浦东新区2014年二模数学试卷(含答案)
- 格式:doc
- 大小:723.06 KB
- 文档页数:9
浦东新区2014学年度第二学期初三教学质量检测数学试卷参考答案及评分说明一、选择题1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .二、填空题7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;12.31; 13.120; 14.n m 3132+; 15.6; 16.210; 17.)(0,25; 18.558. 三、解答题 19.解:原式=12122+-÷-x x x x x …………………………………………………………(2分) =22)1(1xx x x -⋅-………………………………………………………………(2分) =xx 1-.………………………………………………………………………(2分) 把12+=x 代入,得原式=)12)(12()12(2122-+-=+………………………………………………(2分)=22-.……………………………………………………………………(2分)20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)由1262->-x x ,得2<x .………………………………………………………(3分) ∴不等式组的解集是24<≤-x .………………………………………………(2分) ∴此不等式组的非负整数解是0、1.…………………………………………(2分)21.解:(1)作DH ⊥CE ,垂足为点H .∵D 为半圆的圆心,AC =5,AE =1,∴221==EC CH .……………………(2分) ∵AC AB =,∴C B ∠=∠.……………………………………………………(1分) ∴54cos cos ==B C . 在Rt △CDH 中,∵54cos ==CD CH C ,CH =2,∴25=CD . …………………(2分) (2)作AM ⊥BC ,垂足为点M ,联结AF .∵25=CD ,∴5=CF .…………………………………………………………(1分) 在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分) ∴3452222=-=-=CM AC AM .…………………………………………(1分) ∵CF =5,CM =4,∴1=FM .……………………………………………………(1分) ∴10132222=+=+=FM AM AF .………………………………………(1分)22.解:设小张上山时的速度为每小时x 千米.…………………………………………(1分) 根据题意,得 711212=++x x .…………………………………………………(4分) 化简,得 0121772=--x x .…………………………………………………(2分)解得 31=x ,742-=x .…………………………………………………………(1分) 经检验:3=x ,742-=x 都是原方程的解,但742-=x 不符合题意,舍去.(1分) 答:小张上山时的速度为每小时3千米.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平行四边形,∴∠ABE=∠ADF .…………………(1分) ∵AE ⊥BC ,AF ⊥CD ,∴∠AEB=∠AFD=90º. ……………………(1分) ∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分) ∴BE =DF .…………………………………………………………………(1分) ∵BC =AD =AB =CD ,∴CDDF BC BE =.……………………………………(1分) ∴EF ∥BD .………………………………………………………………(1分)(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)∴ADAB DF BE =.……………………………………………………………(1分) ∵EF ∥BD ,∴CD DF BC BE =.……………………………………………(1分) ∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC .∴ABDF AD BE =.……………………………………………………………(1分) ∴ABAD DF BE =. ∴AB AD AD AB =,即22AD AB =.…………………………………………(1分) ∴AB =AD .…………………………………………………………………(1分)24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分) 把点A (1,0)、B (0,2)分别代入抛物线的表达式,得⎩⎨⎧=++-=.2,10c c b …………………………………………………………(1分)解得⎩⎨⎧=-=.2,1c b ∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)(2)作CH ⊥x 轴,垂足为点H ,得∠AHC =∠AOB =90°.∵AC ⊥AB ,∴∠OAB +∠CAH =90°.又∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .∴△AOB ∽△CHA .…………………………………………(1分)∴ACAB AH OB CH OA ==. ∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分) ∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分) ∴点C 的坐标为(t -4,-2t ).…………………………(1分)(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,∴24b t =-,即82-=t b .………………………………………(1分) 把点A (t ,0)、B (0,2)代入抛物线的表达式,得-t 2+bt +2=0. …………(1分) ∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分) 解得t =144±.………………………………………………(1分) ∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.∴t =144-.……………………………………………………(1分)25.解:(1)∵AM ∥BC ,∴∠P AD =∠APB .∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分) ∴BPAP AP AD =.………………………………………………………(1分) ∴BP AD AP ⋅=2.………………………………………………(1分)(2)过点A 作AH ⊥BC ,垂足为点H .∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分) 设BP =x ,那么2-=x PH .∴164)32()2(2222+-=+-=x x x AP .………………………(1分)∴xx x BP AP AD 16422+-==.…………………………(1分) 而AB =4,BP =x ,因此(i )如果两圆外切,那么41642=++-x xx x .整理,得0842=+-x x .∵08442<⨯-=∆,∴此方程无实数解.…………………(1分)(ii )如果两圆内切,那么41642=-+-x xx x . 解得x =2.…………………………………………………………(1分)或41642=+--xx x x . 此方程无解.………………………………………………(1分) 综上所述,如果两圆相切,那么BP =2.(3)过点A 作AH ⊥BC ,垂足为点H .由题意,可知AD =AB =4,即41642=+-xx x .…………………(1分) ∴x =4.………………………………………………………(1分) 又∵BC =6,BH =2,∴CH =4.∴AD =CH .∵AD ∥CH ,∴四边形AHCD 是平行四边形.∵∠AHC =90°,∴平行四边形AHCD 是矩形.∴∠ABE =∠ADC =90°,…………………………………(1分) EB =CD =32.……………………………(1分)过点P 作PK ⊥BE ,垂足为点K .∵∠ABC =60°,∴∠PBK =30°.又∵BP =4,∴PK =2,BK =32.∴EK =34.∴cot ∠BEP =32.………………………………(1分)。
2014年上海市浦东新区高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 已知全集U ={1, 2, 3, 4, 5},若集合A ={2, 3},则∁U A =________.2. 双曲线x 29−y 216=1的渐近线方程为________. 3. 函数f(x)=|sinx 4cosx13|的最大值为________. 4. 已知直线l 1:ax −y +2a +1=0和l 2:2x −(a −1)y +3=0(a ∈R),若l 1⊥l 2,则a =________.5. 函数y =f(x)的反函数为y =f −1(x),如果函数y =f(x)的图象过点(2, −2),那么函数y =f −1(x)+1的图象一定过点________.6. 已知数列{a n }为等差数列,若a 1+a 3=4,a 2+a 4=10,则{a n }的前n 项的和S n =________.7. 一个与球心距离为√3的平面截球所得的圆的面积为π,则球的体积为________.8. (理)一名工人维护甲、乙两台独立的机床,在一小时内,甲、乙需要维护的概率分别为0.9、0.8,则一小时内有机床需要维护的概率为________.9. 设a ∈R ,(ax −1)8的二项展开式中含x 3项的系数为7,则limn →∞(a +a 2+...+a n )=________.10. 在平面直角坐标系xOy 中,若直线l:{x =t y =t −a ,(t 为参数)过椭圆C:{x =3cosθy =2sinθ(θ为参数)的右顶点,则常数a 的值为________.11. (理)已知随机变量ξ的分布列如表,若Eξ=3,则Dξ=________的周长为________.13. 抛物线y 2=4mx(m >0)的焦点为F ,点P 为该抛物线上的动点,又点A(−m, 0),则|PF||PA|的最小值为________.14. (理)已知函数f(x)的定义域为{1, 2, 3},值域为集合{1, 2, 3, 4}的非空真子集,设点A (1, f(1)),B (2, f(2)),C (3, f(3)),△ABC 的外接圆圆心为M ,且MA →+MC →=λMB →(λ∈R),满足条件的函数f(x)有________个.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. “a >1”是“1a <1”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件16. (理)已知z=x+yi,x,y∈R,i是虚数单位.若复数z1+i+i是实数,则|z|的最小值为()A 0B 52C 5D √217. 能够把椭圆x24+y2=1的周长和面积同时分为相等的两部分的函数称为椭圆的“可分函数”,下列函数不是椭圆的“可分函数”为()A f(x)=4x3+xB f(x)=ln5−x5+x C f(x)=arctan x4D f(x)=e x+e−x18. 方程lg(x−100)2=72−(|x|−200)(|x|−202)的解的个数是()A 2B 4C 6D 8三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号规定的区域内写出必要的步骤.19. (理)如图,在直三棱柱ABC−A1B1C1中,AB⊥AC,AA1=AB=AC=1,∠ABC=π4,D、M、N分别是CC1、A1B1、BC的中点.(1)求异面直线MN与AC所成角的大小;(2)求点M到平面ADN之间的距离.20. 如图,ABCD是边长为10海里的正方形海域.现有一架飞机在该海域失事,两艘海事搜救船在A处同时出发,沿直线AP、AQ向前联合搜索,且∠PAQ=π4(其中点P、Q分别在边BC、CD上),搜索区域为平面四边形APCQ围成的海平面.设∠PAB=θ,搜索区域的面积为S.(1)试建立S与tanθ的关系式,并指出θ的取值范围;(2)求S的最大值,并求此时θ的值.21. (理)已知定义在R上的函数f(x),对任意实数x1,x2都有f(x1+x2)=1+f(x1)+f(x2),且f(1)=1.(1)若对任意正整数n,有a n=f(12n)+1,求a1、a2的值,并证明{a n}为等比数列;(2)设对任意正整数n ,有b n =1f(n),若不等式b n+1+b n+2+...+b 2n >635log 2(x +1)对任意不小于2的正整数n 都成立,求实数x 的取值范围.22.(理)已知中心在原点O ,左焦点为F 1(−1, 0)的椭圆C 1的左顶点为A ,上顶点为B ,F 1到直线AB 的距离为√77|OB|. (1)求椭圆C 1的方程;(2)过点P(3, 0)作直线l ,使其交椭圆C 1于R 、S 两点,交直线x =1于Q 点.问:是否存在这样的直线l ,使|PQ|是|PR|、|PS|的等比中项?若存在,求出直线l 的方程;若不存在,说明理由.(3)若椭圆C 1方程为:x 2m 2+y 2n 2=1(m >n >0),椭圆C 2方程为:x 2m 2+y 2n 2=λ(λ>0,且λ≠1),则称椭圆C 2是椭圆C 1的λ倍相似椭圆.已知C 2是椭圆C 1的3倍相似椭圆,若直线y =kx +b 与两椭圆C 1、C 2交于四点(依次为P 、Q 、R 、S ),且PS →+RS →=2QS →,试研究动点E(k, b)的轨迹方程.23. (理)定义区间(c, d),[c, d), (c, d],[c, d]的长度均为d −c ,其中d >c .(1)已知函数y =|2x −1|的定义域为[a, b],值域为[0, 12],写出区间[a, b]长度的最大值与最小值.(2)已知函数f M (x)的定义域为实数集D =[−2, 2],满足f M (x)={x,x ∈M−x,x ∈M (M 是D 的非空真子集).集合A =[1, 2],B =[−2, −1],求F(x)=f A∪B (x)f A (x)+f B (x)+3的值域所在区间长度的总和.(3)定义函数f(x)=1x−1+2x−2+3x−3+4x−4−1,判断函数f(x)在区间(2, 3)上是否有零点,并求不等式f(x)>0解集区间的长度总和.2014年上海市浦东新区高考数学二模试卷(理科)答案1. {1, 4, 5}2. y =±43x 3. 5 4. 135. (−2, 3)6. 32n 2−52n 7. 323π 8. 0.98 9. −1310. 3 11. 1 12. 6+6√6 13. √2214. 12 15. A 16. D 17. D 18. B19. 设AB 的中点为E ,连接EN , 则EN // AC ,且EN =12AC ,所以∠MNE 或其补角即为异面直线MN 与AC 所成的角.