明景智能森林防火系统解决方案
- 格式:ppt
- 大小:8.22 MB
- 文档页数:27
智慧景区项目森林防火系统系统概述目前,我国森林林区火险监控预警的方式主要有人工监测、卫星林火监测、远程林火视频监测、早期林火物联网监测预警四种方式。
其中远程林火视频监测和早期林火物联网监测预警属于适用于小面积人工管护林防火的信息化方案。
结合景区的现状以及要求,采用可见红外热成像测温识别系统、摄像机、长焦镜头及后端监测管理软件实现烟火智能识别并自动报警,运用重型数字云台转动的方位角和俯仰角、长焦镜头的焦距及后端GIS管理软件平台实现火点自动精确定位,通过摄像机和传输链路将视频影像和控制信号传输到指挥中心进行监视、存储、管理的智能型的森林防火视频监控系统。
(1)摄像机选择根据国家林业规范要求和实际林火监测需要,要求用于林火监测的摄像机除了具备高清监控能力外,要求能在远距离对林火进行识别,具有较高的准确性;同时,摄像机还需能对火点位置进行准确定位,和采集林场周边的气象信息(风力,风速等)。
在性能上要求摄像机具有良好的稳定性,防雷抗风能力等。
基于视频图像方面技术优势,在林火监测方面,采用热红外智能烟火检测技术,实现烟火智能识别,并结合高清一体化可见光云台摄像机及后端智能可视化综合监测管理软件实现烟火智能识别并自动报警,与单一采用可见光检测方式相比具有更高的准确性;同时,运用重型数字云台转动的方位角和俯仰角、长焦镜头的焦距及后端GIS管理软件平台实现火点自动精确定位,通过摄像机和传输链路将视频图像和控制信号传输到指挥中心进行监视、存储和管理。
(2)红外热成像实现原理自然界中,一切高于绝对零度的物质每时每刻源源不断地向外辐射与自身性质、温度相关的电磁波能量,我们称这一现象为热辐射现象。
不同温度下,物体所发出热辐射的波长不一样。
热成像摄像机通过测量目标与背景或目标各部分之间的辐射差异,将物体辐射的功率信号转换成电信号,经过放大处理形成视频图像。
通俗的讲热成像摄像机的作用,将物体发出的不可见红外能量转变为人眼可识别的热图像。
森林防火智能预警监测系统建设方案目录1.前言 ................................................................................................................错误!未定义书签。
2.需求分析 (1)2.1.前端基站需求分析 (1)2.2.传输网络需求分析 (5)2.3.后端联网监控管理平台需求分析 (6)3.建设目标 (7)4.建设原则及标准 (8)4.1.建设原则 (8)4.2.建设依据及标准 (9)5.森林防火智能监测系统总体构成 (11)6.森林防火智能监测系统详细设计 (12)6.1.前端智能监测基站详细设计 (12)6.1.1.视频采集系统 (14)6.1.2.智能烟火识别处理器 (19)6.1.3.供电系统 (20)6.1.4.防盗系统 (22)6.1.5.基站控制设备 (23)6.1.6.防雷接地系统 (25)6.1.7.铁塔基建系统 (27)6.2.传输网络详细设计 (30)6.2.1.传输网络选型 (44)6.2.2.传输网络配置 (45)6.2.3.传输网络路由 (46)6.3.后端监控管理平台系统详细设计 (30)6.3.1.联网监控管理平台 (31)6.3.2.GIS管理平台 (35)6.3.3.大屏展示系统 (36)6.3.4.综合布线系统 (40)6.3.5.静电地板 (42)6.3.6.防雷接地系统 (43)2.需求分析2.1.前端基站需求分析前端基站对于森林防火智能监控系统是非常重要的,是实现林区视频采集、烟火智能识别、GIS定位等森林防火中非常重要功能的设备站点。
由于前段基站位于野外林区内,而且四周一般都有高达灌木林以及林区的地形地势条件等,森林防火智能监控需要考虑监控半径范围、野外供电、烟火智能识别,根据地势地形结合智能监控的特点需要进行基站选址,根据四周灌木林的高度以及所需监控的范围选择修建铁塔的高度,根据气候条件考虑设备是否需要保温措施等;在无人值守的环境需要考虑基站自身的防盗问题,以及野外环境必须要考虑的防雷接地,铁塔基站等问题。
森林防火智能监测预警指挥系统解决方案随着全球气候变暖的加剧,林火频发的现象也日益严重。
