【八下教案学案】人教八年级数学下教案-第十九章一次函数全章教案合集22页
- 格式:docx
- 大小:162.68 KB
- 文档页数:22
人教版八年级下册数学第19章一次函数19.2.2一次函数课时1 一次函数的概念教案【教学目标】知识与技能目标1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;3.初步体会用待定系数法求一次函数解析式的方法.过程与方法目标1.在一次函数概念的探索过程中,经历观察——猜想——归纳的数学发现过程.2.体会数形结合和由特殊到一般的数学思想,培养探索创新精神.情感、态度与价值观目标学会从实际问题中建立一次函数的模型,体会一次函数在实际生活中的应用价值.【教学重点】掌握一次函数的概念及其解析式.【教学难点】一次函数与正比例函数关系及从实际中建立一次函数的模型.【教师准备】教师准备:教学中出示的教学插图和例题.学生准备:预习本节内容.【教学过程设计】一、情境导入1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式.2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高.3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额?以上3道题中的函数有什么共同特点?二、合作探究知识点一:一次函数的定义【类型一】辨别一次函数例1下列函数是一次函数的是()A.y=-8x B.y=-8 xC.y=-8x2+2 D.y=-8x+2解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误.故选A.方法总结:一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.【类型二】一次函数与正比例函数例2已知y=(m-1)x2-|m|+n+3.(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?解析:(1)根据一次函数的定义,m-1≠0,2-|m|=1,据此求解即可;(2)根据正比例函数的定义,m-1≠0,2-|m|=1,n+3=0,据此求解即可.解:(1)根据一次函数的定义得2-|m|=1,解得m=±1.又∵m-1≠0即m≠1,∴当m=-1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义得2-|m|=1,n+3=0,解得m=±1,n=-3.又∵m-1≠0即m≠1,∴当m=-1,n=-3时,这个函数是正比例函数.方法总结:一次函数解析式y=kx+b的结构特征:k≠0,自变量的次数为1,常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.知识点二:根据实际问题求一次函数解析式【类型一】列一次函数解析式例3写出下列各题中y与x的函数关系式,并判断y是否是x的一次函数或正比例函数?(1)某村耕地面积为106(平方米),该村人均占有耕地面积y(平方米)与人数x (人)之间的函数关系;(2)地面气温为28℃,如果高度每升高1km ,气温下降5℃,气温x (℃)与高度y (km)之间的函数关系.解析:(1)根据人均占有耕地面积y 等于总面积除以总人数得出即可;(2)根据高度每升高1km ,气温下降5℃,得出28-5y =x 求出即可.解:(1)根据题意得y =106x ,不是一次函数;(2)根据题意得28-5y =x ,则y =-15x +285,是一次函数.方法总结:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.【类型二】 确定一次函数解析式中系数的值例4 已知一次函数y =kx +b 中,当自变量x =3时,函数值y =5;当x =-4时,y =-9.求k 和b 的值.解析:把两组对应值分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 和b .解:(1)∵当自变量x =3时,函数值y =5,当x =-4时,y =-9,∴⎩⎨⎧3k +b =5,-4k +b =-9,解得⎩⎨⎧k =2,b =-1.方法总结:解决此类问题就是将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组解答即可.三、教学小结师生共同回顾本节课所学的主要内容:1.一般地,形如 y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.2.一次函数解析式y =kx +b (k ≠0)的条件k ≠0千万不能忽略,如果k =0,y =b 就不是一次函数了.3.正比例函数是特殊的一次函数,但一次函数不一定是正比例函数.【板书设计】19.2.2一次函数课时1 一次函数的概念1.一次函数的定义2.一次函数与正比例函数的区别和联系3.根据实际问题求一次函数解析式4.例题讲解:【学习检测】1.下列说法中不正确的是 ( )A.正比例函数一定是一次函数B.一次函数不一定是正比例函数C.不是一次函数就不是正比例函数D.正比例函数不是一次函数解析:利用一次函数和正比例函数的关系解决本题即可.故选D .2.下列说法正确的是 ( )A .y =kx +b 是一次函数 B.一次函数是正比例函数C.正比例函数是一次函数D.不是正比例函数就一定不是一次函数 C(解析:根据一次函数的概念及一次函数与正比例函数的关系解决本题即可.)3.下列函数中,是一次函数的有 ,是正比例函数的有 .(1)y =-8x ;(2)y =;(3)y =5x 2+6;(4)y =-0.5x -1;(5)y =-;(6)y =2(x +3);(7)y =4-3x.(1)(4)(6)(7) (1)(解析:利用一次函数的概念判定一次函数,根据正比例函数的概念判定正比例函数即可.)4.已知方程3x -2y =1,把它化成y =kx +b 的形式是 ;这时k = ,b = ;当x =﹣2时,y = ,当y =0时,x = .解析:利用一次函数的概念即可确定k ,b 的值,把x =﹣2代入解析式即可求出y 的值,把y =0代入解析式即可求出x 的值.答案:y =23x -21 23 -21 ﹣27 31 5.关于x 的一次函数y =(m -2)x n -1+n 中,m ,n 应满足的条件分别是 .解析:根据一次函数的概念,可知m -2≠0,n -1=1,求出m ,n 符合的条件即可.故填m ≠2,n =2.6.已知y +b 与x +a (a ,b 是常数)成正比例.(1)试说明y 是x 的一次函数;(2)如果x =3时y =5,x =2时y =2,求y 与x 的函数关系式.引导学生分析:(1)根据正比例函数的定义,把y +b 与x +a 分别看作一个整体,分别作为一个变量,可得y +b =k (x +a ),所以y =kx +ka -b.根据一次函数的定义可知y 是x 的一次函数;(2)设y 与x 的一次函数解析式为y =mx +n ,分别把x =3,y =5和x =2,y =2代入解析式中,得到关于m ,n 的方程组,解方程组即可.解:(1)设y +b 与x +a 的函数解析式为y +b =k (x +a ),得y =kx +ka -b. 根据一次函数的概念可知y 是x 的一次函数.(2)设y 与x 的函数解析式为y =mx +n.把x =3,y =5和x =2,y =2分别代入,得:⎩⎨⎧+n=2m 2+n=53m 解得⎩⎨⎧==﹣43n m 则y =3x -4.归纳总结:判断一次函数,利用一次函数的定义判断即可. 通常是利用待定系数法求一次函数的解析式.7.下列函数中是一次函数的有哪些?并说出k 和b 的值.(1)y =-x ;(2)y =+2;(3)y =5x 2-3;(4)m =2.5n -0.3;(5)y =3x +3(1-x );(6)l =r -.引导学生分析:根据一次函数y =kx +b 的特征去判断,注意(1)是正比例函数,当然也是一次函数;(5)化简得y =3,不符合k ≠0的要求,故不是一次函数.解:是一次函数的有(1),其中k =-,b =0;有(4),其中k =2.5,b =-0.3;有(6),其中k =,b =-. 归纳总结:(1)一次函数成立的条件:①自变量的指数为1;②一次项系数k ≠0.(2)一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数.一次函数y =kx +b 中,当b =0时,一次函数就变成了正比例函数,所以正比例函数是特殊的一次函数.8.已知y +b 与x +a (a ,b 是常数)成正比例.(1)试说明y 是x 的一次函数;(2)如果x =3时y =5,x =2时y =2,求y 与x 的函数关系式.引导学生分析:(1)根据正比例函数的定义,把y +b 与x +a 分别看作一个整体,分别作为一个变量,可得y+b=k(x+a),所以y=kx+ka-b.根据一次函数的定义可知y是x 的一次函数;(2)设y与x的一次函数解析式为y=mx+n,分别把x=3,y=5和x=2,y=2代入解析式中,得到关于m,n的方程组,解方程组即可.解:(1)设y+b与x+a的函数解析式为y+b=k(x+a),得y=kx+ka-b.根据一次函数的概念可知y是x的一次函数.(2)设y与x的函数解析式为y=mx+n.把x=3,y=5和x=2,y=2分别代入,得:解得则y=3x-4.归纳总结:判断一次函数,利用一次函数的定义判断即可.通常是利用待定系数法求一次函数的解析式.9.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?解析:一次函数y=kx+b的解析式中k≠0,自变量的次数为1,常数项b可以为任意实数;正比例函数的解析式中,比例系数k是常数,k≠0,自变量的次数为1.解:(1)根据一次函数的定义,得2-|m|=1,解得m=±1.又∵m+1≠0,即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数.(2)根据正比例函数的定义,得2-|m|=1,n+4=0,解得m=±1,n=-4,又∵m+1≠0,即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数.10.已知关于x的函数y=(k+2)x+k2-4,(1)当k满足什么条件时,它是正比例函数?