…3分 连接ME ,在Rt △MEN 中,tan∠MNE =ME NE=2⋯5分所以异面直线MN 与AC 所成的角为arctan2.…6分 因为AB =AC =1,∠ABC =π4,所以AB ⊥AC ,以点A 为坐标原点,分别以AB 、AC 、AA 1所在直线为x ,y ,z 轴,如图建立空间直角坐标系A −xyz ,则:M(12,0,1),N(12,12,0),D(0,1,12),…8分设平面AND 的一个法向量为n →=(x,y,z)则{n →⋅AN →=0n →⋅AD →=0 ⇒{x +y =0y +z 2=0所以平面ADN 的一个法向量为n →=(1,−1,2).…10 又AM →=(12,0,1),所以点M 到平面OAD 的距离d =|AM →⋅n →||n →|=|12+2|√6=5√612.…12分.20. 解:(1)S =S ABCD −S △ABP −S △ADQ ...2分 =100−50tanθ−50tan(π4−θ)…4分 =100−50(tanθ+1−tanθ1+tanθ),(0<θ<π4)…6分 (2)令t =1+tanθ,t ∈(1, 2)…8分 S =100−50[1+(t−1)2t ]=100−50(t +2t −2)=200−50(t +2t )…10分∵ t +2t≥2√t ⋅2t=2√2,(当且仅当t =2t时,即t =√2∈(1,2),等号成立)…12分 ∴ 当t =√2时,搜索区域面积S 的最大值为200−100√2(平方海里) 此时,θ=arctan(√2−1)…14分.21. 解:(1)令x 1=x 2=12,得f(1)=1+f(12)+f(12),则f(12)=0,a 1=f(12)+1=1...1分令x 1=x 2=14,得f(12)=1+f(14)+f(14), 则f(14)=−12,a 2=f(14)+1=12...2分 令x 1=x 2=12n+1,得f(12n+1+12n+1)=1+f(12n+1)+f(12n+1),即f(12n )=1+2f(12n+1),…4分则f(12n )+1=2[1+f(12n+1)],a n =2a n+1所以,数列{a n }是等比数列,公比q =12,首项a 1=1.…6分(2)令x 1=n ,x 2=1,得f(n +1)=1+f(1)+f(n),即f(n +1)=f(n)+2 则{f(n)}是等差数列,公差为2,首项f(1)=1,故f(n)=1+(n −1)⋅2=2n −1,…8分 b n =1f(n)=12n−1.…9分设g(n)=b n+1+b n+2+⋯+b 2n =12n+1+12n+3+⋯+14n−1, 则g(n +1)−g(n)=14n+1+14n+3−12n+1=1(4n+1)(4n+3)(2n+1)>0, 所以{g(n)}是递增数列,g min =g(2)=15+17=1235,…11分 从而635log 2(x +1)<1235,即log 2(x +1)<2...12分 则{x +1>0x +1<4,解得x ∈(−1, 3). …14分. 22. 解:(1)设椭圆C 1方程为:x 2a 2+y 2b 2=1(a >b >0), ∴ 直线AB 方程为:x −a+yb=1...1分∴ F 1(−1, 0)到直线AB 距离为d =√a 2+b2=√77b , ∴ a 2+b 2=7(a −1)2...2分又b 2=a 2−1,解得:a =2,b =√3...3分 故:椭圆C 1方程为:x 24+y 23=1.…4分(2)当直线l 与x 轴重合时,|PQ|=2,而|PR|⋅|PS|=1×5=5,∴ |PQ|2≠|PR|⋅|PS|若存在直线l ,使|PQ|是|PR|、|PS|的等比中项, 则可设直线l 方程为:x =my +3...5分代人椭圆C 1的方程,得:3(my +3)2+4y 2=12,即:(3m 2+4)y 2+18my +15=0 ∴ △=(18m)2−4×15(3m 2+4)=48(3m 2−5) 记R(x 1, y 1),S(x 2, y 2),Q(x 0, y 0), ∴ y 1y 2=153m 2+4,y 0=−2m...7分∵ |PQ|2=|PR|⋅|PS|,即|PR||PQ|=|PQ||PS|⇒y 1y 0=y0y 2,∴ y 1y 2=y 02∴153m 2+4=4m2,解得:m 2=163,符合△>0,∴ m =±4√33...9分 故存在直线l ,使|PQ|是|PR|、|PS|的等比中项,其方程为x =±4√33y +3,即:y =±√34(x −3)…10分(3)椭圆C 1的3倍相似椭圆C 2的方程为:x 212+y 29=1...11分设Q 、R 、P 、S 各点坐标依次为(x 1, y 1)、(x 2, y 2)、(x 3, y 3)、(x 4, y 4) 将y =kx +b 代人椭圆C 1方程,得:(3+4k 2)x 2+8kbx +4b 2−12=0 ∴ △1=(8kb)2−4(3+4k 2)(4b 2−12)=48(4k 2+3−b 2)>0(∗) 此时:x 1+x 2=−8kb 3+4k 2,x 1x 2=4b 2−123+4k 2⇒|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=4√3(4k 2+3−b 2)3+4k 2...13分将y =kx +b 代人椭圆C 2方程,得:(3+4k 2)x 2+8kbx +4b 2−36=0 ∴ x 3+x 4=−8kb3+4k 2,x 3x 4=4b 2−363+4k 2⇒|x 3−x 4|=4√3(12k 2+9−b 2)3+4k 2...14分∴ x 1+x 2=x 3+x 4,可得线段PS 、QR 中点相同,∴ |PQ|=|RS|由PS →+RS →=2QS →⇒PQ →=QR →,∴ |PS|=3|QR|,可得:|x 3−x 4|=3|x 1−x 2| ∴4√3(12k 2+9−b 2)3+4k 2=3×4√3(4k 2+3−b 2)3+4k 2,∴ 12k 2+9=4b 2(满足(∗)式). 故:动点E(k, b)的轨迹方程为4b 29−4k 23=1.…16分.23. 解:(1)|2x −1|=12,解得x =−1或x =log 232,|2x −1|=0,解得x =0,画图可得:区间[a, b]长度的最大值为log 23,最小值为log 232.(2)F(x)={x 3,x ∈A ∪Bx2x−3,x ∈(−1,1)当x ∈A ∪B ,F(x)∈[−23,−13]∪[13,23], 当x ∈(−1, 1),F(x)∈(−1,15),所以x ∈[−2, 2]时,F(x)∈(−1,15)∪[13,23] 所以值域区间长度总和为2315.(3)由于当2<x <3时,取x =2.001,f(2.001)>0,取x=2.999,f(2.999)<0,所以方程f(x)=0在区间(2, 3)内有一个解考虑函数f(x)=1x−1+2x−2+3x−3+4x−4−2,由于当x<1时,f(x)<0,故在区间(−∞, 1)内,不存在使f(x)>0的实数x;对于集合{1, 2, 3, 4}中的任一个k,由于当k−1<x<k时,取x=k+0.001,f(x)>0,取x=k+1−0.001,f(x)<0又因为函数y=f(x)在区间(1, 2),(2, 3),(3, 4),(4, +∞)内单调递减,所以方程f(x)=0在区间(1, 2),(2, 3),(3, 4),(4, +∞)内各有一个解;依次记这4个解为x1,x2,x3,x4,从而不等式f(x)>0的解集是E=(1, x1)∪(2, x2)∪(3, x3)∪(4, x4),故得所有区间长度的总和为S=(x1−1)+(x2−2)+(x3−3)+(x4−4)=x1+x2+x3+x4−10…①对f(x)>0进行通分处理,分子记为p(x)p(x)=(x−2)(x−3)(x−4)+2(x−1)(x−3)(x−4)+3(x−1)(x−2)(x−4)+4(x−1)(x−2)(x−3)−2(x−1)(x−2)(x−3)(x−4)如将p(x)展开,其最高项系数为−2,设p(x)=−2x4+a3x3+a2x2+a1x+a0…②又有p(x)=−2(x−x1)(x−x2)(x−x3)(x−x4)…③对比②③中p(x)的x3系数,2(x1+x2+x3+x4)=1+2+3+4+2(1+2+3+4)=30可得:S=x1+x2+x3+x4−10=5.。
上海市浦东新区2014年高考预测(二模)数学(理)试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 已知全集{}U=1,2,3,4,5,若集合{}A=2,3,则U A ð=__{}1,4,5___2. 双曲线221916x y -=的渐近线方程为 43y x =± . 3.函数()31cos 4sin xx x f =的最大值为__5_____4.已知直线1:210l ax y a -++=和()()2:2130l x a y a R --+=∈,若12l l ⊥,则a =13. 5.函数()y f x =的反函数为()1y fx -=,如果函数()y f x =的图像过点()2,2-,那么函数()11y f x -=+的图像一定过点___(2,3)-___.6. 已知数列{}n a 为等差数列,若134a a +=,2410a a +=,则{}n a 的前n 项的和n S =__23522n n -___.7.π,则球的体积为 __323π__ . 8.(理) 一名工人维护甲、乙两台独立的机床,在一小时内,甲、乙需要维护的概率分别为0.9、0.8,则一小时内有机床需要维护的概率为_____0.989.设a R ∈,8(1)ax -的二项展开式中含3x 项的系数为7,则2lim()nn a a a →∞+++=L __13-__. 10.(理)在平面直角坐标系xoy 中,若直线:x t l y t a =⎧⎨=-⎩(t 为参数)过椭圆3cos C:2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a =_3__.11.(理)已知随机变量ξ的分布列如右表,若3E ξ=,则D ξ=__1 .12.在ABC ∆中, 角B 所对的边长6b =,ABC ∆的面积为15,外接圆半径R 5=,则AB C ∆的周长为_____6+13.抛物线24(0)y mx m =>的焦点为F ,点P 为该抛物线上的动点,又点A(,0)m -,则PF PA的最小值为2. 14.(理)已知函数()f x 的定义域为{}1,2,3,值域为集合{}1,2,3,4的非空真子集,设点()A 1,(1)f ,()B 2,(2)f ,()C 3,(3)f ,ABC ∆的外接圆圆心为M ,且MA MC MB()R λλ+=∈u u u r u u u r u u u r,则满足条件的函数()f x 有_12_个.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. “1x >”是“11x<”的( A ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 16. (理)已知z x yi =+,,x y R ∈, i 是虚数单位.若复数+1zi i+是实数,则z 的最小值为( D )(A )0 (B )52(C ) 5 (D 17.能够把椭圆2214x y +=的周长和面积同时分为相等的两部分的函数称为椭圆的“可分函数”,下列函数不是..椭圆的“可分函数”为( D ) (A )3()4f x x x =+(B )5()ln5x f x x -=+(C )()arctan 4x f x =(D )()x xf x e e -=+ 18. (理)方程27lg(100)(||200)(||202)2x x x -=---的解的个数为( B ) (A )2 (B )4 (C )6 (D )8三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号规定的区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.(理)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,11AA AB AC ===,4ABC π∠=,D 、M 、N 分别是1CC 、11A B 、BC 的中点.(1)求异面直线MN 与AC 所成角的大小;(2)求点M 到平面ADN 之间的距离.解:(1)设AB 的中点为E ,连接EN ,则//EN AC ,且12EN AC =,所以MNE ∠或其补角即为异面直线MN 与AC 所成的角。
23题图FED CBA上海各区、县中考数学二模23题1、(宝山区)如图9,在直角梯形ABCD 中,AD ∥BC ,︒=∠=∠90ABC DAB , E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证EF BE =. (2)联结BD 交AE 于M ,当1=AD ,2=AB ,EM AM =时,求CD 的长.2、(长宁区)如图,在Rt △ABC 中,∠B =90°,∠C =30°,点D 、E 、F 分别在边BC 、AB 、AC 上,联结DE 、EF 、FD ,若BE =21ED ,且FD ⊥BC .(1) 求证:四边形AEDF 是平行四边形; (2) 若AE AC 3=,求证:四边形AEDF 是菱形.3、(奉贤区)已知:如图,点E 是四边形ABCD 的对角线BD 上一点,且∠BAC =∠BDC =∠DAE .⑴求证:△ABE ∽△ACD ;⑵求证:AC DE AD BC ⋅=⋅;A B CD F EM 图9 E第23题DCBA4、(虹口区)已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ΔABE 沿BC 方向平移,使点E 与点C 重合,得ΔGFC 。
(1)求证:BE=DG ;(2)若∠BCD=120°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论。
5、(黄浦区) 如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .6、(金山区) 已知:如图7,线段,AB ∥CD ,AC ⊥CD ,AC 、BD 相交于点P ,E 、F 分别是线段BP 和DP 的中点. (1) 求证:AE // CF ;(2) 如果AE 和DC 的延长线相交于点Q ,M 、N 分别是线段AP 和DQ 的中点,求证:MN = CE .F E DC B A 图8 EF P DCBA7、(静安、青浦区、崇明县)已知:如图,在△ABC 中,AB =AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2;(2)联结CG ,求证:∠ECB =∠DCG .8、(闵行区)已知:如图,四边形ABCD 是平行四边形,分别以AB 、AD 为腰作等腰三角形△ABF 和等腰三角形△ADE ,且顶角∠BAF =∠DAE ,联结BD 、EF 相交于点G ,BD 与AF 相交于点H . (1)求证:BD =EF ;(2)当线段FG 、GH 和GB 满足怎样的数量关系时,四边形ABCD 是菱形,并加以证明.9、(浦东新区)已知,如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.(第23题图) AB CDE GFABD CEF (第23题图)G H(第23题图)10、(普陀区) 抛物线2y ax bx =+经过点A (4,0)、B (2,2),联结OB 、AB . (1) 求此抛物线的解析式;(5分) (2) 求证:△ABO 是等腰直角三角形;(4分)(3) 将△ABO 绕点O 按顺时针方向旋转135°得到△O 11A B ,写出边11A B 中点P 的坐标,并判断点P 是否在此抛物线上,说明理由. (3分)11、(松江区) 如图,在正方形ABCD 中,E 是边CD 上一点,AF AE ⊥交CB 的延长线于点F ,联结DF ,分别交AE 、AB 于点G 、P . (1)求证:AE=AF ;(2)若∠BAF =∠BFD ,求证:四边形APED 是矩形.12、(徐汇区) 已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC .(3) 求证:AO OF OC OE ⋅=⋅;(4) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形. (第23题图)BACFE DPG13、(杨浦区)如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F 。