因此,如何有效应对林火已经成为了现代社会所面临的一个重要挑战。
在这一背景下,发展出一种能够及时监测、预警和指挥的智能森林防火系统显得尤为重要。
下面,我们将围绕“森林防火智能监测预警指挥系统解决方案”,阐述它的开发及实施过程。
第一步:监测设备的选取和安装智能森林防火系统的重要组成部分是各种监测设备,如红外线传感器、风力传感器、温度计和湿度计等。
这些设备要在有关方面的指导下积极选取和合理安装。
在安装监测设备时还应注意设备的互相衔接,以避免信息传递过程中的失误。
第二步:数据传输与处理通过监测设备采集的数据需要传输到相关的处理中心进行分析,以便对监测结果进行变化分析和预警。
数据传输可以通过互联网或其他方式来实现。
该步骤需要确保数据的传输可靠、及时和安全,以避免信息泄露和不及时的监测预警。
第三步:数据分析与预警数据传输之后的数据需要进行分析处理以提取有效信息。
例如,当监测设备发现降水量较少、温度升高和湿度下降时,就需要对这一信息进行警报。
通过预先设定的预警机制,预警信息可以及时推送给基层行政机关和相关单位以及事故发生处置中心。
第四步:信息指挥系统的建立信息指挥系统是最后的一步,它将所有集成的毛细管数据信息进行综合处理、整合与分析,并实现全局的指挥,及时处理全局危机,指挥救援行动,减轻损失。
此系统将建立在现代化指挥中心,以便推送警报信号、收集反馈信息、发送指挥管制信号,最终保护公众免受火灾侵害。
总结:通过上述分步骤的实施,可以打造成“森林防火智能监测预警指挥系统”。
该系统充分利用现代化技术成果和信息化手段,具有响应速度快、数据可靠、预测准确、指挥精准等优势。
这是一项前瞻性的工程,将为保障中国的森林、绿化工程,以及人类在这个美好的星球上的生存提供强有力的技术支持。
智慧城市之森林防火信息系统解决方案1现状及需求 (3)2建设目标 (3)3建设内容 (4)3.1系统架构 (4)3.2系统组成 (5)3.2.1前端设备 (5)3.2.2中继设备 (6)3.2.3中心控制设备 (6)3.3森林防火综合管理系统功能 (8)3.3.1烟火识别 (8)3.3.2人员定位 (10)3.3.3三维动态显示 (11)3.3.4火情动态监测 (13)3.3.5火情蔓延分析 (14)3.3.6扑救指挥管理 (15)3.3.7防火辅助决策 (16)3.3.8灾损评估管理 (19)3.3.9实施资源管理 (19)3.3.10气象监控 (20)4智慧能力 (20)1现状及需求森林火灾具有突发性强、破坏性大、处置救助较为困难等特点。
目前森林火灾预防主要靠“死看死守”,扑灭火害主要靠“人海战术”,防火设施布局存在盲区,森林火情监测靠人工野外巡查,火灾损失评估主要靠外业调查,自动化程度较低,科技含量不高,无法很好地满足森林防火的需要。
在监测到火情后,准确地预测林火蔓延情况对人员转移,扑救灭火及减少损失起着至关重要的作用。
然而,林火蔓延是一个多相、多组分可燃物在各种气象条件(温度、湿度、风向和风力等)和地形影响下燃烧和运动的极其复杂的现象。
林火蔓延的预测是需要多学科知识的融合,这对决策者、策略执行者提出很高的要求。
为了更好的理解森林火灾,科学家们运用多种方法来模拟林火现象。
随着计算机科学,特别是三维建模技术、地理信息系统、虚拟现实技术的发展,同时林火的蔓延模型不断改进,通过这些新技术与理论模型的集成,构建科学、多维的林火动态蔓延模拟过程环境,这能为林火预测提供新的辅助手段。
直观、形象、动态地表达林火的蔓延过程,能有效地利用人的直感思维与启发式思维,提高人们对林火蔓延过程、预测的理解,提高决策的效率和准确性。
2建设目标森林防火系统是以现有的森林资源数据库、林相资料、森林资源统计数据、防火力量的配置、人员分布情况、历史数据等标准的及非标准的资源基础上,综合利用影像数据和矢量数据,建立一个有效的林火地理信息系统,综合管理全市森林资源,为各级党政领导和防火指挥员提供一个指挥扑救森林火灾的技术平台,辅助扑火指挥员对火情做出正确的判断,同时可以监测各个火点的状况,避免火灾的发生。
