22.3.3二次函数图像和性质导学案
- 格式:wps
- 大小:110.00 KB
- 文档页数:1
关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
()02≠++=a c bx ax y 二次函数的图像与性质学案【情境导入】公园里有个圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下.如图是其中一条抛物线3422++−=x x y ,求此抛物线的最高点B 的坐标.【复习旧知】y a(x h)2k (a 0)y =a(x -h)2+k a >0 a<0 开口方向 向 向 顶点坐标 ( , ) ( , ) 对称轴直线x= 直线x= 增减性当x 时, y 随着x 的增大而减小; 当x 时, y 随着x 的增大而增大. 当x 时, y 随着x 的增大而减小; 当x 时, y 随着x 的增大而增大.最值x= 时,y 最小值=x= 时,y 最大值=抛物线y =a(x -h)2+k (a ≠0)的图象可由y=ax 2的图象通过上下和左右平移得到. 抛物线y = ( x + 3 )2 - 2的开口 ;顶点坐标为 ,对称轴是 ; 当x 时,y 随着x 的增大而减小;当x 时,y 随着x 的增大而增大.xyBCA【巩固训练】【动手操作】画3422+−=x x y 的函数图象;跟踪训练 : 54)1(2−−−=x x y ;x…… y ……263)2(2+−=x x y【合作探索】对于二次函数()02≠++=a c bx ax y ,你能用配方法求出它的对称轴和顶点坐标吗?由此可知,抛物线()02≠++=a c bx ax y【当堂训练】3221)1(2+−=x x y13122)2(2+−−=x x y【巩固提高】1.若二次函数52++=bx x y 配方后为()k x y +−=22,则k 、b 的值分别为( )A.0,5B.0,1C.-4,5D.-4,1 2.求3422+−=x x y 当21≤≤−x 时的最值.【课后练习】1.二次函数x x y 22−−=的对称轴是 . 抛物线y =x 2-2x +2的顶点坐标是_______;抛物线y =2x 2-2x -52的开口_______,对称轴是_______;抛物线y =-2x 2-4x +8的开口_______,顶点坐标是_______; 抛物线y =-12x 2+2x +4的对称轴是_______;二次函数y =ax 2+4x +a 的最大值是3,则a =_______.2.二次函数1222−−=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小. 3.抛物线642−−=x ax y 的顶点横坐标是-2,则a = .4.抛物线c x ax y ++=22的顶点是)1,31(−,则a = .c = .5.求2422−+=x x y 的最值,对称轴及顶点.6. 抛物线4)2(2++−=x m x y 与x 轴不相交,求m 的范围?。
二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。
二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。
三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。
四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。
五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。
七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。
八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。
数学九年级上册《二次函数y=a(x-h)2的图象与性质》导学案设计人:审核人:【学习目标】知识与技能:掌握二次函数y=a(x-h)2的图象和性质。
掌握抛物线y=a(x -h)2的平移方法。
过程与方法:经历探索二次函数y=a(x-h)2的图象和性质的过程,体会数形结合思想。
情感态度价值观:在初步建立二次函数解析式与图象之间的联系中,体会数学的内在美。
【学习重点】二次函数y=a(x-h)2的图象和性质,并要会灵活应用;【学习难点】二次函数y=a (x-h)2的性质的综合应用。
【学习方法】自主学习,合作探究。
自学阅读课本7—8页,完成下列问题。
画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性。
自学成果展示①抛物线y=-12(x+1)2,y=-12x2,y=-12(x-1)2的形状大小____________。
②把抛物线y=-12x2向平移____个单位,就得到抛物线y=-12(x+1)2;把抛物线y=-12x2向平移____个单位,就得到抛物线y=-12(x-1)2。
我的疑惑研学2关于对称,开口大小;3、对于抛物线y=a(x-h)2与y=ax2的图象,形状,位置;当h>0时,抛物线y=a(x-h)2的图象可由y=ax2的图象向平移个单位得到;当h<0时,抛物线y=a(x-h)2的图象可由y=ax2的图象向平移个单位得到。
1、自学部分独立完成,小组内讨论,总结结论。
2、研学部分先独立完成,再逐题讨论,一一口头展示。
检学1、抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________。
2、把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________。
把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为。
3、课本第8页练习。
课时作业1、若点A(2,-1)在抛物线y=a(x+1)2上,则a的值是。
二次函数图像和性质导学案九年级数学教案
1. 二次函数的图像和性质
>0
<0
开口
对称轴
顶点坐标
最值当x= 时,y有最值当x= 时,y有最值
增减性在对称轴左侧y随x的增大而y 随x的增大而在对称轴右侧y随x的增大而y随x的增大而
2. 二次函数用配方法可化成的形式,其中
= , = .
3. 二次函数的图像和图像的关系.
4. 二次函数中的符号的确定.