浦东新区2014年中考预测数学试卷 2014.4.15(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列代数式中,属于单项式的是(A )1+a ;(B )a 2;(C )a2; (D )2a . 2.数据1,3,7,1,3,3的平均数和标准差分别为(A )2,2;(B )2,4; (C )3,2;(D )3,4.3.已知抛物线2)1(+-=x y 上的两点)()(2211y x B y x A ,和,,如果121-<<x x ,那么下列结论一定成立的是 (A )021<<y y ; (B )210y y <<;(C )120y y <<;(D )012<<y y .4. 某粮食公司2013年生产大米总量为a 万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为 (A )%)101(+a 万吨;(B )%)101(+a万吨;(C )%)101(-a 万吨; (D )%)101(-a万吨.5.在四边形ABCD 中,对角线AC 、BD 相交于点O ,CBD ADB ∠=∠,添加下列一个条件后,仍不能判定四边形ABCD 是平行四边形的是 (A )CDB ABD ∠=∠;(B )BCD DAB ∠=∠; (C )CDA ABC ∠=∠;(D )BCA DAC ∠=∠.6. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是 (A )3;(B )4;(C )5;(D )6.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:π-3= ▲ .8. 化简:23410ab b a = ▲ .9.计算:xx x ---2111= ▲ . 10.正八边形的中心角等于 ▲ 度.11.如果关于x 的方程0332=+-mx x 有两个相等的实数根,那么m 的值为 ▲ . 12.请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是 ▲ .13.如果关于x 的方程1+=x bx 有解,那么b 的取值范围为 ▲ . 14. 在□ABCD 中,已知AC a =,DB b =,那么用向量a 、b表示向量AB 为 ▲ .15. 把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是 ▲ .16.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是 ▲ .17.如图,已知点A 在反比例函数xky =的图像上,点B 在x 轴的正半轴上,且△OAB 是面积为3的等边三角形,那么这个反比例函数的解析式是 ▲ . 18.在Rt △ABC 中,∠ACB =90°,AC =2,23cos =A ,如果将△ABC 绕着点C 旋转至△A'B'C 的位置,使点B' 落在∠ACB 的角平分线上,A'B' 与AC 相交于点H ,那么线段CH 的长等于 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:51555551212-⎪⎪⎭⎫ ⎝⎛++--)(.20.(本题满分10分)[来源:Z|xx|]解不等式组:⎪⎩⎪⎨⎧-≥+-<-,,x x x x 321334)1(372并把解集在数轴上表示出来.(第17题图)(每组可含最小值,不含最大值)(第16题图)(第20题图)(第22题图)已知:如图,∠P AQ =30°,在边AP 上顺次截取AB =3cm ,BC =10cm ,以BC 为直径作⊙O 交射线AQ 于E 、F 两点, 求:(1)圆心O 到AQ 的距离; (2)线段EF 的长.22.(本题满分10分,其中第(1)小题4分,第(2)小题3分,第(3)小题3分) 甲、乙两车都从A 地前往B 地,如图分别表示甲、乙两车离A 地的距离S (千米)与时间t (分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B 地,最终甲、乙两车同时到达B 地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少? (2)乙车出发多少分钟后第一次与甲车相遇? (3)甲车中途因故障停止行驶的时间为多少分钟?[来源学科网ZXXK]23.(本题满分12分,其中每小题各6分)已知:如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.(第21题图) (第23题图)如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=241与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC . (1)求这条抛物线的表达式及顶点M 的坐标; (2)求M AC ∠tan 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD =45º,求点D 的坐标.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在△ABC 中,AB =AC ,BC 比AB 大3,54sin =B ,点G 是△ABC 的重心,AG 的延长线交边BC 于点D .过点G 的直线分别交边AB 于点P 、交射线AC 于点Q . (1)求AG 的长;(2)当∠APQ=90º时,直线PG 与边BC 相交于点M .求MQAQ的值; (3)当点Q 在边AC 上时,设BP =x ,AQ =y ,求y 关于x 的函数解析式,并写出它的定义域.[来源:学.科.网Z.X.X.K][来源学_科_网](第24题图)(第25题图)浦东新区2014年中考预测数学试卷答案要点及评分标准一、选择题:1.D ; 2.C ; 3.A ; 4.B ; 5.D ; 6.C . 二、填空题:7.3-π; 8.ba 252;9.x1; 10.45; 11.6±; 12.圆等; 13.1≠b ;14.b a 2121+; 15.50%;16.0.62;17.xy 3-=; 18.13-. 三、解答题:19.解:原式5555555+=-+-……………………………………………………………(8分)5555155=-++-……………………………………………………………(1分)65=-…………………………………………………………………………(1分) 20.解:273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩,.由①得2733x x -<-…………………………………………………………………(1分)化简得105<x ,………………………………………………………………………(1分) 解得:2<x .…………………………………………………………………………(1分) 由②得4932x x +≥-,………………………………………………………………(1分) 化简得66x ≥-,………………………………………………………………………(1分) 解得:1-≥x .…………………………………………………………………………(1分) ∴原不等式组的解集为.21<≤-x …………………………………………………(2分)………………………………………………(2分)21.解:(1)过点O 做OH ⊥EF ,垂足为点H . ……………………………………………(1分) ∵OH ⊥EF ,∴∠AHO =90°,在Rt △AOH 中,∵∠AHO =90°,∠P AQ =30°,∴ OH =12AO ,……………(2分) ∵BC =10cm ,∴ BO=5cm . ∵AO =AB +BO ,AB =3cm ,∴AO =3+5=8cm ,…………………………………………………………………(1分)∴OH =4cm ,即圆心O 到AQ 的距离为4cm .………………………………(1分) (2)联结OE , 在Rt △EOH 中,∵ ∠EHO =90°,∴ 222EH HO EO +=,…………(1分)∵ EO =5cm ,OH =4cm ,∴ EH =3452222=-=-OH EO cm ,……………(2分) ∵ OH 过圆心O ,OH ⊥EF ,∴ EF =2EH =6cm .………………………………………(2分) 22.解:(1)204153v ==甲(千米/分钟), ∴ 甲车的速度是43千米每分钟.……(2分) ① ②6017010v ==-乙(千米/分钟),∴ 乙车的速度是1千米每分钟.…………(2分)(2)解法①∵ 20120==乙t (分钟),∴乙车出发20分钟后第一次与甲车相遇.………(3分) 解法②设甲车离A 地的距离S 与时间t 的函数解析式为:S kt b =+(0k ≠)将点(10,0)(70,60)代入得:100,7060.k b k b +=⎧⎨+=⎩…………………………………(1分)解得:1,10.k b ==-⎧⎨⎩,即10.S t =-……………………………………………………(1分)当y =20时,解得t =30,∵ 甲车出发10分钟后乙车才出发,∴ 30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.…………………(1分) (3)∵ 440303t =÷=(分钟),…………………………………………… (1分) ∵ 70-30-15=25(分钟),∴ 甲车中途因故障停止行驶的时间为25分钟.… (2分)23.证明:(1)∵四边形ABCD 是正方形,∴AB =DA=BC=CD , ∠BAD =∠ADF=∠BCF=90°,………………………(1分) ∴∠BAH +∠HAE =90°,∵ AF ⊥BE ,∴ ∠AHB =90°即∠BAH +∠ABH =90°,∴∠ABH =∠HAE ,………………………………………………………………(1分) 又∵∠BAE =∠ADF , ∴ △ABE ∽△DAF ,………………………………………………………………(1分)[来源:Z §xx §∴DFAE DA AB =,∴AE =DF .……………………………………………………………………(1分) ∵ 点E 是边AD 的中点,∴点F 是边DC 的中点,∴ CF =AE ,……………………………………………………………………(1分) 在Rt △ABE 与Rt △CBF 中, ,.AB CB AE CF =⎧⎨=⎩∴ Rt △ABE ≌Rt △CBF ,∴BE =BF .……………………………………………………………………(1分)(2)∵四边形ABCD 是正方形,∴DB 平分∠ADC ,∴∠ADB =∠CDB ,…………………………………(1分)在△DEO 与△DFO 中, ,,.ED FD ADB CDB DO DO ⎧⎪⎨⎪⎩=∠=∠= ∴△DEO ≌△DFO ,…………………………………………………………(2分)∴∠DEO =∠DFO ,…………………………………………………………(1分)∵△ABE ∽△DAF ,∴∠AEB =∠DF A ,………………………………… (1分) ∴∠AEB =∠DEO .…………………………………………………………(1分) 24.(1)解:∵C (0,-3),∴OC =3.2134y x bx =+-………………………………(1分)∵OA =2OC ,∴OA =6. ∵041>=a ,点A 在点B 右侧,抛物线与y 轴交点C (0,-3). ∴)0,6(A .…………………………………………………………………(1分)∴2134y x x =--.………………………………………………………(1分) ∴4)2(412--=x y ,∴)4,2(M . ……………………………………(1分)(2)过点M 作MH ⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE ⊥AM 于 点E ,垂足为点E .在Rt △AHM 中,HM =AH =4,42AM =,45AMH HAM ︒∠=∠=. 求得直线AC 的表达式为132y x =-.………………(1分)∴N (2,-2).∴MN =2.…………………………………(1分) 在Rt △MNE 中,∴2ME NE ==,∴32AE =.…………………………………………(1分) 在Rt △AEN 中,221tan 33NE MAC AE =∠==.………(1分) (3)①当D 点在AC 上方时,∵1145CAD D AH HAC ︒∠=∠+∠=, 又 ∵45HAM AC AM H C ︒∠=∠+∠=,∴1D AH CAM ∠=∠. …………………………(1分) ∴1tan tan 13D AH AC M ∠=∠=. ∵点1D 在抛物线的对称轴直线x =2上, ∴1D H AH ⊥,∴4AH =.在Rt △AH 1D 中,1114tan 433D H AH D AH =⋅∠=⨯=. ∴14(2,)3D .………………………………………(1分)②当D 点在AC 下方时,∵2245D AC D AM MAC ∠=∠+∠=︒,又 ∵2245AMH D AM AD M ∠=∠+∠==︒,∴2MAC AD M ∠=∠.………………………………(1分)∴2tan tan 13AD H MAC ∠=∠= 在Rt △2D AH 中,221412tan 3AHD H AD H==÷=∠.∴2(2,12)D -.………………………………………(1分)综上所述:14(2,)3D ,2(2,12)D -.25.解:(1)在△ABC 中,∵AB =AC ,点G 是△ABC 的重心, ∴12BD DC BC ==,AD ⊥BC .………………………………………………(1分)在Rt △ADB 中,∵4sin 5AD B AB ==,∴35BD AB =. ∵3BC AB -=, ∴AB =15,BC =18.∴AD =12.………………………………………………………………………(1分) ∵G 是△ABC 的重心,∴283AG AD ==.…………………………………(1分)(2)在Rt △MDG ,∵∠GMD +∠MGD =90°, 同理:在Rt △MPB 中,∠GMD +∠B =90°,∴∠MGD =∠B .…………………………………(1分) ∴4sin sin 5MGD B ∠==, 在Rt △MDG 中,∵143DG AD ==, ∴163DM =,∴113CM CD DM =-=……(1分)在△ABC 中,∵AB =AC ,AD ⊥BC ,∴BAD CAD ∠=∠.∵90QCM CDA DAC DAC ︒∠=∠+∠∠=+, 又 ∵90QGA APQ BAD BAD ︒∠=∠+∠∠=+, ∴QCM QGA ∠=∠,………………………………(1分) 又 ∵CQM GQA ∠=∠,∴△QCM ∽△QGA .………………………………(1分) ∴2411AQ AG MQ MC ==.……………………………(1分) (3)过点B 作BE AD ,过点C 作CF AD ,分别交直线PQ 于点E 、F ,则BEAD CF .…………………………………(1分)∵BE AD ,∴AP AG BP BE =,即158x x BE-=, ∴815xBE x=-.………………………………(1分)同理可得:AQ AG QC CF =,即815y y CF=-, ∴8(15)y CF y-=.……………………………(1分) ∵BEAD CF , BD CD =,∴EG FG =.∴2CF BE GD +=,即8(15)8815y xy x-+=-.(1分) ∴75510x y x-=-,15(0)2x ≤≤.…………………(2分)。