(2)当k满足什么条件时,它是一次函数?解析:(1)根据正比例函数的定义可知:k2-4=0且k+2≠0确定k的值.(2)根据一次函数的定义可知:k+2≠0确定k的值即可.解:(1)当k2-4=0且k+2≠0时,即k=2时,它是正比例函数.(2)当k+2≠0,即k≠-2时,它是一次函数.【教学反思】成功之处:在本节函数本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境——分析探究——总结升华”为主线,使学生亲身体验一次函数特征的探索,深化一次函数与正比例函数的关系的理解,努力做到由传统的数学课堂向实验课堂转变.不足之处:在教学过程中,高估了学生对一次函数的概念及与正比例函数关系的理解能力,主要困难在于对一次函数的特征的掌握不牢固,对于正比例函数只不过是一次函数的特例的理解不够深入.再教设计:适当增加学生练习的时间,通过学生独立思考并通过讨论分析,正确完成解题过程,达到理解概念并掌握一次函数与正比例函数的目的.人教版八年级下册数学第19章平行四边形19.2.2一次函数课时1 一次函数的概念学案【学习目标】1.理解一次函数的概念,明确一次函数与正比例函数之间的联系;2.能利用一次函数解决简单的实际问题.【教学重点】掌握一次函数的概念.【教学难点】能利用一次函数解决简单的实际问题.【自主学习】一、知识链接1.一般地,形如(k是常数,k≠0)的函数,叫做正比例函数.2.下列哪些函数是正比例函数?如果是,请说出比例系数.(1)y=3x;(2)y=23x;(3)y=2x;(4)y=3x2;(5)xy)(1+=π.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.(1)有人发现,在20 ℃~25 ℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,且c 的值约是t 的7 倍与35的差;(2)一种计算成年人标准体重G(单位:kg)的方法是,以cm为单位量出身高值h ,再减常数105,所得差是G 的值;(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min 的计时费(按0.1元/min收取);(4)把一个长10 cm,宽5 cm的矩形的长减少x cm,宽不变,矩形面积y(单位:cm2)随x的值而变化.(5)观察以上出现的四个函数解析式,很显然它们不是正比例函数,那么它们有什么共同特征呢?2.自主归纳:一般地,形如(k,b 是常数,k≠0)的函数,叫做一次函数.三、自学自测1.下列哪些函数是一次函数?如果是,请分别说出k,b是多少.(1)y=3x+2;(2) y=4(x+1);(3)y=23x;(4)y=x(3x+2);(5)y=21 3x.2.当m ,n 时,函数y=(m-3)x n+m+2是一次函数.四、我在自学过程中产生的疑惑【新知探究】一、新知梳理知识点1:一次函数的概念问题1:一次函数的定义是什么?它与正比例函数又有何联系?【典例探究】例1已知函数y=(m-1)x+1-m2(1)当m为何值时,这个函数是一次函数?(2)当m为何值时,这个函数是正比例函数?要点归纳:1.一次函数y=kx+b的特点如下:(1)解析式中自变量x的次数是次;(2)比例系数k ;(3)常数项:通常不为0,但也可以等于0.2.(1)当b 时,y=kx+b 即y= (k≠0),此时该一次函数是正比例函数. (2)正比例函数是一种特殊的一次函数.例2 已知一次函数y=kx+b,当x=1时,y=5;当x=-1时,y=1.求k 和 b 的值.方法总结:将两组自变量及对应的函数值代入函数解析式中,得到关于k,b的方程组,解方程即可.【跟踪练习】1.已知函数y=2x|m|+(m+1).(1)若这个函数是一次函数,求m的值;(2)若这个函数是正比例函数,求m的值.2.已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式,并指出它是什么函数;(2)求x=2.5时,y的值.知识点2:一次函数的简单应用例3 汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升, 求油箱的油量y(单位:升)随行驶时间x(单位:时)变化的函数关系式,并写出自变量的取值范围,y是x 的一次函数吗?【跟踪练习】1.我国现行个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分征收3%的所得税……如某人月收入3860元,他应缴个人工资、薪金所得税为:(3860-3500)×3%=10.8元.(1)当月收入大于3500元而又小于5000元时,写出应缴所得税y(元)与收入x(元)之间的函数解析式;(2)某人月收入为4160元,他应缴所得税多少元?(3)如果某人本月应缴所得税19.2元,那么此人本月工资是多少元?2.如图,△ABC是边长为x的等边三角形.(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?如果是,请指出相应的k与b的值.(2)当x的值.(3)求△ABC的面积S与x的函数解析式.S是x的一次函数吗?【学习检测】1.下列说法正确的是()A.一次函数是正比例函数B.正比例函数不是一次函数C.不是正比例函数就不是一次函数D.正比例函数是一次函数2.若函数y=(m-3)x+m+3是正比例函数,则m=.-3(解析:根据一次函数与正比例函数的关系,一次函数y=kx+b,当k≠0且b=0时,一次函数即为正比例函数.)3.在函数①y=2-x;②y=8+0.03t;③y=1+x+1x;④y=+3xx中,是一次函数的有________.4.若函数y=(m-3)x+2-m是一次函数,则m.≠3(解析:根据一次函数的概念可知,一次函数y=kx+b应满足的条件是k≠0.)5.要使y=(m-2)x n-1+n是关于x的一次函数,n,m应满足_________,_________.6.仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是,它是函数.Q=400-36t一次(解析:仓库内余下的粉笔盒数=原有粉笔盒数-t个星期领出的盒数=400-36t,根据一次函数的定义可知它是一次函数.)7.如果长方形的周长是30cm,长是xcm,宽是ycm.(1)写出y与x之间的函数解析式,它是一次函数吗?(2)若长是宽的2倍,求长方形的面积.8.已知函数y=(2-m)x+2m-6.(1)当m为何值时,此函数为一次函数?(2)当m为何值时,此函数为正比例函数?解:(1)当2-m≠0,即m≠2时,此函数为一次函数.(2)当2-m≠0且2m-6=0,即m=3时,此函数为正比例函数.9.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加2 m/s.(1)求小球速度v(单位:m/s)关于时间t(单位:s)的函数解析式;(2)求第2.5 s 时小球的速度;(3)时间每增加1 s,速度增加多少,速度增加量是否随着时间的变化而变化?10.一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元.(1)写出每月话费y(元)与通话时间x(x>120)(分)的函数关系式;(2)分别求每月通话时间为100分,200分的话费.解:(1)y=30+(x-120)×0.4=0.4x-18.(2)当x=100时,y=30(元),当x=200时,y=0.4×200-18=62(元).11.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.(1)求树高y与年数x之间的函数关系式;(2)同学们在3年之后毕业,则这些树高是多少米?解:(1)y=1.80+0.35x(0≤x≤10).(2)当x=3时,y=1.80+0.35×3=2.85(米).12.一个弹簧不挂重物时长12 cm,挂上重物后伸长的长度与所挂重物的质量成正比例.如果挂上1.5 kg的物体后,弹簧伸长2 cm.(1)求弹簧总长y(单位:cm)随所挂物体质量x(单位:kg)变化的函数解析式;(2)求所挂重物为6 kg时,弹簧的总长.解:(1)每挂1 kg物体弹簧伸长的长度为= cm,则挂x kg物体弹簧伸长的长度为x cm,所以弹簧总长度y=12+x.(2)当x=6时,y=12+×6=20(cm).【拓展探究】13.某种气体在0 ℃时的体积为100 L,温度每升高1 ℃,它的体积增加0.37 L.(1)写出气体体积V(L)与温度t(℃)之间的函数解析式;(2)求当温度为30 ℃时气体的体积;(3)当气体的体积为107.4 L时,温度为多少摄氏度?解:(1)V=100+0.37t.(2)当t=30时,V=100+0.37×30=111.1(L).(3)当V=107.4时,有107.4=100+0.37t,解得t=20,因此,当气体的体积为107.4 L时,温度为20 ℃.。
第十九章一次函数一次函数一教学目标知识与技能:1 理解一次函数和正比例函数的图像是一条直线;2 熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。
过程与方法:1 经历一次函数的作图过程,探索某些一次函数图象的异同点;2 体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。
情感态度与价值观:1 体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
2 在探索过程中体验成功的喜悦,树立学习的自信心。
二.教学重点和难点教学重点:理解掌握一次函数的图像的特征和相关的性质。
教学难点:理解一次函数的概念。
三教学用具多媒体课件,教学用直尺、三角板等。
四教学过程(一)复习引入:师:上节课我们学习了正比例函数,知道正比例函数也是一次函数,是特殊的一次函数,而且我们也知道正比例函数的图象是一条经过原点的直线,那么一次函数的图象是什么(二)情境创设师:前面我们学习了用描点法画函数图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图像。
画出函数y=-6x与y=-6x+5 y=6x与y=6x+5的图象请同学们观察并互相讨论,并回答:你所画出的图象是什么形状?和前面我们学过的正比例的函数图象相同吗?这就是我们这一节课要学到的内容:一次函数。