森林智能烟火检测可视化综合解决方案系统目录1、项目建设背景 (4)1.1、概述 (4)1.2、建设目标 (5)1.3、需求分析 (5)1.2.1、前端监控系统需求分析 (5)1.2.2、太阳能供电系统需求分析 (9)1.2.3、前端基站防盗系统需求分析 (10)1.2.4、传输网络需求分析 (11)1.2.5、后端监控管理平台需求分析 (12)2、建设原则 (13)3、建设依据及标准 (14)4、系统总体设计 (16)4.1、系统总体概述 (16)4.2、系统特点 (16)4.3、系统各模块设计 (17)4.3.1、前端监控系统设计 (17)4.3.2、无线传输系统设计 (23)4.3.3、太阳能供电系统 (27)4.3.4、防盗报警及对讲系统 (31)4.3.5、移动终端系统设计 (33)4.3.6、存储子系统设计 (33)4.2.8.1、系统设计原则 (33)4.2.8.2、视频存储系统方案特点 (33)4.2.8.3、存储容量计算 (35)4.2.8.4、网络存储产品选型 (35)4.3.7、大屏显示子系统设计 (37)4.2.8.1、系统简介 (37)4.2.8.2、系统设计 (39)4.2.8.3、系统功能 (39)4.2.8.4、系统优势 (42)4.2.8.5、产品推荐 (45)4.3.8、防雷接地系统 (48)4.3.9、铁塔基建系统 (49)5、平台软件功能 (52)5.1、客户端功能 (53)5.1.1、实时监控 (55)5.1.2、火点定位 (56)5.1.3、可视域功能 (57)5.1.4、轮巡任务 (58)5.1.5、GPS信息显示 (59)5.1.6、录像回放 (60)5.1.7、报警管理 (62)5.1.8、云台控制 (63)5.1.9、电子地图 (64)5.1.10、语音对讲 (65)5.1.11、视频上墙 (66)5.1.12、视频质量诊断 (66)5.2、管理员端功能 (68)5.2.1、组织管理 (68)5.2.2、用户管理 (69)5.2.3、设备管理 (70)5.2.4、录像管理 (71)5.2.5、报警设置 (72)5.2.6、电子地图配置 (75)5.2.7、电视墙配置 (75)5.2.8、日志管理 (76)1、项目建设背景1.1、概述森林作为地球上可再生自然资源及陆地生态系统的主体,在人类生存和发展的历史可中起着不可替代的作用。
森林防火智能预警系统应用解决方案公共安全是政府和百姓都特别关注、十分重要的社会问题,而在公共安全系统工程中,森林防火更是关系到国计民生,与人类的生存息息相关。
火灾是森林最危险的敌人,也是林业的最大灾害,它能给森林带来最具毁灭性的后果。
森林火灾具有突发性、随机性、破坏时间短等特点,因此一旦有火警发生,就必须速度采取扑救措施。
而扑救是否及时,决策是否得当,最重要取决于对林火的发现是否及时,分析是否准确合理,决策措施是否得当。
传统火灾报警系统一般基于红外传感器和烟雾传感器,探测火灾发生时生成的烟、温度和光等参量,经信号处理、比较、判断后发出火灾报警信号;其缺点是无法迅速采集火灾发出的烟温变化信息,难以满足早期探测并预报此类火灾的要求。
近年来,红外热成像检测和可见光图像检测在火焰检测中有一定程度的应用,但由于自身成像和检测原理,只是单一的检测模式极容易产生误报、漏报,影响用户使用,使得这一技术的推广受到了阻碍。
基于这种现象,双光谱探测森林防火智能预警系统,采用两种光谱的图像智能检测技术最大程度发挥了各自优势,取长补短,能有效准确地检测出火焰,弥补传统火灾报警系统与单一检测模式所存在的不足,以达到森林防火智能预警的效果。
国内外基本情况及发展趋势从19世纪90年代至20世纪50年代感温探测器一直占主导地位,火灾自动报警系统处于初级发展阶段;20世纪50年代初,瑞士物理学家埃斯特迈尔成功研制出离子型感烟探测器;到20世纪70年代末,光电元器件技术取得突破,光电感烟探测器应运而生;20世纪80年代初,日本开始研究实验模拟量火灾探测器,最为典型的是1991年日本学者提出神经网络用于火源探测的问题;1994年瑞士推出Algo Rex火灾探测系统,该系统采用了神经网络、模糊逻辑相结合,共同决策,如图1所示。
20世纪70年代末,我国的一些军工企业、部属企业开始研制火灾自动报警产品;进入80年代后为了缩短与国外同类产品的差距,满足国内市场需要,开始引进或仿制国外产品;90年代后,国外企业进入中国市场,带来了先进的技术,在一定程度上促进了市场的发展。