上海市浦东新区2014年高考预测(二模)数学(文)试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写结果, 每个空格填对得4分,否则一律得零分.1. 已知全集{}U=1,2,3,4,5,若集合{}A=2,3,则U A ð= .2. 双曲线221916x y -=的渐近线方程为 . 3. 函数()31cos 4sin x x x f =的最大值为 .4. 已知直线1:210l ax y a -++=和()()2:2130l x a y a R --+=∈,若12l l ⊥,则a = .5. 函数()y f x =的反函数为()1y f x -=,如果函数()y f x =的图像过点()2,2-,那么函数()11y fx -=+的图像一定过点 .6. 已知数列{}n a 为等差数列,若134a a +=,2410a a +=,则{}n a 的前n 项的和n S = .7. 一个与球心距离为3的平面截球所得的圆的面积为π,则球的体积为 .8. 把3本不同的语文书、7本不同的数学书随机的排在书架上,则语文书排在一起的概率是 .9. 设a R ∈,8(1)ax -的二项展开式中含3x 项的系数为7,则2lim()nn a a a →∞+++=L .10. 一个用若干块大小相同的立方块搭成的立体图形,主视图和俯视图是同一图形(如图),那么搭成这样一个立体图形最少需要 个小立方块. 11. 已知数据3,4,,,11x y 的均值为6,方差为8,则x y -= .12. 在ABC ∆中, 角B 所对的边长6b =,ABC ∆的面积为15,外接圆半径R 5=, 则ABC ∆的周长为 .13.抛物线24(0)y mx m =>的焦点为F ,点P 为该抛物线上的动点,又点A(,0)m -, 则PF PA的最小值为 .14. 已知函数()f x 的定义域为{}1,2,3,值域为集合{}1,2,3,4的非空真子集,设点()A 1,(1)f ,()B 2,(2)f ,()C 3,(3)f ,且()BA BC AC 0+⋅=uu u r uu u r uu u r,则满足条件的函数()f x 有 个.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的 相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. “1x >”是“11x<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件16. 设x 、y 均是实数,i 是虚数单位,复数(2)(52)i x y x y -+--的实部大于0,虚部不小于0, 则复数z x yi =+在复平面上的点集用阴影表示为下图中的( )17. 能够把椭圆2214x y +=的周长和面积同时分为相等的两部分的函数称为椭圆的“可分函数”, 下列函数不是..椭圆的“可分函数”为( ) (A )3()4f x x x =+ (B )5()ln5xf x x-=+ (C )()arctan4x f x =(D )()xxf x e e -=+18. 方程2lg 4(||200)(||202)x x x =---的解的个数为( ) (A )2 (B )4 (C )6 (D )8三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号规定的区域内 写出必要的步骤.19.(本题满分12分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分. 如图,在直三棱柱111ABC A B C -中,AB AC ⊥,11AA AB AC ===,4ABC π∠=,D 是1CC 的中点,点M 在线段11A B 上.(1)当M 为11A B 中点时,求异面直线DM 与AB 所成角的大小.(2)指出直线1CC 与平面MAB 的位置关系(不用证明),并求三棱锥D MAB -的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.如图,ABCD 是边长为10海里的正方形海域.现有一架飞机在该海域失事,两艘海事搜救船在A 处 同时出发,沿直线AP 、AQ 向前联合搜索,且4PAQ π∠=(其中点P 、Q 分别在边BC 、CD 上),BDCAQPθ搜索区域为平面四边形APCQ 围成的海平面.设PAB θ∠=,搜索区域的面积为S .(1)试建立S 与tan θ的关系式,并指出θ的取值范围; (2)求S 的最大值,并求此时θ的值.21. (本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.已知定义在*N 上的函数)(x f ,对任意正整数1n 、2n ,都有1212()1()()f n n f n f n +=++,且(1)1f =. (1)若对任意正整数n ,有(2)1n n a f =+,求1a 、2a 的值,并证明{}n a 为等比数列; (2)若对任意正整数n ,()f n 使得不等式2()3log (1)28n f n x <+恒成立,求实数x 的取值范围.22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题 满分6分.定义区间),(d c ,),[d c ,],(d c ,],[d c 的长度均为c d -,其中c d >.(1)已知函数21xy =-的定义域为[],a b ,值域为10,2⎡⎤⎢⎥⎣⎦,写出区间[],a b 长度的最大值与最小值.(2)已知函数()2sin f x x =,将函数()y f x =的图像的每点横坐标缩短到原来的12倍,然后向左平移8π个单位,再向上平移3个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <) 满足:()y g x =在[,]a b 上至少含有2014个零点,在所有满足上述条件的[,]a b 中,求区间[,]a b长度的最小值.(3)已知函数()M f x 的定义域为实数集[2,2]D =-,满足(),,M x x Mf x x x M ∈⎧=⎨-∉⎩(M 是D 的非空真子集) . 集合[]1,2A =,[]2,1B =-- ,求()()()()3A B A B f x F x f x f x =++的值域所在区间长度的总和.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题 满分8分.已知中心在原点O ,左焦点为1(1,0)F -的椭圆C 的左顶点为A ,上顶点为B ,1F 到直线AB 的距离为7||7OB .(1) 求椭圆C 的方程;(2) 过(3,0)P 的直线l 交椭圆C 于R 、S 两点,交直线1x =于Q 点, 若||PQ 是||PR 、||PS 的等比中项,求直线l 的方程;(3) 圆D 以椭圆C 的两焦点为直径,圆D 的任意一条切线m 交椭圆C 于 两点M 、N ,试求弦长||MN 的取值范围.参考答案一、填空题(本大题满分56分) 1. {}1,4,5 2. 43y x =± 3. 5 4. 13 5. (2,3)- 6. 23522n n - 7.323π 8.115 9. 13- 10. 5 11. 2 12. 666+ 13.2214. 20 二、选择题(本大题满分20分)15. A 16. A 17. D 18 C三、解答题(本大题满分74分)19.解:(1)∵11//AB A B ∴1A MD ∠或其补角是异面直线DM 与AB 所成的角. ………………3分连接1A D ,则三角形1A DM 为直角三角形,且0190DA M ∠=,152A D =,112A M =∴111tan 5A DA MD A M∠== …………………………5分 ∴异面直线DM 与AB 所成的角为arctan 5.………6分(2)1CC //平面11AA B B 即1CC ∥平面MAB (不必证明)…………………………7分 ∵CA AB ⊥, 1CA AA ⊥,CA ⇒⊥平面11AA B B 所以C 到平面11AA B B 的距离为CA=1. 1CC ∥平面11AA B B ,可知D 到平面11AA B B 的距离与C 到平面11AA B B 的距离相等,为CA=1. …9分又11//AB A B ,∴MAB ∆的面积11122ABMSAB AA =⋅=……………………………11分 ∴13D MAB ABMV SCA -=⋅111326AC =⋅⋅=.……………………………………………12分20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.解:(1)ABCD ABP ADQ S S S S ∆∆=-- ……………………………………………………2分10050tan 50tan()4πθθ=--- ……………………………………………4分1tan 10050tan ,(0)1tan 4θπθθθ-⎛⎫=-+<< ⎪+⎝⎭…………………………………6分 (2)令1tan ,(1,2)t t θ=+∈ …………………………………………………………8分 21(1)221005010050(2)20050()t S t t t t t ⎡⎤+-=-=-+-=-+⎢⎥⎣⎦……………10分 22222t t t t+≥⋅=,(当且仅当2t t =时,即()21,2t =∈,等号成立)…12分 ∴当2t =时,搜索区域面积S 的最大值为2001002-(平方海里)此时,arctan(21)θ=- …………………………………………………………14分 21. (本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. 解:(1)令121n n ==,得()()(2)111f f f =++,则(2)3f =,1(2)14a f =+= ………1分 令122n n ==,得()()(4)122f f f =++,则(4)7f =,2(4)18a f =+= …………2分令122n n n ==,得(22)1(2)(2)n n n n f f f +=++,即1(2)12(2)n n f f +=+,…………4分则1(2)121(2)n nf f +⎡⎤+=+⎣⎦,12n n a a +=所以,数列{}n a 是等比数列,公比2q =,首项14a =. …………………………6分(2)令12,1n n n ==,得(1)1(1)()f n f f n +=++,即(1)()2f n f n +=+则)}({n f 是等差数列,公差为2,首项(1)1f =.故122)1(1)(-=⋅-+=n n n f . …………………………………………………8分 设()21()22n n f n n g n -==,则11212132(1)()222n n n n n ng n g n +++--+-=-= 当1n =时,(1)()0g n g n +->,即(2)(1)g g >当2n ≥时,(1)()0g n g n +-<,即2n ≥时,)}({n g 是递减数列. 所以,max 3(2)4g g ==………………………………………………………………11分 从而233log (1)84x +>,即2log (1)2x +>…………………………………………12分 则1014x x +>⎧⎨+>⎩,解得(3,)x ∈+∞.……………………………………………………14分22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.解:(1)1212x-=,解得1x =-或23log 2x =, 210x -=,解得0x =,……………………2分画图可得:区间[],a b 长度的最大值为2log 3,最小值为23log 2. …………………4分 (2)()2sin(2())32sin(2)384g x x x ππ=++=++……………………………6分311()0sin(2)4224g x x x k πππ=⇒+=-⇒=-或7,24x k k Z ππ=-∈, 即()g x 的零点相离间隔依次为6π和56π, …………………………………………8分故若()y g x =在[,]a b 上至少含有2014个零点,则b a -的最小值为511007100666πππ-=.……10分 (3)(),3,(1,1)23xx A B F x x x x ⎧∈⎪⎪=⎨⎪∈-⎪-⎩…………………………………………………12分当x AB ∈,2112(),,3333F x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,……………………………………13分 当(1,1)x ∈-,1()(1,)5F x ∈-,……………………………………………………14分 所以[2,2]x ∈-时,112()(1,),533F x ⎡⎤∈-⎢⎥⎣⎦……………………………………15分所以值域区间长度总和为2315。