板书:第十九章一次函数一次函数(三)探索新知1 一次函数的概念师:观察上面四个函数的图象,发现它们都是直线。
你能说出哪些是正比例函数的图象吗若把另外两个叫做一次函数,你能类比正比例函数的定义给出一次函数的定义吗?学生独立思考后进行小组交流,探讨、然后小组汇报讨论结果。
师:参与学生的活动,了解各小组的讨论情况,了解同学质疑,并适时点拨,共同概括出一次函数的概念。
提示学生,类比一次方程、一次不等式等知识。
总结并板书:【板书】一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。
【人教版】数学八下:第19章《一次函数》全章名师教学设计一. 教材分析人教版数学八下第19章《一次函数》是学生在学习了初中阶段函数概念的基础上,进一步深入学习一次函数的知识。
一次函数是实际问题中应用最广泛的一种函数,本章内容主要包括一次函数的定义、性质、图像以及一次函数在实际问题中的应用。
通过本章的学习,使学生能理解和掌握一次函数的基本概念和性质,能运用一次函数解决一些简单的实际问题,为后续学习其他函数知识打下基础。
二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,对函数有一定的认识。
但在实际应用中,对一次函数的理解和运用还不够熟练。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解和掌握一次函数的知识,提高学生运用一次函数解决实际问题的能力。
三. 教学目标1.理解一次函数的定义和性质。
2.学会绘制一次函数的图像。
3.能够运用一次函数解决实际问题。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的绘制。
3.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握一次函数的知识。
2.实践操作法:让学生动手绘制一次函数的图像,提高学生的实践能力。
3.问题驱动法:提出实际问题,激发学生的思考,培养学生解决问题的能力。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画等。
2.练习题:准备一些一次函数的相关练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出一次函数的概念。
例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
2.呈现(10分钟)讲解一次函数的定义和性质,通过课件展示一次函数的图像,让学生直观地理解一次函数的特点。
3.操练(10分钟)让学生动手绘制一次函数的图像,加深对一次函数的理解。
教师巡回指导,解答学生遇到的问题。
第十九章一次函数教材简析本章的主要内容有:(1)函数、一次函数与正比例函数的概念;(2)函数的表示方法;(3)一次函数的图象与性质;(4)一次函数的应用.函数是刻画各种运动变化的常用模型,其中最为简单的是一次函数,它可以解决现实生活中的许多问题,本章将主要向学生讲授一次函数的相关知识.本章是中考中的必考内容,主要考查用待定系数法求一次函数的表达式,结合函数图象对简单的实际问题进行信息分析,通过分析函数关系式对变量的变化规律进行预测等,题型多样.教学指导【本章重点】通过学习变量间的关系初步体会函数的概念,明确函数的三种表示方法,一次函数的图象、性质及其应用.【本章难点】函数的概念和一次函数的应用.【本章思想方法】1.分类讨论思想:在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得出结论.在本章中,有时确定一次函数的表达式时,要根据一次函数所对应的直线位置来求解,做到不重复、不遗漏.2.数形结合思想:本章在解决与一次函数有关的函数值大小比较时,利用数形结合解决这类问题最快最优.另外解决一次函数图象的综合题时,也常用数形结合法.3.函数与方程思想:将具体问题抽象为函数模型,根据函数之间的关系建立方程,通过方程解决问题的方法称为函数与方程思想.在本章中,经常根据实际问题抽象出一次函数模型,并根据函数图象的交点建立一元一次方程来求某些特殊值.课时计划19.1函数4课时19.2一次函数6课时19.3课题学习选择方案1课时19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .x 与y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时函数教学目标一、基本目标【知识与技能】1.认识变量中的自变量与函数.2.进一步掌握确定函数关系式的方法.3.会确定自变量的取值范围.【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯.二、重难点目标【教学重点】1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.【教学难点】认识函数、领会函数的意义.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P72~P74的内容,完成下面练习.【3 min反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式.3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x=a时,y=b,函数有唯一的值b 与之对应,则这个对应值b叫做x=a时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是v随着t的增大而增大.(3)当t每增加1秒,v的变化情况不相同,在第9秒时,v的增加量最大.(4) 120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t的取值范围;(2)当7:55时,t=55-30=25,将t=25代入(1)中的关系式即可;(3)令y=0,求出t的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100,∴0≤t≤100,∴y关于t的函数关系式为y=200-2t(0≤t≤100).(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升.(3)令y=0,即200-2t=0,解得t=100.100分=1时40分,7时30分+1时40分=9时10分,故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x的值,实际上就是解方程.环节3课堂小结,当堂达标(学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!19.1函数19.1.2函数的图象第1课时函数的图象教学目标一、基本目标【知识与技能】1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.【过程与方法】在研究函数图象的过程中体会数形结合思想,并利用它解决问题,提高解决问题的能力.【情感态度与价值观】1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用,从而加深对数学的认识.二、重难点目标【教学重点】1.函数图象的画法.2.观察分析图象信息.【教学难点】分析概括图象中的信息.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P79的内容,完成下面练习.【3 min反馈】1.什么是函数图象?解:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.2.在学习函数图象时,可以通过以下两点帮助理解:(1)函数图象上的任意点P(x,y)中的x、y都满足其函数解析式;(2)满足函数解析式的任意一对x、y的值,所对应的点一定在函数图象上.3.用函数图象描述实际问题时,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.4.如何作函数图象?具体步骤有哪些?画函数的图象,一般运用描点法.用描点法画函数图象的一般步骤:(1)列表:表中给出一些自变量的值及其对应的函数值.自变量的取值不应使函数太大或太小,以便于描点,点数一般以5到7个为宜;(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连结起来.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经过的时间t(分钟)之间的大致函数图象是()A BC D【互动探索】(引发学生思考)行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加,但增加的比高速路上慢,故B 符合题意.【答案】B【互动总结】(学生总结,老师点评)此类题目,理解题意是解题关键,根据题干中提供的信息及生活实际,判断图象各阶段的变化情况和特征.【例2】作出函数y =-6x的图象.【互动探索】(引发学生思考)先列表取值,再描点,最后连线. 【解答】列表:【互动总结】(学生总结,老师点评)画函数图象要经过列表、描点、连线三个步骤,列表时自变量取值要有代表性(自变量不可以只取正数,也不可以只取负数).自变量不为0,表示图象不是连续的,在自变量为0时,图象断开,分为两段.活动2 巩固练习(学生独学)1.周末小石去博物馆参加综合实践活动,先骑行共享单车前往,0.5小时后到达公交车站,他在公交车站等了一段时间,遇到了叔叔,搭上了叔叔的电瓶车前往.已知小石离家的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象大致如图.则小石叔叔电瓶车的平均速度为( C )A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时2.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是(B)A B C D3.在所给的平面直角坐标系中画出函数y=-2x+2的图象,并根据图象回答问题:(1)当x=-1时,y的值;(2)当x为何值时,y>0?