通信原理试验五二相BPSKDPSK
- 格式:ppt
- 大小:150.50 KB
- 文档页数:16
实验八二相BPSK(DPSK)调制解调实验实验四二相BPSK(DPSK)调制解调实验实验内容1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验一. 实验目的1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。
2.了解载频信号的产生方法。
3.掌握二相绝对码与相对码的码变换方法。
二. 实验电路工作原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相位键控。
图8-1是二相PSK(DPSK)调制器电路框图。
图8-2是它的电原理图。
PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控和FSK移频键控。
因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。
下面对图8-2中的电路作一分析。
1.载波倒相器模拟信号的倒相通常采用运放作倒相器,电路由U304等组成,来自1.024MHz载波信号输入到U304的反相输入端2脚,在输出端即可得到一个反相的载波信号,即π相载波信号。
为了使0相载波与π相载波的幅度相等,在电路中加了电位器W302。
2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。
0相载波与π相载波分别加到模拟开关1:U302:A的输入端(1脚)、模拟开关2:U302:B的输入端(11脚),在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端(13脚),它反极性加到模拟开关2的输入控制端(12脚)。
用来控制两个同频反相载波的通断。
当信码为“1”码时,模拟开关1的输入控制端为高电平,模拟开关1导通,输出0相载波,而模拟开关2的输入控制端为低电平,模拟开关2截止。
反之,当信码为“0”码时,模拟开关1的输入控制端为低电平,模拟开关1截止。
而模拟开关2的输入控制端却为高电平,模拟开关2导通。
输出π相载波,两个模拟开关的输出通过载波输出开关K303合路叠加后输出为二相PSK调制信号,如图8-3所示。
二相(PSK,DPSK)解调器(含载波提取与位定时恢复)系统实验一、实验目的1、掌握二相(PSK、DPSK)解调器的工作原理与系统电路组成。
2、熟悉二相相对移相与绝对移相的转换方法。
3、掌握载波锁相环技术指标(同步带、捕捉带)的测试方法。
4、掌握二相(PSK、DPSK)系统的主要性能指标的测试方法。
5、了解以二相(PSK、DPSK)解调的基带数字信号中提取位同步的方法。
二、实验仪器材(一)实验用仪器仪表1、+5V、+12V、-12V三路直流稳压电源一台2、示波器一台3、信号源一台4、频率计一台5、三用表一块(二)实验所用集成电路芯片简介1、74LS123双可再触发单稳态多谐振荡器外引线排列表2、74LS124双压控振荡器外引线排列表三、 实验电路工作原理二相PSK (DPSK )解调器的总电路方框图如图9-1所示。
二相PSK (DPSK )的载波为1.024MHz ,码元速率有32kbit/s 、16kbit/s 可选择。
图9-1 解调器总方框图从图9-1可见,该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。
载波恢复和位定时提取,是数学载波传输系统必不可少的重要组成部分。
载波恢复的具体实现方案是和发送端的调制方式有关,以相位键控为例,有:N 次方环、科斯塔斯环(Constas 环)、逆调制环和判决反馈环等。
近几年来由于数字电路技术和集成电路的迅速发展,又出现了基带数字处理载波跟踪环,并且已在实际应用领域得到了广泛的使用。
但是,为了加强学生基础知识的学习及对基本理论的理解,我们从实际出发,选择有代表性的基本实验作为训练目的,下面对实验电路的基本原理作一分析。
(一)同相正交环锁相环解调电路二相PSK 输入图9-2 同相正交环提取载波电原理方框图数字调相信号的解调有多种方法,如相干解调法(极性比较法)、相位比较法、锁相环法。
本实验采用的是同相正交环锁相环提取载波电路。
图9-3 同相正交环提取载波电原理图图9-2是同相正交环提取载波电原理方框图。
电子科技大学通信学院《通信原理及同步技术系列实验八》二相BPSK(DPSK)调制解调实验班级学生学号教师二相BPSK(DPSK)调制解调实验指导书二相BPSK(DPSK)调制解调实验一、实验目的1、掌握二相BPSK(DPSK)调制解调的工作原理。
2、掌握二相绝对码与相对码的变换方法。
3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。
4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。
5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。
6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。