2014年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2014•浦东新区二模)下列代数式中,属于单项式的是()A. a+1 B.C.D.考点:单项式.分析:根据单项式的定义逐个判断即可.解答:解:A、不是单项式,故本选项错误;B、不是单项式,故本选项错误;C、不是单项式,故本选项错误;D、是单项式,故本选项正确;故选D.点评:本题考查了对单项式定义的理解和运用,注意:单项式表示数与字母的积,单独一个数或字母也是单项式.2.(4分)(2014•浦东新区二模)数据1,3,7,1,3,3的平均数和标准差分别为()A. 2,2 B.2,4 C.3,2 D.3,4考点:标准差;加权平均数.分析:根据平均数的计算公式求出这组数据的平均数,再根据方差公式求出方差,从而得出标准差.解答:解:这组数据1,3,7,1,3,3的平均数是:(1+3+7+1+3+3)=3;方差S2=[(1﹣3)2+(3﹣3)2+(7﹣3)2+(1﹣3)2+(3﹣3)2+(3﹣3)2]=4,则标准差是2.故选C.点评:此题主要考查了平均数,方差和标准差,用到的知识点是平均数、方差和标准差的计算公式,关键是根据题意和公式列出算式.3.(4分)(2014•浦东新区二模)已知抛物线y=﹣(x+1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<﹣1,那么下列结论一定成立的是()A. y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0考点:二次函数图象上点的坐标特征.分析:根据二次函数的性质得到抛物线y=﹣(x+1)2的开口向下,有最大值为0,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而增大,所以x1<x2<﹣1时,y1<y2<0.解答:解:∵y=﹣(x+1)2,∴a=﹣1<0,有最大值为0,∴抛物线开口向下,∵抛物线y=﹣(x+1)2对称轴为直线x=﹣1,而x1<x2<﹣1,∴y1<y2<0.故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a<0,抛物线开口向下;对称轴为直线x=﹣,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小.4.(4分)(2014•浦东新区二模)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A. a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.5.(4分)(2014•浦东新区二模)在四边形ABCD中,对角线AC、BD相交于点O,∠ADB=∠CBD,添加下列一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.∠ABD=∠CDB B.∠DAB=∠BCD C.∠ABC=∠CDA D.∠DAC=∠BCA考点:平行四边形的判定.分析:利用平行四边形的判定定理逐步判定后即可确定答案.解答:解:由∠ADB=∠CBD科研得到AD∥BC,∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四边形ABCD是平行四边形;B、利用三角形的内角和定理能进一步得到∠ABD=∠CDB,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;C、能进一步得到∠CDB=∠ABD,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;D、不能进一步得到AB∥CD,所以不能判定四边形ABCD是平行四边形,故选D.点评:本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.(4分)(2014•浦东新区二模)如果A、B分别是⊙O1、⊙O2上两个动点,当A、B两点之间距离最大时,那么这个最大距离被称为⊙O1、⊙O2的“远距”.已知,⊙O1的半径为1,⊙O2的半径为2,当两圆相交时,⊙O1、⊙O2的“远距”可能是()A. 3 B.4C.5D.6考点:圆与圆的位置关系.专题:新定义.分析:首先弄清缘聚的定义,然后结合两圆的圆心距的取值范围求解.解答:解:∵⊙O1的半径为1,⊙O2的半径为2,∴圆心距d的取值范围为:1<d<3,∴⊙O1、⊙O2的“远距”的取值范围为:4<远距<6,故选C.点评:本题考查了圆与圆的位置关系,解题的关键是弄清“远距的定义”.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•浦东新区二模)计算:|﹣π|=π﹣.考点:实数的性质.分析:根据绝对值是大数减小数,可得答案.解答:解:|﹣π|=,故答案为:.点评:本题考查了实数的性质,绝对值是非负数,可用大数减小数.8.(4分)(2014•浦东新区二模)化简:=.考点:约分.专题:计算题.分析:找出分式分子分母的公因式,约分即可得到结果.解答:解:原式==.故答案为:.点评:此题考查了约分,找出分子分母的公因式是约分的关键.9.(4分)(2014•浦东新区二模)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(4分)(2014•浦东新区二模)正八边形的中心角等于45度.考点:正多边形和圆.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.解答:解:正八边形的中心角等于360°÷8=45°;故答案为45.点评:本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.11.(4分)(2014•浦东新区二模)如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为±6.考点:根的判别式.分析:若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.解答:解:∵方程3x2﹣mx+3=0有两个相等的实数根,∴△=m2﹣4×3×3=0,解得m=±6,故答案为±6.点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(4分)(2014•浦东新区二模)请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是圆.考点:轴对称图形.专题:开放型.分析:把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这样的图形为轴对称图形,写出一个轴对称图形即可.解答:解:这个图形可以是圆.故答案为:圆.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.13.(4分)(2014•浦东新区二模)如果关于x的方程bx=x+1有解,那么b的取值范围为b≠1.考点:一元一次方程的解.分析:移项,合并同类项,当x的系数不等于0时,方程有解,据此即可求解.解答:解:移项,得:bx﹣x=1,即(b﹣1)x=1,当b﹣1≠0时,即b≠1时,方程有解.故答案是:b≠1.点评:此题考查的是一元一次方程的解法,理解方程有解的条件是关键.14.(4分)(2014•浦东新区二模)在▱ABCD中,已知=,=,则用向量、表示向量为+.考点:*平面向量.分析:根据平行四边形的对角线互相平分的性质,可得出==,==,从而可表示出向量.解答:解:∵四边形ABCD是平行四边形,∴==,==,∴=+=+.故答案为:+.点评:本题考查了平面向量的知识,注意掌握向量的加减,平行四边形对角线互相平分的性质.15.(4分)(2014•浦东新区二模)把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是.考点:概率公式.分析:由有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;直接利用概率公式求解即可求得答案.解答:解:∵有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;∴从中任意摸出一张卡片数字是素数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•浦东新区二模)为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是0.62.考点:频数(率)分布直方图.分析:根据被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,求出次数不小于30次的人数,再根据直方图求出在40~45次之间的频数,然后根据频率公式:频率=频数÷总数,即可求解.解答:解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45﹣3﹣5﹣6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.点评:本题考查了频数分布直方图,关键是读懂统计图,从图中获得必要的信息,用到的知识点是频率公式:频率=频数÷总数.17.(4分)(2014•浦东新区二模)如图,已知点A在反比例函数y=的图象上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是y=﹣.考点:等边三角形的性质;反比例函数图象上点的坐标特征.分析:首先根据题意得出×|2x•y|=,进而得出xy=﹣,即可得出k的值.解答:解:过点A作AC⊥OB于点C,设A(x,y),∵△OAB是面积为的等边三角形,∴×|2x•y|=,∴|xy|=,∴xy=﹣,∴这个反比例函数的解析式是:y=﹣.故答案为:y=﹣.点评:此题主要考查了等边三角形的性质以及三角形面积求法和反比例函数图象上点的坐标特征,得出xy=﹣是解题关键.18.(4分)(2014•浦东新区二模)在Rt△ABC中,∠ACB=90°,AC=,cosA=,如果将△ABC绕着点C旋转至△A′B′C的位置,使点B′落在∠ACB的角平分线上,A′B′与AC相交于点H,那么线段CH的长等于﹣1.考点:旋转的性质.分析:根据题意画出图形,进而利用旋转的性质以及锐角三角函数关系和等腰直角三角形求出三角形各边长,再利用三角形面积求出即可.解答:解:过点B′作B′F⊥AC于点F,A′D⊥AC于点D,∵∠ACB=90°,点B′落在∠ACB的角平分线上,∴∠BCB′=∠B′CA=ACA′=45°,∴△CB′F,△CDA′都是等腰直角三角形,∵AC=,cosA=,∴==,解得:AB=,∴BC=,∴B′C=,∴B′F=×=,A′D=×CA′=1,∴S△A′CB′=S△CHB′+S△CHA′=××=××CH+×1×CH,解得:CH=﹣1,故答案为:﹣1.点评:此题主要考查了旋转的性质以及锐角三角函数关系和三角形面积求法等知识,利用S△A′CB′=S△CHB′+S△CHA′求出是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•浦东新区二模)计算:()2﹣5+()﹣1﹣.考点:实数的运算;分数指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用指数幂法则变形,第三项利用负指数幂法则计算,最后一项分母有理化,计算即可得到结果.解答:解:原式=5﹣+﹣=6﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014•浦东新区二模)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出其公共部分即可.解答:解:由①得2x﹣7<3﹣3x,化简得5x<10,解得:x<2.由②得4x+9≥3﹣2x,化简得6x≥﹣6,解得:x≥﹣1,∴原不等式组的解集为﹣1<x<2.在数轴上表示出来为:点评:本题考查了解一元一次不等式组和在数轴上表示不等式的解集,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(10分)(2014•浦东新区二模)已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH===3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.22.(10分)(2014•浦东新区二模)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S (千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?考点:一次函数的应用.分析:(1)分别根据速度=路程÷时间列式计算即可得解;(2)方法一:观察图形可知,第一次相遇时,甲车停止,然后时间=路程÷速度列式计算即可得解;方法二:设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.解答:解:(1)v甲==(千米/分钟),所以,甲车的速度是千米/每分钟;v乙==1(千米/分钟),所以,乙车的速度是1千米/每分钟;(2)方法一:∵t乙==20(分钟),∴乙车出发20分钟后第一次与甲车相遇;方法二:设甲车离A地的距离S与时间t的函数解析式为:s=kt+b(k≠0),将点(10,0)(70,60)代入得:,解得,,所以,s=t﹣10,当s=20时,解得t=30,∵甲车出发10分钟后乙车才出发,∴30﹣10=20分钟,乙车出发20分钟后第一次与甲车相遇;(3)∵t=(60﹣20)÷=30(分钟),∵70﹣30﹣15=25(分钟),∴甲车中途因故障停止行驶的时间为25分钟.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,待定系数法求一次函数解析式,读懂题目信息理解甲、乙两车的运动过程是解题的关键.23.(12分)(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A 作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形性质得出AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,求出∠ABH=∠HAE,证△ABE∽△DAF,得出比例式,求出AE=DF,CF=AE,证出Rt△ABE≌Rt△CBF即可;(2)根据正方形性质求出∠ADB=∠CDB,证△DEO≌△DFO,推出∠DEO=∠DFO,根据△ABE∽△DAF推出∠AEB=∠DFA,即可得出答案.解答:证明:(1)∵四边形ABCD是正方形,∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,∴∠BAH+∠HAE=90°,∵AF⊥BE,∴∠AHB=90°,即∠BAH+∠ABH=90°,∴∠ABH=∠HAE,又∵∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴AE=DF,∵点E是边AD的中点,∴点F是边DC的中点,∴CF=AE,在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)∵四边形ABCD是正方形,∴DB平分∠ADC,∴∠ADB=∠CDB,在△DEO与△DFO中,∴△DEO≌△DFO(SAS),∴∠DEO=∠DFO,∵△ABE∽△DAF,∴∠AEB=∠DFA,∴∠AEB=∠DEO.点评:本题考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.24.(12分)(2014•浦东新区二模)如图,已知在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,﹣3),且OA=2OC.(1)求这条抛物线的表达式及顶点M的坐标;(2)求tan∠MAC的值;(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.考点:二次函数综合题.分析:(1)根据与y轴的交点C的坐标(0,﹣3)就可以求出OC的值及c的值,进而求出OA的值及A的坐标,由待定系数法就可以求出b的值而求出解析式及定点坐标;(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.在Rt△AHM中,HM=AH=4,就可以求出AM的值,再由待定系数法求出直线AC的解析式,就可以求出点N的坐标,进而求出MN的值,由勾股定理就可以求出ME及NE的值,从而求出AE的值就可以得出结论;(3)如图2,分类讨论,当D点在AC上方时,根据角之间的关系就可以求出∠D1AH=∠CAM,当D点在AC下方时,∠MAC=∠AD2M就可以求出点D的坐标.