(3)若0≤x≤3,求y的取值范围.解:列表如下:(1)根据表格,当x=-1时y=4.(2)根据图象,观察可得,当x<1时,y>0.(3)根据图象,观察可得,若0≤x≤3,则-4≤y≤2.活动3拓展延伸(学生对学)【例3】小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明从家到学校的路程是多少米?(2)小明在书店停留了多久?(3)本次上学途中,小明一共骑行了多少米?一共用了多长时间?(4)我们认为骑单车的速度超过300米/分就超越了安全范围.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全范围内吗?【互动探索】根据图象,获取其中的信息,图象中横、纵坐标表示的是什么?函数值随自变量的变化趋势是怎么样的?【解答】(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米.(2)根据图象,从8分钟到12分钟这段时间内距离不变,故小明在书店停留了4分钟. (3)一共骑行的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米),共用了14分钟.(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14分钟时,平均速度为1500-60014-12=450(米/分).所以,12~14分钟时,小明骑车速度最快,不在安全范围内.【互动总结】(学生总结,老师点评)解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数的图象⎩⎪⎨⎪⎧作法意义应用练习设计请完成本课时对应训练!第2课时函数的三种表示方法教学目标一、基本目标【知识与技能】1.总结函数三种表示方法,并总结三种表示方法的优缺点.2.会根据具体情况选择适当方法.【过程与方法】经历回顾思考训练提高归纳总结能力.【情感态度与价值观】1.积极参与活动,提高学习兴趣.2.在数学活动过程中形成合作交流意识及独立思考习惯.二、重难点目标【教学重点】函数三种表示方法.【教学难点】会根据具体情况选择适当方法.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.函数的三种表示方法分别是解析式法、列表法、图象法.2.用含自变量x的式子表示函数的方法叫做解析式法.3.把一系列自变量x的值与对应的函数值y列成一个表来表示函数关系的方法叫做列表法.4.用图象来表示函数关系的方法叫做图象法.5.函数的三种表示方法的优缺点有哪些?活动1小组讨论(师生互学)【例1】有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)(2)当所挂重物为x(克)时,用h(厘米)表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量.【互动探索】(引发学生思考)能从表格中直接读出挂重物体的质量与对应的弹簧总长度的值吗?如何根据表格写出所挂物体的质量与弹簧的总长度之间的函数关系?【解答】(1)5÷0.5×1=10(克),即要想使弹簧伸长5厘米,应挂重物10克.(2)h=10+0.5x(0≤x≤50).(3)令10+0.5x=25,解得x=30,即当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【互动总结】(学生总结,老师点评)列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用,如成绩表、银行的利率表等.【例2】如图描述了一辆汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:(1)汽车一共行驶的路程是多少? (2)汽车在行驶途中停留了多长时间? (3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?【互动探索】(引发学生思考)从函数图象中我们得到哪些信息?这些信息与所求问题有何关系?【解答】(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米).(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时.(3)①由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是1.5小时,由此算出平均速度80÷1.5=1603(千米/时);②由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;③由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);④由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【互动总结】(学生总结,老师点评)图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【例3】一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下,最远能行驶多少千米?【互动探索】(引发学生思考)剩余油量为y(升)与行驶路程为x(千米)之间满足什么样的等量关系?根据自变量的取值怎样求函数值?由函数值怎样求出自变量的取值?【解答】(1)由题意,得y=-0.6x+48.(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升.当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0,即-0.6x+48=0,解得x=80,即这辆车在中途不加油的情况下,最远能行驶80 km.【互动总结】(学生总结,老师点评)解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.活动2巩固练习(学生独学)1.下面说法中正确的是(C)A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的函数关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.某学习小组做了一个实验:从一幢100 m高的楼顶随手放下一个苹果,测得有关数据如下:A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒3.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为(B)。
第十九章一次函数数学活动【教学目标】知识与技能1.会根据两个变量的部分对应值建立函数模型;2.会用一次函数模型描述和研究实际问题中的运动变化规律;过程与方法经历根据两个变量的部分对应数据建立函数模型的过程,体会函数建型过程中的归纳思想、数形结合思想;情感、态度与价值观初步体会函数模拟思想并形成节约用水的意识.【教学重难点】重点:根据两个变量的部分对应值建立函数模型难点:用一次函数模型描述和研究实际问题中的运动变化规律;【导学过程】【新知探究】活动1(1)根据下表数据,在平面直角坐标系中画出世界人口增长曲线图;(2)选择一个近似于人口增长曲线的一次函数,写出它的函数解析式;(3)按照这样的增长趋势,估计2020 年的世界人口总数.活动2、一个水龙头漏水,有人认为漏这一点水没有什么大不了,你也这样认为吗?水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,可进行以下的试验与研究:(1)在滴水的水龙头下放置一个能显示水量的容器,每5分钟记录一次容器中的水量。
并填写下表。
(2)建立直角坐标系,以横轴表示时间t,纵轴表示水量w,描出以上述试验所得数据位坐标的各点,并观察它们的分布规律。
(3)试写出w关于t的函数解析式,并由它估算这种漏水状态下一天的漏水量。
为了估计一个水龙头一个月(30 天)漏水量、一年(365 天)漏水量,大家在课前进行了必要的数据收集,现在请各研究小组展示自己获得的数据.为了估计一月和一年的漏水量,我们能收集该水龙头一个月和一年的漏水量吗?这样做可行吗?有了变量之间的部分对应值,要求其余对应值,我们需要做什么?这是什么函数?怎样求函数解析式?请在平面直角坐标系中画出相应的点.从图象上看,这个函数应该是什么函数?能求出这个函数的解析式吗?各小组通过努力,解决了问题,发现滴水之漏,随着时间累积,浪费巨大.刚才交流过程中,各小组得到的函数解析式不尽相同,结果也不尽相同,为什么?怎样检验得到的函数解析式是否符合实际意义?解决这个问题分哪几步进行?【知识梳理】本课我们解决了一类新问题,请带着下面问题总结经验:1.这一类新问题有什么特点?2.怎样解决这类问题?分了哪些步骤?3.从这类问题的解决过程中,你对应用函数解决问题有哪些体会?【随堂练习】1.某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x≥3)个乒乓球,已知A,B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当x=12时,请设计最省钱的购买方案.2.我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.3.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.。
