函数解析式都是用自变量的一次整式表示的.函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.
特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数.正比例函数也是一次函数,它是一次函数的特例.
三、实践应用
例1下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
分析确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.
解 (1)h
a 20=,不是一次函数. (2)L =2
b +16,L 是b 的一次函数.
(3)y =150-5x ,y 是x 的一次函数.
(4)s =40t ,s 既是t 的一次函数又是正比例函数.
例2 已知函数y =(k -2)x +2k +1,若它是正比例函数,求k 的值.若它是一次函数,求k 的值.
分析 根据一次函数和正比例函数的定义,易求得k 的值.
解 若y =(k -2)x +2k +1是正比例函数,则2k +1=0,即k =2
1-. 若y =(k -2)x +2k +1是一次函数,则k -2≠0,即k ≠2.
例3 已知y 与x -3成正比例,当x =4时,y =3.
(1)写出y 与x 之间的函数关系式;
(2)y 与x 之间是什么函数关系;
(3)求x =2.5时,y 的值.
解 (1)因为 y 与x -3成正比例,所以y =k (x -3).
又因为x =4时,y =3,所以3= k (4-3),解得k =3,
所以y =3(x -3)=3x -9.
(2) y 是x 的一次函数.
(3)当x =2.5时,y =3×2.5=7.5.
例4 已知A 、B 两地相距30千米,B 、C 两地相距48千米.某人骑自行车以每小时12千米的速度从A 地出发,经过B 地到达C 地.设此人骑行时间为x (时),离B 地距离为y (千米).
(1)当此人在A 、B 两地之间时,求y 与x 的函数关系及自变量x 取值范围.
(2)当此人在B 、C 两地之间时,求y 与x 的函数关系及自变量x 的取值范围.
分析 (1)当此人在A 、B 两地之间时,离B 地距离y 为A 、B 两地的距离与某人所走的路程的差.
(2)当此人在B 、C 两地之间时,离B 地距离y 为某人所走的路程与A 、B 两地的距离的差.
解 (1) y =30-12x .(0≤x ≤2.5)
(2) y =12x -30.(2.5≤x ≤6.5)
例5 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y (吨)与进出油时间x (分)的函数式及相应的x 取值范围.
分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.
解在第一阶段:y=3x(0≤x≤8);
在第二阶段:y=16+x(8≤x≤16);
在第三阶段:y=-2x+88(24≤x≤44).
四、练习
1.已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.
(3)计算y=-4时x的值.
2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t 之间的函数关系.
4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.
5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y (元)和月收入x(元)之间的函数关系式.
五、课堂小结
一次函数、正比例函数以及它们的关系:
函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.
特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数.正比例函数也是一次函数,它是一次函数的特例.
六、作业
七、板书设计
八、教学反思。