二、实验原理数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。
它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。
PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。
由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。
同时PSK调制的实现也比较简单。
因此,PSK技术在中、高数据传输中得到了十分广泛的应用。
BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。
在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
其调制原理框图如图1所示,解调原理框图如图2所示。
图1 BPSK的模拟调制方式由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。
差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。
差分编解码的原理可用下式描述。
1n n n d b d -=⊕ 1ˆˆˆn n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。
通信原理教案实验六二相BPSKDOSK调制解调实验一、实验目的1.学习二相(BPSK/DPSK)调制的原理和方法。
2.掌握二相调制信号的产生与解调方法。
3.通过实验验证二相调制的正确性。
二、实验设备1.计算机2.MATLAB软件三、实验原理1.二相调制原理二相调制是根据调制信号的不同进行两种相位的选择,BPSK(二进制位移键控)是一种最常用的二相调制方式之一,其原理如下:-数据信号经过二进制调制器产生调制信号。
-如果数据为1,调制器选择正弦波相位为0度;-如果数据为0,调制器选择正弦波相位为180度。
2.二相解调原理二相解调是将接收到的信号与本地振荡器产生的相干载波相乘,通过相乘后的信号的正弦波频率成分提取出调制信号。
-接收信号与本地振荡器产生的正弦波进行相乘。
-通过低通滤波器滤除高频部分。
-得到解调后的信号。
四、实验步骤1.生成调制信号-设置数据序列为[101101]。
-设置数据比特率为1MHz。
-创建二进制调制器对象。
-通过调制器对象将数据序列调制为二进制调制信号。
-设置调制载波频率为10MHz。
2.信号调制以及绘图-将调制信号与本地振荡器产生的正弦波进行相乘。
-根据采样频率绘制调制信号的频谱图。
3.生成解调信号-将调制信号与本地振荡器产生的正弦波进行相乘。
-使用低通滤波器滤除高频部分。
-得到解调后的信号。
-绘制解调信号的频谱图和时域图。
4.实验结果分析-分析调制信号和解调信号的频谱图和时域图。
五、实验结果及分析实验结果可以通过MATLAB绘制的频谱图和时域图进行分析。
通过观察频谱图,可以看到调制信号和解调信号是否在正确的频率上。
通过观察时域图,可以分析调制信号和解调信号是否包含了正确的数据序列。
六、实验小结通过本次实验,我们学习了二相BPSK/DPSK调制的原理和方法,并且通过MATLAB实现了二相调制信号的产生和解调方法。
通过实验结果的分析,我们可以验证二相调制的正确性。
通过本次实验,我们对通信原理中的二相调制有了更深入的了解,并且掌握了实际操作的方法。
实验四 2DPSK 实验(相位选择法)一、实验目的1、 学习2DPSK中频调制器原理。
2、 了解二相差分编译码原理和作用。
3、 相位选择法2DPSK中频调制器硬件实现方法。
4、 数字中频调制方式与的频带利用率。
二、实验仪器1、 计算机 一台2、 通信基础实验箱 一台3、 100MHz 示波器 一台三、实验原理数字通信最简单的调制器是2DPSK 调制器,也称二相相移键控,这种调制器把数字信息“1”和“0”分别用载波的相位0和π这两个离散值来表示。
其表达式为:)](cos[)(t t A t S c θω+=式中取值0或π是由数字信息比特取“1”或“0”决定。
在实际应用中,2PSK 调制器分为绝对调相和相对调相两种。
1、 绝对调相(BPSK )利用载波相位的绝对数值来传送数字信息叫做绝对相移键控,也称BPSK 调制。
例如输入一串二进制数字序列 ,其值是“1”或“0”随机变化,经过BPSK 调相后,其相角按如下式变化:⎪⎩⎪⎨⎧===0,1,0)(kkbb t πθ2、 相对调相(DPSK )为了克服BPSK 移相键控中的相位模糊问题,实际应用中常采用相对调相,或叫做差分移相键控,记作DPSK 。
它的调制规律与BPSK 的区别在于:以每个数字比特的载波相位为基准来取值。
也就是说,它利用了前后两个相邻比特的载波相位差来传送数字信息。
相位选择法2DPSK调制器框图如图4-1所示。
{d k }{b k }S (t)图4-1 相位选择法2DPSK 调制器原理框图DPSK 与BPSK 相比较,在具体电路实现时仅在BPSK 调制器增加一个差分编码器就构成了DPSK 调制器。