解答:解:(1)∵C(0,﹣3),∴OC=3.y=x2+bx﹣3.∵OA=2OC,∴OA=6.∵a=>0,点A在点B右侧,抛物线与y轴交点C(0,﹣3).∴A(6,0).∴0=36+6b﹣3,∴b=﹣1.∴y=x2﹣x﹣3,∴y=(x﹣2)2﹣4,∴M(2,﹣4).答:抛物线的解析式为y=x2﹣x﹣3,M的坐标为(2,﹣4);(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.∴∠AHM=∠NEM=90°.在Rt△AHM中,HM=AH=4,由勾股定理,得AM=4,∴∠AMH=∠HAM=45°.设直线AC的解析式为y=kx+b,由题意,得,解得:,∴直线AC的表达式为y=x﹣3.当x=2时,y=﹣2,∴N(2,﹣2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME.在Rt△MNE中,∴NE2+ME2=NM2,∴ME=NE=.∴AE=AM﹣ME=3在Rt△AEN中,tan∠MAC=.答:tan∠MAC=;(3)如图2,①当D点在AC上方时,∵∠CAD1=∠D1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D1AH=∠CAM,∴tan∠D1AH=tan∠MAC=.∵点D1在抛物线的对称轴直线x=2上,∴D1H⊥AH,∴AH=4.在Rt△AHD1中,D1H=AH•tan∠D1AH=4×=.∴D1(2,);②当D点在AC下方时,∵∠D2AC=∠D2AM+∠MAC=45°,且∠AMH=∠D2AM+∠AD2M=45°,∴∠MAC=∠AD2M.∴tan∠AD2H=tan∠MAC=.在Rt△D2AH中,D2H=.∴D2(2,﹣12).综上所述:D1(2,);D2(2,﹣12).点评:本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.25.(14分)(2014•浦东新区二模)如图,已知在△ABC中,AB=AC,BC比AB大3,sinB=,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.(1)求AG的长;(2)当∠APQ=90°时,直线PG与边BC相交于点M.求的值;(3)当点Q在边AC上时,设BP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域.考点:相似形综合题.分析:(1)根据已知条件和重心的性质得出BD=DC=BC,AD⊥BC,再根据sinB==,求出AB、BC、AD的值,从而求出AG的长;(2)根据∠GMD+∠MGD=90°和∠GMD+∠B=90°,得出∠MGD=∠B,再根据特殊角的三角函数值求出DM、CM=CD﹣DM的值,在△ABC中,根据AA求出△QCM∽△QGA,即可求出的值;(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF,得出=,求出BE的值,同理可得出CF的值,最后根据BD=CD,求出EG=FG,即可得出CE+BE=2GD,从而得出求y关于x 的函数解析式并得出它的定义域.解答:解:(1)在△ABC中,∵AB=AC,点G是△ABC的重心,∴BD=DC=BC,∴AD⊥BC.在Rt△ADB中,∵sinB==,∴=.∵BC﹣AB=3,∴AB=15,BC=18.∴AD=12.∵G是△ABC的重心,∴AG=AD=8.(2)在Rt△MDG,∵∠GMD+∠MGD=90°,同理:在Rt△MPB中,∠GMD+∠B=90°,∴∠MGD=∠B.∴sin∠MGD=sinB=,在Rt△MDG中,∵DG=AD=4,∴DM=,∴CM=CD﹣DM=,在△ABC中,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵∠QCM=∠CDA+∠DAC=90°+∠DAC,又∵∠QGA=∠APQ+∠BAD=90°+∠BAD,∴∠QCM=∠QGA,又∵∠CQM=∠GQA,∴△QCM∽△QGA.∴==.(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF.∵BE∥AD,∴=,即=,∴BE=.同理可得:=,即=,∴CF=.∵BE∥AD∥CF,BD=CD,∴EG=FG.∴CE+BE=2GD,即+=8,∴y=,(0≤x≤).点评:此题考查了相似形的综合,用到的知识点是重心、特殊角的三角函数值、相似三角形的判定与性质、平行线的性质等,关键是根据题意,画出图形,做出辅助线,构造直角三角形是本题的关键.。
上海市杨浦、静安、宝山、青浦四区2014届下学期高三年级二模考试数学试卷(理科)(满分150分,完卷时间120分钟) 2014.4一、填空题 (本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.二阶行列式ii i ++-1101的值是 . (其中i 为虚数单位)2. 已知j i,是方向分别与x 轴和y 轴正方向相同的两个基本单位向量,则平面向量ji +的模等于 .3.二项式7)1(+x 的展开式中含3x 项的系数值为_______________.4.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为__________.(结果中保留π)5.已知集合{}sin ,A y y x x R ==∈,{}21,B x x n n Z ==+∈,则AB = .理6文7.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点,且弦AB 的中点为(1,2)P ,则直线AB 的方程为 .理7文8.已知1log log 22=+y x ,则y x +的最小值为_____________.理8文10. 已知首项31=a 的无穷等比数列{}n a )(*N n ∈的各项和等于4,则这个数列{}n a 的公比是 .9.(理)在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧==,sin 2,cos 2ααy x (α为参数),O为坐标原点,M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .则2C 的参数方程为 .10. 阅读程序框图,运行相应的程序,输出的结果为 .11.(理)从5男和3女8位志愿者中任选3人参加冬奥会火炬接力活动,若随机变量ξ表示所选3人中女志愿者的人数,则ξ的数学期望是 .12.(理)设各项均不为零的数列{}n c 中,所有满足01<⋅+i i c c 的正整数i 的个数称为这个数列{}n c 的变号数.已知数列{}n a 的前n 项和442+-=n n S n ,nn a b 41-=(*N n ∈),则数列{}n b 的变号数为 .13.(理)已知定义在[)+∞,0上的函数)(x f 满足)2(3)(+=x f x f .当[)2,0∈x 时x x x f 2)(2+-=.设)(x f 在[)n n 2,22-上的最大值为n a ,且数列}{n a 的前n 项和为n S ,则=∞→n n S lim . (其中*N n ∈)14.(理)正方形1S 和2S 内接于同一个直角三角形ABC 中,如图所示,设α=∠A ,若4411=S ,4402=S ,则=α2sin.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15. (理)在实数集R 上定义运算*:(1)x y x y *=⋅-.若关于x 的不等式()0x x a *->第10题图的解集是集合{|11}x x -≤≤的子集,则实数a 的取值范围是…………………( ).)(A [0,2] )(B [2,1)(1,0]---)(C [0,1)(1,2] )(D [2,0]-16.“1=ω”是“函数x x x f ωω22cos sin )(-=的最小正周期为π”的…………( ).)(A 充分必要条件 )(B 充分不必要条件)(C 必要不充分条件 )(D 既不充分又必要条件17. 若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =………………………………………………………………( ).)(A 1:1 )(B 2:1 )(C 3:2 )(D 4:118.(理)函数()f x 的定义域为实数集R ,⎪⎩⎪⎨⎧<≤--≤≤=.01,1)21(,10,)(x x x x f x 对于任意的x R ∈都有(1)(1)f x f x +=-.若在区间[1,3]-上函数()()g x f x mx m =--恰有四个不同的零点,则实数m 的取值范围是…………………………………………( ).)(A 10,2⎡⎤⎢⎥⎣⎦)(B 10,4⎡⎫⎪⎢⎣⎭ )(C 10,2⎛⎤ ⎥⎝⎦ )(D 10,4⎛⎤ ⎥⎝⎦三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)ADCFPB(理)如图,四棱锥P ABCD -中,底面ABCD 是平行四边形,︒=∠90CAD ,PA ⊥平面ABCD ,1PA BC ==,AB =,F 是BC 的中点. (1) 求证:DA ⊥平面PAC ;(2)若以A 为坐标原点,射线AC 、AD 、AP 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,已经计算得)1,1,1(=n 是平面PCD 的法向量,求平面PAF 与平面PCD 所成锐二面角的余弦值.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点O 为圆心的两个同心圆弧AD 、弧BC 以及两条线段AB 和CD 围成的封闭图形.花坛设计周长为30米,其中大圆弧AD 所在圆的半径为10米.设小圆弧BC 所在圆的半径为x 米(100<<x ),圆心角为θ弧度.(1)求θ关于x 的函数关系式;(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,当x 为何值时,y 取得最大值?21.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分(理)已知椭圆2222:1x y C a b+=(0)a b >>的右焦点为F (1,0),短轴的端点分别为12,B B ,且12FB FB a ⋅=-.(1)求椭圆C 的方程;(2)过点F 且斜率为k (0)k ≠的直线l 交椭圆于,M N 两点,弦MN 的垂直平分线与x 轴相交于点D .设弦MN 的中点为P ,试求DP MN的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分(理)设函数xx g 3)(=,xx h 9)(=.(1) 解方程:)9)((log )8)(2(log 33+=-+x h x g x ; (2)令3)()()(+=x g x g x p ,3)(3)(+=x h x q ,求证:)20142013()20142012()20142()20141()20142013()20142012()20142()20141(q q q q p p p p ++++=++++ (3)若bx g ax g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分(理)设各项都是正整数的无穷数列{}n a 满足:对任意*N n ∈,有1+<n n a a .记n a n a b =.(1)若数列{}n a 是首项11a =,公比2=q 的等比数列,求数列{}n b 的通项公式; (2)若n b n 3=,证明:21=a ;(3)若数列{}n a 的首项11a =,1+=n a n a c ,{}n c 是公差为1的等差数列.记n n n a d ⋅-=2,n n n d d d d S ++++=-121 ,问:使5021>⋅++n n n S 成立的最小正整数n 是否存在?并说明理由.四区2013学年度高考模拟考试数学试卷文理科解答参考答案及评分标准 2014.04一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 理1.2; 2.2 3.35; 4.π125.{}1,1-;6. 30x y +-= 7. 22; 8.41 9. ⎩⎨⎧==,sin 4,cos 4ααy x (α为参数);10. 13811..895613561525630156100=⨯+⨯+⨯+⨯=ξE 12.3. 13.2314.1012sin =α 3.35; 4.π12 5.{}1,1-;6.}2,6,2,65{ππππ--7.30x y +-= ; 8.22 9.37; 10. 4111. 2213y x -=; 12.1253381556C C C = 13.当1-=ac 时,0lim 622222=⎪⎭⎫⎝⎛++∴⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++∞→nn n n c a c a c a c a ; 当1=ac 时,c a =舍去. 14.]41,0(二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.D ;16.B ;17.C ;18.理D ;三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(理)1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A CB D F P --. (1) 证明方法一:Q 四边形是平行四边形,Q PA ⊥平面A B C D ∴P A D A ⊥,又A C D A ⊥,AC PA A =I ,∴DA ⊥平面PAC .方法二:证得DA uu u r是平面PAC 的一个法向量,∴DA ⊥平面PAC .(2)通过平面几何图形性质或者解线性方程组,计算得平面PAF 一个法向量为(1,2,0)m =u r,又平面PCD 法向量为(1,1,1)n =r ,所以||cos ,||||m n m n m n ⋅<>==u r ru r r u r r∴20.(1)设扇环的圆心角为θ,则()30102(10)x x θ=++-, 所以10210xxθ+=+, (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<. 装饰总费用为()9108(10)17010x x x θ++-=+,所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++,令17t x =+,则3913243()101010y t t =-+≤,当且仅当t =18时取等号, 此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.21.理(1)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =--,2(1,)FB b =-.由12FB FB a ⋅=-,得21b a -=-. 又因为221a b -=,解得2,a b ==.所以椭圆C 的方程为22143x y +=. (2)依题意直线l 的方程为(1)y k x =-.由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k -=+.