《一次函数》教案第一课时一次函数概念★新课标要求(一)知识与技能1.知道一次函数的有关概念;2.知道正比例函数是特殊的一次函数.(二)过程与方法知道一次函数的概念,养成自主学习的习惯.(三)情感、态度与价值观让学生认识到数学是一门来源于生活,服务于生活的学科,树立学好数学的信心.★教学重点一次函数的概念.★教学难点实际问题用一次函数解析式表示出来.★教学方法教师提出问题、引导,学生观察,思考,阅读,讨论.★引入新课教师活动:出示问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温降低6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系.学生活动:认真思考问题,作出解答,并在小组内讨论交流.教师活动:1.根据学生解答情况作适当点评;2.给出问题:下列问题中变量间的对应关系可用怎样的函数表示?(1)有人发现,在20—25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c 的值约是t的7倍与35的差;(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.1元/分收取;(4)把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.先作出来的同学将函数关系式写在黑板上,其他同学写在练习本上.学生活动:按要求做思考题.给出问题:下列问题中变量间的对应关系可用怎样的函数表示?(1)有人发现,在20—25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c 的值约是t的7倍与35的差;(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.1元/分收取;(4)把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.先作出来的同学将函数关系式写在黑板上,其他同学写在练习本上.学生活动:按要求做思考题.教师活动:提出要求:仔细观察黑板上的解析式,归纳他们的共同点.学生活动:认真观察总结.教师活动:引导学生阅读下面“归纳”部分和下面一段内容,要求掌握一次函数的概念.归纳:上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和.一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数;当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.学生活动:按要求阅读教材,理解并记忆一次函数的概念和一般形式.第二课时一次函数图像★新课标要求(一)知识与技能1.知道一次函数的图像是直线,会用两点法画一次函数的图像.2.掌握一次函数图像的平移规律.3.知道k,b的值对函数图像的影响,掌握一次函数的性质.(二)过程与方法1.通过学生亲自画图像,培养学生动手能力.2.与正比例函数对比总结一次函数的图像与性质,培养数学类比思想,以及养成善于思考,及时总结的学习习惯.(三)情感、态度与价值观1.通过画图像,找规律,思考、讨论、总结,培养学生学习数学的兴趣,树立学好数学的信心.2.通过类比学习,以及总结直线平移规律,让学生明白事物之间存在着一定的联系和区别,树立辨证主义世界观.★教学重点1.会用两点法画一次函数的图像.2.一次函数图像的平移规律.3.k,b的值对函数图像的影响,一次函数的性质.★教学难点1.一次函数图像的平移规律.2.k,b的值对函数图像的影响,一次函数的性质.★教学方法教师提出问题、引导,学生动手画图,思考,阅读,讨论,总结.★引入新课教师活动:还记得正比例函数的图像是什么形状的吗?我们是怎样简单地画正比例函数的图像的?学生活动:回答:正比例函数的图像是一条经过原点的直线,可以通过连接原点和点(1,k)得到它的图像.教师活动:上一节课我们知道了正比例函数是特殊的一次函数,那么一次函数的图像又是什么形状呢?它跟正比例函数的图像有什么联系吗?这节课我们一起来研究以下问题.大屏幕出示教学任务.1.画一次函数的图像教师活动:要求:在同一坐标系中,画出函数y=-6x与y=-6x+5的图像.回答问题:(1)你认为一次函数的图像是什么形状?(2)你会用简单的方法画一次函数的图像了吗?比较两个函数图像的相同点和不同点,将比较结果填写在书上.学生活动:按要求画图像,与小组同学讨论上面的问题.得到结论:一次函数的图像也是一条直线,因为两点确定一条直线,所以,可以只给出两个点来画一次函数的图像.2.直线的平移规律教师活动:让学生观察并思考:(1)两个函数的系数是什么关系?(2)画出的两条直线是什么位置关系?(3)猜想:直线y=kx+b能否由直线可以由直线y=kx变化得到?学生活动:先小组内讨论上述三个问题,如仍有疑问小组间继续讨论.选代表回答老师的问题.教师活动:根据回答做适当点评,给出正确结论:(1)所有平行的直线k的值都相同;(2)直线y=kx+b可以由直线y=kx平移︱b︱个单位得到,当b>0时,向上平移;当b<0时,向下平移.教师活动:用简单的方法画下列函数的图像:y=2x-1,y=-0.5x+1,说说它们还可以通过什么正比例函数的图像怎样平移得到.3.k,b的值对函数图像的影响以及一次函数的性质.教师活动:探究下面问题:(1)在同一坐标系中画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1 的图像;(2)猜想:一次函数y=kx+b(k,b是常数,k≠0)中,k的正负对函数图像有什么影响?对函数的变化规律有什么影响?(3)看一看你画的所有的一次函数的图像,总结b的值对图像有什么影响.学生活动:画图像,并思考问题(2)和(3),与同组同学讨论,交流看法.选代表回答问题.教师活动:针对回答作出点评,大屏幕出示正确结论:(1)当k>0时,直线y=kx+b由左至右上升,y随x的增大而增大;当k<0时,直线y=kx+b由左至右下降,y随x的增大而减小.(2)(0,b)是直线与y轴的交点坐标,b>0时,交点在x轴上方,b<0时,交点在x轴下方.k,b的符号共同决定直线经过的象限:当k>0,b>0,直线经过一、二、三象限;当k>0,b<0,直线经过一、四、三象限;当k<0,b>0,直线经过二、一、四象限;当k<0,b<0,直线经过二、三、四象限;课堂总结(1)画一次函数的图像.一次函数的图像跟正比例函数一样也是直线,可用两点(0,b)和()来连成,并且,如果它们的K值相等,即倾斜程度相同,这两条直线平行,所以也可用直线y=kx通过上下平移︱b︱个单位得到直线y=kx+b.(2)一次函数的图像与性质一次函数y=kx+b的系数k,b的符号决定了它的图像和性质,如下表数是负数时,它越小,直线就越陡.第三课时待定系数法★新课标要求(一)知识与技能会用待定系数法求一次函数的解析式.(二)过程与方法知道用待定系数法求一次函数的解析式的方法,养成自主学习的习惯.(三)情感、态度与价值观自主学习待定系数法求一次函数的解析式,培养学生独立自主的性格.★教学重点用待定系数法求一次函数的解析式.★教学难点灵活运用待定系数法求一次函数的解析式.★教学方法教师提出问题、引导,学生观察,思考,阅读,讨论.★引入新课教师活动:出示问题:已知一次函数的图像经过点(3,5)与(-4,-9),求这个一次函数的解析式.学生活动:认真思考问题,作出解答,并在小组内讨论交流.教师活动:适当引导:求一次函数y=kx+b的解析式,关键是求出两个系数k,b的值,从已知条件可以看出,有两个点在函数图像上,因此这两个点的坐标满足解析式成立,将两个点代入一般形式,可以列出关于k,b的二元一次方程组,并求出k,b.大屏幕给出具体的步骤.要求:阅读下面内容,知道什么叫待定系数法.一般地,在求一个函数时,如果知道这个函数的一般形式, 可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数. 这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法.学生活动:学生认真听老师的分析引导,看大屏幕给出的具体步骤.阅读老师出示内容.学会什么叫待定系数法.教师活动:(1)让学生做课后练习,熟悉并能灵活运用这种方法.(2)总结待定系数法求一次函数的解析式的思路.学生活动:按要求做练习题,体会总结方法和思路,与同组同学交流心得.课堂总结待定系数法求一次函数解析式先设一次函数的一般形式,再将两个满足条件的点的坐标代入一般形式,求出两个待定系数,写出函数解析式.第四课时用一次函数的解决实际问题★新课标要求(一)知识与技能用一次函数的解决实际问题.(二)过程与方法1.通过用一次函数的解决实际问题,培养学生勇于探索,勤于思考的学习习惯.2.提高学生综合分析问题,解决问题的能力.(三)情感、态度与价值观通过用一次函数解决实际问题,培养学生独立自主的性格,以及不怕失败,坚忍不拔的品质.★教学重点用一次函数的概念、图像、性质的知识点解决实际问题.★教学难点用一次函数的概念、图像、性质的知识点解决实际问题.★教学方法教师提出问题、引导,学生观察,思考,阅读,讨论.★引入新课教师活动:到现在为止,我们已经把一次函数,包括正比例函数的概念,图像,性质,以及直线的平移,待定系数法求解析式等知识点全部掌握.这节课,大家一起用这些知识点来解决一些简单的实际问题.教师活动:出示问题:A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C,D两乡.从A城往C,D两乡运肥料的费用分别为每吨20元和50元;从B城往C,D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总费用最少?提示:(1)影响总费用的变量有哪些?(2)由A、B城分别运往C,D乡的肥料共有几个量?(3)这些量之间有什么关系?学生活动:学生认真读题,思考老师的提示问题.小组内讨论,互相提出看法和疑问.也可在小组间讨论交流.还有不太明白的地方,可约请老师参与讨论.教师活动:巡视学生的解答情况,出示下表帮助学生分析想一想:假设总费用为y元,怎样列出y与x的关系式?学生活动:按要求做填表,用表中的含x的量表示出总费用y.把解题过程写在练习本上,有困难可与小组内同学讨论.教师活动:观察学生的解答情况,对个别有困难得同学或小组进行适当引导.继续提问:要想费用最少,则函数值应最小.得到解析式后,你有办法求出函数的最小值吗?学生活动:学生思考求函数最小值的方法.小组讨论交流.教师活动:在学生们思考,讨论了一会之后,做如下提示:考虑函数的最小值时,我们可以通过图像观察,也可以通过函数的性质得到.(1)函数图像的最低点,使函数值最小.只要根据解析式在自变量的取值范围内画函数图像,找到最低点对应得函数值即可.(2)系数k的符号决定函数的性质,当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小.此题中k>0,只要x在其范围内取最小值,对应得y值也是最小.学生活动:按老师的提示,思考并解答例题.教师活动:将例题A,B城的肥料数量互换,让学生应用上述方法,快速做出解答.学生活动:解答变数例题.快速得到答案.课堂总结(1)根据实际需要,画函数图像时,x轴与y轴的单位长度可以不同,但x轴和y轴上各自的单位长度必须均匀且相同.(2)解决含有多个变量的问题时,可以分析这些变量之间的关系,选择其中一个变量作为自变量,其它变量用它表示出来.然后根据问题的条件,寻求可以反映实际问题的函数.。