差分编码器的作用是把绝对二进制序列{b k}变换成相对二进制序列{d k},即:或1−⊕=k k k d b d相应的二相差分编译码器电路4-2(a )、(b )所示:{d(a ) (b )图4-2 二相差分编译码器电路四、实验内容及步骤1、在MAXPLUSⅡ设计平台下进行电路设计1.1 2DPSK 电路设计电路原理图如图4-3所示。
实验五 PSK(DPSK)调制与解调实验一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、同步提取模块5、频谱分析模块(可选)6、20M 双踪示波器 一台7、连接线 若干四、实验原理1、2PSK(2DPSK)调制原理2PSK 信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图13-1所示。
设二进制单极性码为a n ,其对应的双极性二进制码为b n ,则2PSK 信号的一般时域数学表达式为:t nT t g b t S c n s n PSK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑(13-1)其中: ⎩⎨⎧=-=P a Pa b n n n -时,概率为=当+时,概率为当11101则(13-1)式可变为:()()⎪⎪⎩⎪⎪⎨⎧=+⎥⎦⎤⎢⎣⎡-=+⎥⎦⎤⎢⎣⎡-∑∑10cos )(0cos )(2n c n s n c n s PSK a t nT t g a t nT t g t S 当当)=(ωπω (13-2) 图13-1 2PSK 信号的时域波形示意图由(13-1)式可见,2PSK 信号是一种双边带信号,其双边功率谱表达式与2ASK 的几乎相同,即为:+⎥⎦⎤⎢⎣⎡-++-=222)()()1()(c f f G c f f G P P f f P s PSK [])()()0()1(41222c c s f f f f G P f -++-ζζ (13-3)2PSK 信号的谱零点带宽与2ASK 的相同,即 s s s c s c PSK T R R f R f B /22)()(2==--+=(Hz ) (13-4)我们知道,2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。
可编辑修改精选全文完整版BPSK (DBPSK )调制+汉明码系统测试一、 实验原理本实验将数据和话音业务通过汉明编码经BPSK (DBPSK )调制信道传输。
为了反映真实的传输信道,加入噪声来观测不同信噪比下系统的性能以及对数据和话音业务质量的影响。
使学生建立完整的传输系统概念,巩固各功能模块所起的作用、性能及相互间的影响。
BPSK 、DBPSK (包括FSK )调制解调方式在同一套硬件平台上实现(通过操作面板选取),有利于同学加深FPGA+DSP 平台组成的软件无线电概念。
本实验是在实验五的基础上增加了BPSK (或DBPSK )信道调制模块、信道噪声模块和BPSK (或DBPSK )信道解调模块,实验的系统连接框图见图9.6.1所示。
二、 实验仪器1、 Z H5001通信原理综合实验系统 一台2、 20MHz 双踪示波器一台 3、 Z H9001型误码测试仪(或GZ9001型) 一台 4、 电话机二部三、 实验目的1、 加深信道调制解调器在通信系统中的地位及作用2#1#图9.6.1 BPSK (DBPSK )调制+汉明码系统测试组成框图2、熟悉信道误码对话音通信业务的影响3、加深认识纠错编码在通信系统中的作用及性能四、实验内容准备工作:(1)本实验在实验五基础上进行,先按实验五要求设置各选择开关;(2)将汉明编码模块工作方式选择开关SWC01设置在和汉明编码器工作(H_EN),开关位置00010000;将汉明译码模块输入数据和时钟选择开关KW01、KW02设置在CH位置(左边),汉明译码使能开关KW03设置在工作ON位置(左端);将输入数据选择开关KC01设置在DT-SYS(左端:同步数据输入);(3)将解调器模块载波提取环路开关KL01设置在1_2位置(左端:闭环),输入信号选择开关KL02设置在1_2位置(左端),加入噪声;(4)将噪声模块输出电平选择开关SW01设置最小噪声电平位置(10000001),此时信噪比较高;(5)用中频电缆连接K002和JL02,建立中频自环;(6)将2部电话机分别接入PHONE1和PHONE2插座。
实验五 PSK(DPSK)调制与解调实验一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
(选做)4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、同步提取模块5、频谱分析模块(可选)6、20M双踪示波器一台7、连接线若干四、实验原理2DPSK解调原理本实验采用的是极性比较法,DPSK信号经过乘法器(MC1496)与载波信号相乘后,可通过OUT4观察,然后经过低通滤波器(由TL082组成)去除高频成分,得到包含基带信号的低频信号,再依次经过放大电路(由TL082组成)、比较器(LM339)、抽样判决器(74HC74)得到差分编码的基带信号,最后通过差分译码电路(74HC74、74HC86)还原成绝对码波形即DPSK解调信号。
其判决电压可通过标号为“DPSK判决电压调节”的电位器进行调节,抽样判决用的时钟信号就是DPSK基带信号的位同步信号,解调中的载波信号就是DPSK调制中的同相载波。