所以弦MN 的中点为22243(,)3434k kP k k-++.所以MN === 2212(1)43k k +=+. 直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =.所以224312(1)43DP k k MN k +==++=. 又因为211k +>,所以21011k <<+.所以104<<. 所以DP MN 的取值范围是1(0,)4.22.理(1)99)832(3+=-⋅⋅x x x ,93=x ,2=x (2)21323)21()20141007(===p p ,2163)21()20141007(===q q . 因为1333333333333)1()(11=+++=+++=-+--xxx xx xx x p x p ,1393399399399)1()(11=+++=+++=-+--x x x x x x x x q x q所以,211006)20142013()20142()20141(+=+++p p p , 211006)20142013()20142()20141(+=+++q q q . )20142013()20142()20141(p p p +++ =)20142013()20142()20141(q q q +++ . (3)因为bx ax x f +++=)()1()(ϕϕ是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=xx f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h 即23132-⋅>-x xk 对任意的R x ∈都成立,即x x k 313+<对任意的R x ∈都成立,2<k . 23.理(1)1111a b a a ===,242112211--====--n a n n n n a a b ;(2)根据反证法排除11a =和*113()a a N ≥∈证明:假设12a ≠,又*N a n ∈,所以11a =或*113()a a N ≥∈ ①当11a =时,1111a b a a ===与13b =矛盾,所以11a ≠;②当*113()a a N ≥∈时,即1113a a b a ≥==,即11a a a ≥,又1+<n n a a ,所以11a ≤与*113()a a N ≥∈矛盾;由①②可知21=a .(3)首先{}n a 是公差为1的等差数列, 证明如下:1n n a a +>*2,n n N ⇒≥∈时1n n a a ->,所以11n n a a -≥+()n m a a n m ⇒≥+-,*(,)m n m n N <∈、1111[1(1)]n n a a n n a a a a ++++⇒≥++-+即11n n n n c c a a ++-≥-由题设11n n a a +≥-又11n n a a +-≥11n n a a +⇒-= 即{}n a 是等差数列.又{}n a 的首项11a =,所以n a n =,)223222(32n n n S ⋅++⋅+⋅+-= ,对此式两边乘以2,得14322232222+⋅--⋅-⋅--=n n n S两式相减得=⋅-++++=+13222222n n n n S 22211-⋅-++n n n22211-=⋅+++n n n n S ,5021>⋅++n n n S 即5221≥+n ,当5≥n 时,526421>=+n ,即存在最小正整数5使得5021>⋅++n n n S 成立. 注:也可以归纳猜想后用数学归纳法证明n a n =.。
浦东新区2014年高考预测 数学(文、理)试卷一、填空题(本大题小水满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 已知全集{}1,2,3,4,5U =,若集合{}2,3A =,则U A ð=_____2. 双曲线221916x y -=的渐近线方程为 . 3.函数()31cos 4sin xx x f =的最大值为_______4.已知直线1:210l ax y a -++=和()()2:2130l x a y a R --+=∈,若12l l ⊥,则a =___.5.函数()y f x =的反函数为()1y f x -=,如果函数()y f x =的图像过点()2,2-,那么函数()11y fx -=+的图像一定过点______.6. 已知数列{}n a 为等差数列,若134a a +=,2410a a +=,则{}n a 的前n 项的和n S =_____.7.π,则球的体积为 ____ . 8.(理) 一名工人维护甲、乙两台独立的机床,在一小时内,甲、乙需要维护的概率分别为0.9、0.8,则一小时内有机床需要维护的概率为_____(文) 把3本不同的语文书、7本不同的数学书随机的排在书架上,则语文书排在一起的概率是____小水制作9.设a R ∈,8(1)ax -的二项展开式中含3x 项的系数为7,则2lim()nn a a a →∞+++=L ____.10.(理)在平面直角坐标系xoy 中,若直线:x t l y t a =⎧⎨=-⎩(t 为参数)过椭圆3cos C:2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a =___.(文) 一个用若干块大小相同的立方块搭成的立体图形,主视图和俯视图是同一图形(如图),那么搭成这样一个立体图形最少需要 个小立方块. P.F. Productions 后期制作11.(理)已知随机变量ξ的分布列如右表,若3E ξ=,则D ξ=__ .(文) 已知数据3,4,,,11x y 的均值为6,方差为8,则x y -=____ _.12.在ABC ∆中, 角B 所对的边长6b =,ABC ∆的面积为15,外接圆半径5R =,则ABC ∆的周长为_______第10题13.抛物线24(0)y mx m =>的焦点为F ,点P 为该抛物线上的动点,又点(,0)A m -,则PF PA的最小值为 .14.(理)已知函数()f x 的定义域为{}1,2,3,值域为集合{}1,2,3,4的非空真子集,设点()1,(1)A f ,()2,(2)B f ,()3,(3)C f ,ABC ∆的外接圆圆心为M ,且()MA MC MB R +=∈λλu u u r u u u r u u u r,则满足条件的函数()f x 有__个.(文) 已知函数()f x 的定义域为{}1,2,3,值域为集合{}1,2,3,4的非空真子集,设点()A 1,(1)f ,()B 2,(2)f ,()C 3,(3)f ,且()0B A B C A C +⋅=u u r u u u r u u u r ,则满足条件的函数()f x 有__个.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. “1x >”是“11x<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件16. (理)已知z x yi =+,,x y R ∈, i 是虚数单位.若复数+1zi i+是实数,则z 的最小值为( ) 小水制作(A )0(B )52(C ) 5(D (文)设x 、y 均是实数,i 是虚数单位,复数(2)(52)i x y x y -+--的实部大于0,虚部不小于0,则复数z x yi =+在复平面上的点集用阴影表示为下图中的( )17.能够把椭圆2214x y +=的周长和面积同时分为相等的两部分的函数称为椭圆的“可分函数”,下列函数不是..椭圆的“可分函数”为( )P.F. Productions 后期制作 (A )3()4f x x x =+(B )5()ln5x f x x -=+(C )()arctan 4x f x =(D )()x xf x e e -=+ 18. (理)方程27lg(100)(||200)(||202)2x x x -=---的解的个数为( ) (A )2(B )4(C )6(D )8(文)方程2lg 4(||200)(||202)x x x =---的解的个数为( ) (A )2 (B )4 (C )6 (D )8三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号规定的区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.(理)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,11AA AB AC ===,4ABC π∠=,D 、M 、N 分别是1CC 、11A B 、BC 的中点.(1)求异面直线MN 与AC 所成角的大小; (2)求点M 到平面ADN 之间的距离.(文)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,11AA AB AC ===,4ABC π∠=,D 是1CC 的中点,点M 在P.F. Productions 后期制作线段11A B 上.(1)当M 为11A B 中点时,求异面直线DM 与AB 所成角的大小.(2)指出直线1CC 与平面MAB 的位置关系(不用证明),并求三棱锥D MAB -的体积. 20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.如图,ABCD 是边长为10海里的正方形海域.现有一架飞机在该海域失事,两艘海事搜救船在A 处同时出发,沿直线AP 、AQ 向前联合搜索,且4PAQ π∠=(其中点P 、Q 分别在边BC 、CD 上),搜索区域为平面四边形APCQ 围成的海平面.设PAB θ∠=,搜索区域的面积为S . (1)试建立S 与tan θ的关系式,并指出θ的取值范围; (2)求S 的最大值,并求此时θ的值.21. (本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. (理)已知定义在小水R 上的函数)(x f ,对任意实数21,x x 都有1212()1()()f x x f x f x +=++,且(1)1f =.(1)若对任意正整数n ,有112n n a f ⎛⎫=+ ⎪⎝⎭,求1a 、2a 的值,并证明{}n a 为等比数列; (2)设对任意正整数n ,有1()n b f n =.若不等式P.F. Productions 后期制作 12226log (1)35n n n b b b x +++++>+ 对任意不小于2的正整数n 都成立,求实数x 的取值范围.(文)已知定义在*N 上的函数)(x f ,对任意正整数1n 、2n ,都有BCAQP1212()1()()f n n f n f n +=++,且(1)1f =.(1)若对任意正整数n ,有(2)1n n a f =+,求1a 、2a 的值,并证明{}n a 为等比数列; (2)若对任意正整数n ,()f n 使得不等式2()3log (1)28n f n x <+恒成立,求实数x 的取值范围.22.(本题满分16分)本题学科网真没用共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.(理)已知中心在原点O ,左焦点为1(1,0)F -的椭圆1C 的左顶点为A ,上顶点为B ,1F 到直线AB的距离为||7OB . (1) 求椭圆1C 的方程;(2) 过点(3,0)P 作直线l ,使其交椭圆1C 于R 、S 两点,交直线1x =于Q 点. 问:是否存在这样的直线l ,使||PQ 是||PR 、||PS 的等比中项?若存在,求出直线l 的方程;若不存在,说明理由.(3) 若椭圆1C 方程为:22221x y m n+=(0m n >>),椭圆2C 方程为:2222x y m n λ+=(0λ>,且1λ≠),则称椭圆2C 是椭圆1C 的λ倍相似椭圆.已知2C 是椭圆1C 的3倍相似椭圆,若直线y kx b =+与两椭圆1C 、2C 交于四点(依次为P 、Q 、R 、S ),且2PS RS QS +=,试研究动点(,)E k b P.F. Productions 后期制作的轨迹方程.(文)定义区间),(d c ,),[d c ,],(d c ,],[d c 的长度均为c d -,其中c d >.(1)已知函数21xy =-的定义域为[],a b ,值域为10,2⎡⎤⎢⎥⎣⎦,写出区间[],a b 长度的最大值与最小值.(2)已知函数()2sin f x x =,将函数()y f x =的图像的每点横坐标缩短到原来的12倍,然后向左平移8π个单位,得到函数()y g x =的图像,区间[,]ab(,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有2014个零点,在所有满足上述条件的[,]a b 中,求区间[,]a b 长度的最小值.(3)已知函数()M f x 的定义域为实数集[2,2]D =-,满足(),,M x x Mf x x x M ∈⎧=⎨-∉⎩(M 是D 的非空真子集) . 集合[]1,2A =,[]2,1B =-- ,求()()()()3A B A B f x F x f x f x =++ 的值域所在区间长度的总和.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.(理)定义区间),(d c ,),[d c ,],(d c ,],[d c 的长度均为c d -,其中c d >.(1)已知函数21xy =-的定义域为[],a b ,值域为10,2⎡⎤⎢⎥⎣⎦,写出区间[],a b 长度的最大值与最小值.(2)已知小水制作函数()M f x 的定义域为实数集[2,2]D =-,满足(),,M x x Mf x x x M ∈⎧=⎨-∉⎩(M 是D 的非空真子集) . 集合[]1,2A =,[]2,1B =-- ,求()()()()3A B A B f x F x f x f x =++ 的值域所在区间长度的总和.(3)定义函数1234()11234f x x x x x =+++-----,判断函数()f x 在区间(2,3)上是否有零点,并求不等式()0f x >解集区间的长度总和.(文)已知中心在原点O ,左焦点为1(1,0)F -的椭圆C 的左顶点为A ,上顶点为B ,1F 到直线AB的距离为||7OB . (1) 求椭圆C 的方程;(2) 过(3,0)P 的直线l 交椭圆C 于R 、S 两点,交直线1x =于Q 点,若||PQ 是||PR 、||PS 的等比中项,求直线l 的方程;小水 (3) 圆D 以椭圆C 的两焦点为直径,圆D 的任意一条切线m 交椭圆C 于两点M 、N ,试求弦长||MN 的取值范围.参考答案(供参考)一、填空题 1. {}1,4,5 2. 43y x =± 3. 5 4.135. (2,3)-6. 23522n n - 7.323π8. (理) 0.98 (文) 1159. 13- 10. (理) 3 (文) 511. (理) 1 (文) 212. 6+13.14. (理) 12 (文) 20二、选择题 15. A16. (理) D (文) A17. D18. (理) B (文) C三、简答题19. 解:(1)设AB 的中点为E ,连接EN ,则//EN AC ,且12EN AC =,所以MNE ∠或其补角即为异面直线MN 与AC 所成的角。