第十九章一次函数1.了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象分析简单的函数关系.2.能确定简单的实际问题中函数自变量的取值范围,并会求函数值.3.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单的实际问题.1.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.2.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,利用函数模型解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系以及以建立一次函数模型来选择最优方案为素材的课题学习.本章是在学习了平面直角坐标系的基础上进行学习的,为画一次函数的图象进而研究性质奠定了基础.一次函数是初中阶段研究的第一个具体的函数,它的研究方法具有一般性和代表性,并为后面学习反比例函数、二次函数奠定了基础.一次函数和一元一次方程、一元一次不等式、二元一次方程等有着密切的联系,学习一次函数将为它们的解法提供新的方法和途径,并使学生更为深刻地理解数形结合的重要思想.本章在整个教材中具有承上启下的作用.【重点】结合实例掌握变量、常量和函数的概念,掌握函数的三种表示方法,能结合图象讨论函数的基本性质,运用一次函数的图象和性质解决实际问题.【难点】函数的概念以及一次函数的图象和性质的应用.本章内容是初中数学教学中的重点,也是难点.要重视学生对基本概念的理解,及时了解学生在学习过程中的状况,探索有效地教与学的各种方式.在具体的实施过程中应注意:1.加强与学生已学知识的联系.在代数式、方程、不等式等内容的学习、探索中都已渗透了变化的思想,要注意引导学生在原有知识的基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解和准确应用.运用数学的语言和符号去理解、描述现实世界的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.4.给学生充分的自主探索时间.19.1函数19.1.1变量与函数(2课时)19.1.2函数的图象(2课时)19.2一次函数19.2.1正比例函数(2课时)19.2.2一次函数(3课时)19.2.3一次函数与方程、不等式(1课时)19.3课题学习选择方案单元概括整合4课时6课时1课时1课时19.1函数1.理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.2.掌握用描点法画出一些简单函数的图象,能根据函数图象所提供的信息获取函数的性质.3.全面理解函数的三种表示方法,会根据具体情况选择适当方法表示函数.1.在探究问题的过程中,体会从具体的实例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.2.学生通过自己动手,体会用描点法画函数的图象的步骤.1.从图象中获得变量之间的关系的有关信息,并预测变化趋势,进行科学决策,应用于社会生活.2.让学生通过实际操作,体会函数三种表示法在实际生活中的应用价值,渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流的能力.【重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【难点】函数的概念的理解.19.1.1变量与函数理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.在探究问题的过程中,体会从具体的事例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.通过列举自己身边的事例,体验数学与生活的密切联系,学会观察与发现,激发同学们探究问题的兴趣.【重点】函数的概念和函数自变量的取值范围.【难点】求函数自变量的取值范围.第课时1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.【教师准备】教学中出示的教学插图和例题.【学生准备】预习教材内容导入一:当我们用数学的眼光来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温等.在某一个过程中,有些量固定不变,有些量不断改变.为了更好地认识和了解这些变化现象中所隐含的变化规律,从本节课开始我们将学习这一部分知识.[设计意图]利用学生较熟悉的生活实例引入本课学习的内容,调动学生学习的积极性.导入二:飞机从武汉飞往北京,在这个行驶的过程中,哪些量没有发生改变,哪些量发生了改变?学生说出自己的看法:如飞机上乘客的人数不变;飞机离地面的高度在改变;飞机油箱中的汽油在不停的减少,飞机离武汉越来越远,离北京越来越近,….教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.[设计意图]由学生经历的事情提问题,能引起学生的好奇心.1.变量与常量的概念问题:汽车以60km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h12345s/km学生填表,并思考.1.根据题意填写下表:t/h12345s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.教师引导学生交流:从题意中可以知道汽车是匀速行驶,那么它1h行驶60km,2h行驶2×60km,即120km,3h行驶3×60km,即180km,4h行驶4×60km,即240km,5h行驶5×60km,即300km……t/h12345s/km60120180240300因此其中行驶里程s与时间t是变化的量,速度60km/h是不变的量.行驶里程s km与时间t h之间有关系:s=60t.s随t的增大而增大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?学生分析问题,并同桌交流.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元;第二场售出205张票,则第二场电影的票房收入为元;第三场售出310张票,则第三场电影的票房收入为元.2.设一场电影售票x张,票房收入y元,则用含x的式子表示y为.教师解析:第一场电影的票房收入为150×10=1500(元).第二场电影的票房收入为205×10=2050(元).第三场电影的票房收入为310×10=3100(元).用含x的式子表示y为y=10x,y随x的增大而增大.[设计意图]通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20 cm,30cm时,圆的面积S分别为多少?S的值随r的值的变化而变化吗?学生活动填表,并讨论.(1)填表:半径r(cm)102030圆面积S(cm2)(2)S与r之间满足下列关系:S=.教师解析:(1)半径r(cm)102030圆面积S(cm2)31412562826(2)S=πr2.圆的半径越大,它的面积就越大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题:用10m长的绳子围成一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y 分别为多少?y的值随x的值的变化而变化吗?学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10m的一半,即5m.若矩形一边长为3m,则它的邻边长为5-3=2(m).若矩形一边长为3.5m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4m,则它的邻边长为5-4=1(m).若矩形一边长为4.5m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.[设计意图]在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量. [设计意图]通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.2.问题讲解在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题(1):下图是某地一天的气温变化图象,任意给出这天中的某一时刻t,你能说出这一时刻的气温T吗?这一问题中涉及哪几个量?它们变化吗?学生结合图,说出每一时刻所对应的温度值,教师进行确认.问题(2):弹簧原长22cm,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:x/kg0123456y/cm2222.52323.52424.525在这个问题中变化的量是什么?不变化的量是什么?学生讨论发现:弹簧的原长不变,为22cm,弹簧伸长的长度随着物体质量的变化而变化.因此,弹簧的总长=原长+伸长的长度.问题(3):你能举出生活中类似的例子吗?可以小组讨论.学生讨论、举例,在上述实例的解决过程中,体会在一个变化过程中各个量的变化规律,进而发现有的量变化、有的量不变.教师引导学生概括:在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变,我们称之为常量,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量.[设计意图]在本环节中,设计了问题情境,并让学生举出生活中类似的例子,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.