电路不通过差分译码产生的信号为PSK解调信号。
五、实验步骤及注意事项1、将信号源模块、数字调制模块、数字解调模块、同步提取模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下五个模块中的开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,五个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、PSK解调实验(1)将信号源模块的位同步信号的频率恢复为15.625KHz,用信号源模块产生的NRZ码为基带信号,将同步信号提取模块的拨码开关SW01的第一位拨上。
实验七二相BPSK调制解调、FSK调制解调实验实验日期班级学号姓名实验环境Commsim通信仿真软件1 实验目的(1)掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。
(2)了解载频信号的产生方法。
(3)掌握二相绝对码与相对码的码变换方法。
(4)理解FSK调制的工作原理及电路组成。
(5)理解利用锁相环解调FSK的原理和实现方法。
2 实验内容2.1 二相BPSK(DPSK)调制解2.1.1 实验原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相位键控。
图9-1是二相PSK(DPSK)调制器电路框图。
图9-2是它的电原理图。
PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控和FSK移频键控。
因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。
下面对图9-2中的电路作一分析。
1.载波倒相器模拟信号的倒相通常采用运放作倒相器,电路由U304等组成,来自1.024MHz载波信号输入到U304的反相输入端2脚,在输出端即可得到一个反相的载波信号,即π相载波信号。
为了使0相载波与π相载波的幅度相等,在电路中加了电位器W302。
2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。
0相载波与π相载波分别加到模拟开关1:U302:A的输入端(1脚)、模拟开关2:U302:B的输入端(11脚),在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端(13脚),它反极性加到模拟开关2的输入控制端(12脚)。
用来控制两个同频反相载波的通断。
当信码为“1”码时,模拟开关1的输入控制端为高电平,模拟开关1导通,输出0相载波,而模拟开关2的输入控制端为低电平,模拟开关2截止。
反之,当信码为“0”码时,模拟开关1的输入控制端为低电平,模拟开关1截止。
而模拟开关2的输入控制端却为高电平,模拟开关2导通。
实验六二相BPSK、DPSK调制解调实验(理论课:教材第七章P188)实验内容1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验实验目的1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。
2.了解载频信号的产生方法。
3.掌握二相绝对码与相对码的码变换方法。
一、二相BPSK、DPSK调制实验(一)、重点概念回顾关于调制的概念,所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。
广义的调制分为基带调制和带通调制(也成为载波调制)在无线通信中和其他场合,调制一词均指载波调制。
载波调制,就是用调制信号去控制载波的参数的过程,使载波的某一个或某几个参数按照调制信号的规律而变化。
调制信号是指来自信息源的消息信号(基带信号)这些信号可以是模拟的,也可以是数字的。
未受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波(如周期性脉冲序列)。
载波调制后称为已调信号,它含有调制信号的全部特征。
解调(也称检波)则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。
1调制方式有很多,主要分两大类:连续波调制和脉冲调制。
连续波调制包括三类有:线性调制,非线性调制,数字调制。
1、线性调制里有:AM常规双边带调制、DSB双边带调制、SSB单边带调制、VSB残留边带调制。
2、非线性调制里有:FM频率调制、PM相位调制两种3、数字调制里有:ASK振幅键控、FSK频率键控和PSK、DPSK、QPSK相移键控。
脉冲调制方式里有两大类:脉冲模拟调制和脉冲数字调制、1、脉冲模拟调制有三种:PAM脉冲幅度调制、PDM(PWM)脉冲宽度调制和PPM脉位调制2、脉冲数字调制有四种:PCM脉码调制、增量调制、DPCM差分脉码调制和ADOCM其它话音编码方式。
本节课程主要讲的是数字调制里的相移键控调制PSK DPSK方式。
首先几个名词介绍:1、绝对移相调制(BPSK):二相绝对移相调制(PSK或BPSK):是采用直接调相法来实现的,就是用基带信号直接控制载波相位的变化来实现相位调制的。