浦东新区2014年中考预测数学试卷 2014.4.15(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列代数式中,属于单项式的是(A )1+a ;(B )a 2;(C )a2; (D )2a . 2.数据1,3,7,1,3,3的平均数和标准差分别为(A )2,2;(B )2,4; (C )3,2;(D )3,4.3.已知抛物线2)1(+-=x y 上的两点)()(2211y x B y x A ,和,,如果121-<<x x ,那么下列结论一定成立的是 (A )021<<y y ; (B )210y y <<;(C )120y y <<;(D )012<<y y .4. 某粮食公司2013年生产大米总量为a 万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为 (A )%)101(+a 万吨;(B )%)101(+a万吨;(C )%)101(-a 万吨; (D )%)101(-a万吨.5.在四边形ABCD 中,对角线AC 、BD 相交于点O ,CBD ADB ∠=∠,添加下列一个条件后,仍不能判定四边形ABCD 是平行四边形的是 (A )CDB ABD ∠=∠;(B )BCD DAB ∠=∠; (C )CDA ABC ∠=∠;(D )BCA DAC ∠=∠.6. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是 (A )3;(B )4;(C )5;(D )6.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:π-3= ▲ .8. 化简:23410ab b a = ▲ .9.计算:xx x ---2111= ▲ . 10.正八边形的中心角等于 ▲ 度.11.如果关于x 的方程0332=+-mx x 有两个相等的实数根,那么m 的值为 ▲ . 12.请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是 ▲ .13.如果关于x 的方程1+=x bx 有解,那么b 的取值范围为 ▲ . 14. 在□ABCD 中,已知AC a =,DB b =,那么用向量a 、b表示向量AB 为 ▲ .15. 把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是 ▲ .16.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是 ▲ . 17.如图,已知点A 在反比例函数xky =的图像上,点B 在x 轴的正半轴上,且△OAB 是面积为3的等边三角形,那么这个反比例函数的解析式是 ▲ .18.在Rt △ABC 中,∠ACB =90°,AC =2,23cos =A ,如果将△ABC 绕着点C 旋转至△A'B'C 的位置,使点B' 落在∠ACB 的角平分线上,A'B' 与AC 相交于点H ,那么线段CH 的长等于 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:51555551212-⎪⎪⎭⎫ ⎝⎛++--)(. 20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≥+-<-,,x x x x 321334)1(372并把解集在数轴上表示出来.(第17题图)(每组可含最小值,不含最大值)(第16题图)(第20题图)(第22题图)21.(本题满分10分,其中每小题各5分)已知:如图,∠P AQ =30°,在边AP 上顺次截取AB =3cm ,BC =10cm ,以BC 为直径作⊙O 交射线AQ 于E 、F 两点, 求:(1)圆心O 到AQ 的距离; (2)线段EF 的长.22.(本题满分10分,其中第(1)小题4分,第(2)小题3分,第(3)小题3分) 甲、乙两车都从A 地前往B 地,如图分别表示甲、乙两车离A 地的距离S (千米)与时间t (分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B 地,最终甲、乙两车同时到达B 地,根据图中提供的信息解答下列问题: (1)甲、乙两车行驶时的速度分别为多少? (2)乙车出发多少分钟后第一次与甲车相遇? (3)甲车中途因故障停止行驶的时间为多少分钟?23.(本题满分12分,其中每小题各6分)已知:如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.(第21题图) (第23题图)24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=241与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC . (1)求这条抛物线的表达式及顶点M 的坐标; (2)求M AC ∠tan 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD =45º,求点D 的坐标.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在△ABC 中,AB =AC ,BC 比AB 大3,54sin =B ,点G 是△ABC 的重心,AG 的延长线交边BC 于点D .过点G 的直线分别交边AB 于点P 、交射线AC 于点Q . (1)求AG 的长;(2)当∠APQ=90º时,直线PG 与边BC 相交于点M .求MQAQ的值; (3)当点Q 在边AC 上时,设BP =x ,AQ =y ,求y 关于x 的函数解析式,并写出它的定义域.(第24题图)(第25题图)浦东新区2014年中考预测数学试卷答案要点及评分标准一、选择题:1.D ; 2.C ; 3.A ; 4.B ; 5.D ; 6.C . 二、填空题:7.3-π; 8.ba 252;9.x1; 10.45; 11.6±; 12.圆等; 13.1≠b ;14.b a 2121+; 15.50%;16.0.62;17.xy 3-=; 18.13-. 三、解答题:19.解:原式5555555+=-+-……………………………………………………………(8分)5555155=-++-……………………………………………………………(1分)65=-…………………………………………………………………………(1分)20.解:273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩,.由①得2733x x -<-…………………………………………………………………(1分)化简得105<x ,………………………………………………………………………(1分) 解得:2<x .…………………………………………………………………………(1分)由②得4932x x +≥-,………………………………………………………………(1分) 化简得66x ≥-,………………………………………………………………………(1分) 解得:1-≥x .…………………………………………………………………………(1分) ∴原不等式组的解集为.21<≤-x …………………………………………………(2分)………………………………………………(2分)21.解:(1)过点O 做OH ⊥EF ,垂足为点H . ……………………………………………(1分) ∵OH ⊥EF ,∴∠AHO =90°,在Rt △AOH 中,∵∠AHO =90°,∠P AQ =30°,∴ OH =12AO ,…………………(2分) ∵BC =10cm ,∴ BO=5cm . ∵AO =AB +BO ,AB =3cm ,∴AO =3+5=8cm ,………………………………………………………………………(1分)① ②∴OH =4cm ,即圆心O 到AQ 的距离为4cm .………………………………………(1分) (2)联结OE , 在Rt △EOH 中,∵ ∠EHO =90°,∴ 222EH HO EO +=,…………(1分)∵ EO =5cm ,OH =4cm ,∴ EH =3452222=-=-OH EO cm ,……………(2分) ∵ OH 过圆心O ,OH ⊥EF ,∴ EF =2EH =6cm .………………………………………(2分) 22.解:(1)204153v ==甲(千米/分钟), ∴ 甲车的速度是43千米每分钟.…………(2分) 6017010v ==-乙(千米/分钟),∴ 乙车的速度是1千米每分钟.………………(2分)(2)解法①∵ 20120==乙t (分钟),∴乙车出发20分钟后第一次与甲车相遇.……………(3分) 解法②设甲车离A 地的距离S 与时间t 的函数解析式为:S kt b =+(0k ≠)将点(10,0)(70,60)代入得:100,7060.k b k b +=⎧⎨+=⎩………………………………………(1分)解得:1,10.k b ==-⎧⎨⎩,即10.S t =-…………………………………………………………(1分)当y =20时,解得t =30,∵ 甲车出发10分钟后乙车才出发,∴ 30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.………………………(1分) (3)∵ 440303t =÷=(分钟),………………………………………………… (1分) ∵ 70-30-15=25(分钟),∴ 甲车中途因故障停止行驶的时间为25分钟.…… (2分)23.证明:(1)∵四边形ABCD 是正方形,∴AB =DA=BC=CD , ∠BAD =∠ADF=∠BCF=90°,…………………………(1分) ∴∠BAH +∠HAE =90°,∵ AF ⊥BE ,∴ ∠AHB =90°即∠BAH +∠ABH =90°,∴∠ABH =∠HAE ,…………………………………………………………………(1分) 又∵∠BAE =∠ADF , ∴ △ABE ∽△DAF ,………………………………………………………………(1分) ∴DFAE DA AB =,∴AE =DF .…………………………………………………………………………(1分) ∵ 点E 是边AD 的中点,∴点F 是边DC 的中点,∴ CF =AE ,…………………………………………………………………………(1分) 在Rt △ABE 与Rt △CBF 中, ,.AB CB AE CF =⎧⎨=⎩∴ Rt △ABE ≌Rt △CBF ,∴BE =BF .…………………………………………………………………………(1分)(2)∵四边形ABCD 是正方形,∴DB 平分∠ADC ,∴∠ADB =∠CDB ,…………………………………………(1分)在△DEO 与△DFO 中,,,.ED FD ADB CDB DO DO ⎧⎪⎨⎪⎩=∠=∠= ∴△DEO ≌△DFO ,………………………………………………………………(2分)∴∠DEO =∠DFO ,………………………………………………………………(1分)∵△ABE ∽△DAF ,∴∠AEB =∠DF A ,……………………………………… (1分) ∴∠AEB =∠DEO .………………………………………………………………(1分) 24.(1)解:∵C (0,-3),∴OC =3.2134y x bx =+-……………………………………(1分) ∵OA =2OC ,∴OA =6. ∵041>=a ,点A 在点B 右侧,抛物线与y 轴交点C (0,-3). ∴)0,6(A .………………………………………………………………………(1分)∴2134y x x =--.……………………………………………………………(1分) ∴4)2(412--=x y ,∴)4,2(M . …………………………………………(1分)(2)过点M 作MH ⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE ⊥AM 于 点E ,垂足为点E .在Rt △AHM 中,HM =AH =4,42AM =,45AMH HAM ︒∠=∠=. 求得直线AC 的表达式为132y x =-.………………(1分)∴N (2,-2).∴MN =2.…………………………………(1分) 在Rt △MNE 中,∴2ME NE ==,∴32AE =.…………………………………………(1分) 在Rt △AEN 中,221tan 33NE MAC AE =∠==.………(1分) (3) 当D 点在AC 上方时,∵1145CAD D AH HAC ︒∠=∠+∠=,又 ∵45HAM AC AM H C ︒∠=∠+∠=,∴1D AH CAM ∠=∠. ………………………………(1分) ∴1tan tan 13D AH AC M ∠=∠=. ∵点1D 在抛物线的对称轴直线x =2上, ∴1D H AH ⊥,∴4AH =.在Rt △AH 1D 中,1114tan 433D H AH D AH =⋅∠=⨯=. ∴14(2,)3D .……………………………………………(1分)当D 点在AC 下方时,∵2245D AC D AM MAC ∠=∠+∠=︒,又 ∵2245AMH D AM AD M ∠=∠+∠==︒,∴2MAC AD M ∠=∠.……………………………………(1分)∴2tan tan 13AD H MAC ∠=∠= 在Rt △2D AH 中,221412tan 3AHD H AD H==÷=∠.∴2(2,12)D -.……………………………………………(1分) 综上所述:14(2,)3D ,2(2,12)D -.25.解:(1)在△ABC 中,∵AB =AC ,点G 是△ABC 的重心, ∴12BD DC BC ==,AD ⊥BC .……………………………………………………(1分)在Rt △ADB 中,∵4sin 5AD B AB ==,∴35BD AB =. ∵3BC AB -=, ∴AB =15,BC =18.∴AD =12.……………………………………………………………………………(1分) ∵G 是△ABC 的重心,∴283AG AD ==.………………………………………(1分)(2)在Rt △MDG ,∵∠GMD +∠MGD =90°, 同理:在Rt △MPB 中,∠GMD +∠B =90°,∴∠MGD =∠B .…………………………………(1分) ∴4sin sin 5MGD B ∠==, 在Rt △MDG 中,∵143DG AD ==,∴163DM =,∴113CM CD DM =-=……(1分) 在△ABC 中,∵AB =AC ,AD ⊥BC ,∴BAD CAD ∠=∠.∵90QCM CDA DAC DAC ︒∠=∠+∠∠=+, 又 ∵90QGA APQ BAD BAD ︒∠=∠+∠∠=+, ∴QCM QGA ∠=∠,………………………………(1分) 又 ∵CQM GQA ∠=∠,∴△QCM ∽△QGA .………………………………(1分)∴2411AQ AG MQ MC ==.……………………………(1分) (3)过点B 作BE AD ,过点C 作CF AD ,分别交直线PQ 于点E 、F ,则BEAD CF .…………………………………(1分)∵BE AD ,∴AP AG BP BE =,即158x x BE-=, ∴815xBE x=-.………………………………(1分)同理可得:AQ AG QC CF =,即815y y CF=-, ∴8(15)y CF y-=.……………………………(1分) ∵BEAD CF , BD CD =,∴EG FG =.∴2CF BE GD +=,即8(15)8815y xy x-+=-.(1分) ∴75510x y x-=-,15(0)2x ≤≤.…………………(2分)。