[知识拓展](1)常量与变量是相对而言的,是相对某个变化过程来说的,换句话说,在这个变化过程中是变量,而在另一个变化过程中有可能以常量身份出现.如s=vt中,若v=20,此式子为s=20t,可见s,t为变量,若t=10,此式子为s=10v,s,v为变量,变量与常量的身份可以相互转化.(2)判断一个量是常量还是变量关键是看这个量所在的变化过程中,该量的值是否发生变化.(3)常数也叫常量,如S=πr2,其中常量是π.3.例题讲解(补充)若球体体积为V,半径为R,则V=πR3.其中变量是、,常量是.〔解析〕根据变量和常量的概念进行求解,解题时注意π是一个常量.答案:V Rπ(补充)写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.〔解析〕先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2πr,2π是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.[设计意图]通过上述几个问题进行具体的讲评,借助实例来理解变量、常量的概念.本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.[设计意图]通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.1.学校购买某种型号的钢笔作为学生的奖品,钢笔的价格是4元/支,则总金额y(元)与购买支数x(支)的关系式是,其中变量是,常量是.解析:∵钢笔的价格是4元/支,∴总金额y(元)与购买支数x(支)的关系式是y=4x,∴变量为x,y,常量为4.答案:y=4x x,y42.在圆的周长公式C=2πR中,下列说法正确的是()A.π,R是变量,2是常量B.R是变量,C,2,π是常量C.C是变量,2,π,R是常量D.C,R是变量,2,π是常量解析:∵C=2πR,∴变量为C,R,常量为2,π.故选D.3.分别指出下列各关系式中的变量与常量.(1)三角形的一边长为5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是S=h;(2)若直角三角形中的一个锐角的度数为α(度),则另一个锐角β(度)与α(度)间的关系式是β=90-α.解:(1)∵S=h,∴变量为S,h,常量为.(2)∵β=90-α,∴变量为β,α,常量为-1,90.4.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?解:根据圆的面积公式S=πr2,得r=,面积为10cm2的圆半径r=≈1.78(cm).面积为20cm2的圆半径r=≈2.52(cm).用圆面积S的式子表示圆半径r的关系式为r=.第1课时1.变量与常量的概念:变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.2.例题讲解:例1例2一、教材作业【必做题】教材第71页练习.【选做题】教材第81页习题19.1第1,2题.二、课后作业【基础巩固】1.甲、乙两地相距s千米,某人行完全程所用的时间t(小时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中错误的是()A.s是变量B.t是变量C.v是变量D.s是常量2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系式是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+503.(2015·临沂中考)已知甲、乙两地相距20千米,汽车从甲地运输匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/时)的函数关系式是()A.t=20vB.t=C.t=D.t=4.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为,则这个问题中,是常量;是变量.5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,那么油箱内剩余油量Q(升)与行驶时间t(小时)的关系式是.6.根据下列题意写出适当的关系式,并指出其中的变量与常量.(1)多边形的内角和W与边数n的关系;(2)甲、乙两地相距y千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t(小时)表示自行车离乙地的距离s(千米).【能力提升】7.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份1234…价钱/元…x与y之间的关系式是.8.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为y=,其中常量是,y和x都是量.9.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为.【拓展探究】10.圆柱形物体如下图(横截面)那样堆放.试确定圆柱形物体的总数y与层数x之间的关系式.【答案与解析】1.A(解析:某人行完全程,甲、乙两地距离不变,故s是常量,因此A不正确.)2.C(解析:单价是8元的笔记本,买这种笔记本x本用了8x元,故Q=50-8x.故选C.)3.B(解析:根据时间=,有t=.故选B.)4.y=30x,y(解析:由长方形的面积=长×宽进行求解.)5.Q=40-5t(解析:根据剩余油量=总油量-已用油量进行求解.)6.解:(1)W=(n-2)×180°,变量为W,n;常量为-2,180°.(2)s=y-10t,变量为s,t;常量为-10,y.7.0.40.81.21.6y=0.4x(解析:根据总金额=单价×数量进行求解.)8.500-5x500,-5变(解析:根据剩余笔记本数=总的笔记本数-已发的笔记本数进行求解.)9.y=23-x10.解析:要求变量间的关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.解:由题意可知:堆放1层,总数y=1,堆放2层,总数y=1+2,堆放3层,总数y=1+2+3,…,堆放x层,总数y=1+2+3+…+x,即y=x(x+1).本节课以问题为载体、以学生为主体、以合作交流为手段、以能力提高为目的.在探究知识上,以学生自主探究分组交流为主线,发挥学生的主体作用.在课堂教学中选择贴近生活的实例,与变量和常量的概念紧密结合,能使课堂效果达到最佳状态.在某个变化过程中,变量和常量是相对而言的,学生理解较困难,解题时学生容易出现把π看成变量这种错误.教学时通过对比教学多举出变量和常量是相对而言的事例,让学生真正理解变量和常量的概念.练习(教材第71页)解:(1)变量为x,y;常量为4.(2)变量为t,w;常量为0.2,30.(3)变量为r,C;常量为π.(4)变量为x,y;常量为10.函数的起源函数的概念在17世纪已经引入,牛顿(Isaac Newton,1642~1727,英国科学家)的《自然哲学的数学原理》中提出的“生成量”就是雏形的函数概念.笛卡儿(R.名言:“我思故我在”)引入变量后,随之而来的便是函数的概念.他指出y和x是变量(“未知量和未定的量”)的时候,也注意到y依赖于x而变.这正是函数思想的萌芽,但是他没有使用“函数”这个词.最早把“函数”(function)这个词用作数学术语的数学家是莱布尼茨(Gottfried Wilhelm Leibniz,1646~1716,德国数学家),但其含义和现在不同,他把函数看成是“像曲线上点的横坐标、纵坐标、切线长度、垂线段长度等所有与曲线上的点有关的量”.1718年,瑞士数学家约翰·贝努利(John Bernoulli,1667~1748,欧拉的数学老师)将函数概念公式化,给出了函数的一个定义,同时第一次使用了“变量”这个词.他写到:“变量的函数就是变量和变量以任何方式组成的量”.他的学生,瑞士数学家欧拉(Leonard Euler,1707~1783,被称为历史上最“多产”的数学家)将约翰·贝努利的思想进一步解析化,他在《无限小分析引论》中将函数定义为:“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式”,欧拉的函数定义在18世纪后期占据了统治地位.我国“函数”一词,是《代数积拾级》中首先使用的.这本书把函数定义为:“凡此变数中含彼变数,则此为彼之函数”.这里的“函”指包含的意思.这个定义相当于欧拉的解析表达式定义:在一个式中“包含”着变量x,那么这个式子就是x的函数.函数这个概念已成为数学中最重要的几个概念之一,而变量这个词却逐渐被新的词所代替.第课时初步了解函数三种表示方法以及三种表示方法的优缺点,会根据具体情况选择适当方法表示函数.1.经历回顾思考,训练提高归纳总结能力.2.利用数形结合思想,根据具体情况选用适当方法解决问题的能力.通过分析具体的问题中的一个变量的值对应着另一个变量的值,体会到函数是刻画变量之间的对应关系的数学模型.【重点】函数表示方法的应用.【难点】确定实际问题中函数自变量的取值范围.【教师准备】带有网格的纸,三角板.【学生准备】三角板,铅笔,带有网格的纸.导入一:你听说过“两个铁球同时落地”的故事吗?站在比萨斜塔顶部,让两个铁球自由下落,在铁球下落的过程中,随着时间的变化,铁球下落的速度是怎样变化的?铁球下落的速度v随下落的时间t的变化而变化.这就是我们今天要继续学习的内容.[设计意图]结合学生熟悉的故事导入新课,激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.导入二:1.有根弹簧原长10cm,每挂1kg重物,弹簧伸长0.5cm,设所挂的重物为m kg,受力后弹簧的长度为l cm,根据上述信息完成下表:m/kg01233.5…l/cm受力后弹簧的长度l是所挂重物质量m的函数吗?2.有一辆出租车,前3公里内的起步价为8元,每超过1公里收2元,有一位乘客坐了t(t>3)公里,他付费y 元,用含x的式子表示y.3.如图所示的是某地某一天的气温变化图:学生自由思考,自由发言.上面用图、表格或关系式表达的问题反映了两个变量之间的关系.[设计意图]出示题目,同时提出新的问题,让学生在解决旧知的基础上提出问题,从而激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.1.自变量、函数和函数值思路一[过渡语]前面我们学习了变量与常量,下面我们一起来思考下面的问题:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52201013.71学生通过观察发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.引导学生归纳:上面用图或表格表达的问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.教师总结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.学生分析上面两个问题中的自变量和函数,并交流.。
人教版数学八年级下册第十九章《数学活动一次函数的应用问题》教案一. 教材分析人教版数学八年级下册第十九章《数学活动一次函数的应用问题》主要让学生通过解决实际问题,进一步理解一次函数的性质和应用。
本章内容主要包括一次函数的图像与实际问题相结合,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了了一次函数的基本性质和图像,能够理解一次函数的斜率和截距。
但部分学生对于如何将一次函数与实际问题相结合,解决实际问题还有一定的困难。
三. 教学目标1.理解一次函数在实际问题中的应用。
2.能够运用一次函数解决实际问题。
3.培养学生的数学思维能力和实际问题解决能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.如何引导学生将实际问题转化为一次函数问题。
五. 教学方法采用问题驱动法,通过实际问题引导学生思考,运用一次函数的知识解决问题。
同时,采用案例分析法,分析一次函数在不同实际问题中的应用。
六. 教学准备1.准备一些实际问题,如购物问题、行程问题等。
2.准备一次函数的图像资料。
七. 教学过程1.导入(5分钟)通过一个购物问题,引导学生思考如何用数学知识解决实际问题。
2.呈现(10分钟)呈现一次函数的图像,让学生观察一次函数的特点。
同时,引导学生思考一次函数与实际问题之间的关系。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数的知识解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)选取几个小组的解题过程和答案,进行讲解和分析,巩固学生对一次函数应用的理解。
5.拓展(10分钟)引导学生思考一次函数在实际问题中的应用范围,讨论一次函数在其他领域的应用。
6.小结(5分钟)总结本节课的主要内容和解决实际问题的方法。
7.家庭作业(5分钟)布置一些有关一次函数应用的实际问题,让学生课后思考和练习。
8.板书(5分钟)板书本节课的主要内容和解决问题的方法。
教学过程每个环节所用的时间仅供参考,具体时间根据实际教学情况调整。
19.2.1 正比例函数教学设计(第一课时)
教学过程设计
板书设计
19.2.1 正比例函数说课稿(第一课时)
说教学过程设计
板书设计
《用坐标表示轴对称》说课稿
,-D(0.5,1)E(4,0)
《平方根》说课稿
说教材《平方根》是人教版初中数学八年级上第十三章第一节。
在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。
本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
说学情
八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握算术平方根的知识,具备了用所学知识来分析平方根性质的基础。
说教学目标
【知识与技能】
掌握平方根与算术平方根的概念,能及时通过开方运算求一个非负数的平方根及算术平方根,理解平方与开平方互为逆运算。
【过程与方法】
通过对平方根概念及性质的探究,渗透分类讨论和数形结合的数学思想方法,提高数学探究能力和归纳表达能力。
【情感、态度与价值观】
鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
说教学重、难点
本节课的重点是平方根与算术平方根的概念和性质。
因为平方根与算术平方根的概念和性质始终贯穿本章,正确理解这两个概念是学好本章的关键。
本节课的难点是平方根与算术平方根的区别与联系。
因为平方根与算术平方根这两个概念容易引起学生理解上的偏差和意义上的混淆,如处理不当将直接影响以后的学习。
说教法与学法
【教法】学生在七年级学过乘方运算,但由于间隔时间长,他们会有不同程度的遗忘,为了实现新旧教学方式和学习方式的接轨,我利用情景教学激发学生的兴趣,利用对比教学让学生掌握概念的本质,完善学生的知识结构。
【学法】学生才是学习的主人,教师应该把过程还给学生,让过程与结果并重。
新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此本节的学法我定为小组交流合作法和自主学习法。
这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台。
说教学过程
一、创设情景感悟新知
首先,用多媒体演示问题情境,即三个问题
(1)一个正方形桌面的边长是3尺,求这个桌面的面积是多少平方尺?
(2)已知一个正方形的面积是9cm2,求它的边长。
(3)如果一个正方形展厅的地面面积为50平方米,求它的边长。
【设计意图】这三个问题既复习了关于乘方的知识,又为今天要学习的知识作了
铺垫,而且通过实例让学生从生活中去发现、探究、认识平方根。
前两个问题很好直
接回答,而第三个问题就会使学生产生思维上困惑,引发学生的思考,导入平方根.
二、合作交流解读探究
新课在知识结构上始终抓住平方运算与开平方运算互逆这条主线进行。
学习新课时,我重视
概念的形成过程、结论的发现过程和思路的探索过程。
1、 平方根的概念
数学中很多概念常常以精炼的定义形式出现,并隐去了其形成过程,我试图将此过程揭示出来,让学生经历观察、比较、抽象、概括、验证等概念的形成过程,以便更准确地抓住概念的本质,提高数学能力。
平方根概念的引入,我设计了一个由具体到抽象的过程,在一定数量练习有了感性认识的基础上,再引入字母a 和x 表达的定义。
首先安排练习1,求已知数的平方,起到温故的作用。
练习1 计算:
(1)24 (2)29.0 (3)
2
5-)( (4)232⎪⎭⎫ ⎝⎛ (5)2
32-⎪⎭
⎫ ⎝⎛ (6)2
接着安排了练习2,逆向设问,已知某数的平方,求该数,以引入新的概念。
练习2 填空: (1)()162= (2)()81.02=
(3)()9
4
2
=
(4)()252=
(5)(
)02=
通过观测、比较练习1、练习2,引导学生发现前者是平方运算,后者是平方运算的逆运算。
自然地引出平方根和开平方的概念。
平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,•
即若a x =2
,则x 叫做a 的平方根
开平方运算:求一个数a 的平方根的运算,叫做开平方。
随后利用新概念再做练习2,让学生体会求平方与开平方运算的互逆性,熟悉平方根的定义,感受知识之间的相互区别与联系。
教学中我注意引导学生思考问题要严密,对于练习2前4小题。
不要丢掉负数解,为后面研究平方根的性质,强调正数有两个平方根,它们互为相反数这个教学重点做铺垫。
2、 平方根的性质
为了让学生经历平方根性质的发现过程,我安排了练习3. 练习3 求x :
(1)812
=x (2)02
=x (3)42
-=x (4)36.02
=x (5)492
-=x (6)1212
=x
【设计意图】在教学中,平方根性质由学生交流、讨论、比较、归纳得出,经历了从具体到抽象,从特殊到一般的过程。
由于分正数、0、负数三种情况总结,也潜移默化地渗透了分类讨论的数学思想,培养了思维的严谨性。
得出平方根性质后,我安排学生自编题目,同桌互换、互答的活动,以巩固平方根性质。
在编题过程中,有的同学也许会选择2、13等,它们的平方根不是有理数,正好为后面实数的学习作了铺垫。
例1 求下列各数的平方根
(1)361 (2)0 (3)2 (4)
2
17-)( (5)m 3、 平方根的表示方法和算术平方根
一个非负数a 的平方根用符号表示为a ±(0≥a )
引入符号“
a a a -±、、、”在介绍它们的各自读法以及强调a 是非负数后,我着重介绍
它们各自的意义,尤其是的区别a a 、±与联系。
例2 求下列各式的值
(1)144 (2)81.0- (3)196
121
±
三、应用迁移 理解新知
数学练习是巩固数学知识,形成技能、技巧的重要途径。
因此我借助以下几组练习来加深学生对知识的理解。
1、 精心选一选
(1)以下叙述中错误的是( )
A 、4的算术平方根是2
B 、
65是36
25的一个平方根 C 、1.1是
2
1.1-)(的算术平方根 D 、0.9的平方根是3.0± (2)16
81
±
的平方根是( ) A、49±
B 、49
C 、23±
D 、2
3 2、认真填一填
(1)若一个数有两个平方根,则这个数是_____
(2)324的平方根是____,7是____的一个平方根
(3)若一个正数的平方根是12-a 和2+-a ,则a =___,这个正数为___
(4)若032=-+-b a ,则=-b a 22
___
3、仔细想一想
已知12-a 的平方根是3±,13-+b a 的平方根是4±,求b a 2+的平方根。
【设计意图】这个环节是巩固本课知识点,通过设置一组由浅入深的练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。
四、整理知识 形成结构
鼓励学生参与总结,发现学生的进步,完善学生的知识体系
五、布置作业巩固提高
检查学生对本节的掌握程度,但照顾到学生之间的差异,分两类:
1、必做题:
2、选做题:
附:板书设计
好的板书就像一份微型教案,此板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆,理清知识脉络
1、平方根的概念例1 学生练习
2、平方根的性质例2
3、平方根的表示方法
评价分析
本节课的设计从学生的认知规律出发,教给学生探求知识的方法,教会学生获取知识的本领,在教学中,我努力创设平等的师生关系,让学生在和谐的课堂氛围中达到目标。
中学生好人好事社会实践报告表。