【思想方法】
数形结合
【例题精讲】
例1.已知二次函数,
(1) 用配方法把该函数化为
(其中a、h、k都是常数且a≠0)形式,并画
出这个函数的图像,根据图象指出函数的对称轴和顶点坐标.
(2) 求函数的图象与x轴的交点坐标.
例2. (____年大连)如图,直线和抛物线
都经过点A(1,0),B(3,2).
⑴求m的值和抛物线的解析式;
⑵求不等式的解集.(直接写出答案)
【当堂检测】
1. 抛物线的顶点坐标是.
2.将抛物线向上平移一个单位后,得到的抛物线解析式是.
3. 如图所示的抛物线是二次函数
的图象,那么的值是&n。
实际问题与二次函数(第3课时)教 学 目 标知识 技能 1. 利用二次函数解决有关拱桥等问题2. 用二次函数的知识分析解决有关抛物问题的实际问题过程 方法1. 在问题转化、建模过程中,发展合情推理能力,体会数形结合的思想.2. 通过实际问题,体验数学在生活实际的广泛应用性,发展数学思维.3. 在转化、建模中,学会合作、交流.情感 态度1•通过对拱桥图片的欣赏,感受数学在生活中的应用,激发学习热情. 2 .在转化、建模中,体验解决冋题的方法,培养学生的合作交流意识和探 索精神.重点 利用二次函数解决有关拱桥等问题. 用二次函数的知识分析解决有关抛物问题的实际问题.难点建立二次函数数学模型.问:你见过石拱桥吗?你观察过桥拱的形状吗? 【问题】一抛物线形拱桥,如图 26.3.3 — 2当水面在l 时, 拱顶离水面2米,水面宽4米.水面下降1米,水面宽度增加 多少?一、独立思考一一题目探究1 .分析问题(1 )如何建坐标系; (2)如何设抛物线的解析式?(3 )水面下降1米的含义是什 么,怎样把距离转化成坐标?(4 )如何求宽度增加多少?2 •解决问题解:设抛物线表示的二次函数为y ax 2 .如图 26.3.3 — 3.图 26.3.3 — 3由题意知抛物线经过点(2, 2),可得 2ax 2 , a 1 .21 2这条抛物线表示的二次函数为y —x .环节 情境 引入 教学问题设计欣赏一组石拱桥的图片26.3.3 — 1观察桥拱的形状.教学活动设计 教师出示图 片•学生观察图片 发表见解.自 主 探 究 合 作 交 流教师展示图片 并提出问题;学生 观察图片,自主分 析,得出结论.设二次函数,用 抛物线知识解决 教师关注:(1) 二次函数是 生活中实际问题的 模型,可以解决现 实问题;(2) 通过数学模 型的使用,感受数 学的应用价值.2又知水面下降1米时,水面的纵坐标为 y 3,则对应的横坐标是 ,6和6所以水面增加的宽度是 (2 • 6 4)米.二、小组活动——归纳总结请你按以下思路分析本类型题目的解法•⑴考察实物(抛物线形):⑵选建坐标系;⑶化距离成坐标; ⑷构建二次函数;⑸解决实际问题1.有一抛物线拱桥,已知水位在 AB 位置时,水面的宽度是4J6米,水位上升 4米就达到警戒线 CD 这时水面宽是4 3米•若洪水到来时,水位以每小时0.5米速度上升,如图26.3.3 — 4求水过警戒线后几小时淹到拱桥顶端M 处.成果 展示补 偿 提 高2.要修建一个圆形喷水池,如图 26.3.3 — 5池中心竖直安 装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线 形水柱在与池中心的水平距离为1m 处达到最高,高度为3m水柱落地处离池中心 3m,水管应多长?1. 本节课你有哪些收获?还有那些疑惑?2. 在课上你参与了多少问题的讨论,哪些问题得到了其他同学的认可?你最赞同哪一位同学的发言.1.如图 26.3.3—6,是某河上一 座古拱桥的截面 图,拱桥桥洞上 沿是抛物线形状,抛物线两端 点与水面的和距 离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面 4m 的景观灯,建立适当坐标系 .(1)求抛物 线的解析式(2)求两盏景观丁之间的水平距离.的关系;(2)由已给抛物线 图象如何求解析 式;(3)如果题中不给图象,关注学生 怎样建立抛物线模 型.学习小组内互 相交流,讨论,展 示.针对前几个环节出 现的问题,进行针 对性的补偿,对学 有余力的学生拓展 提高.作业 作业:1.必做:课本第52页,7、8题. 作业设必做题设计尝 试应 用学生独立完成.教师关注: (1)学生能否独立 找到两个变量之间。
第二节 二次函数的图像与性质(第1课时)环节一 回顾旧知,导入新课。
1.一次函数的图像是 ,反比例函数的图像是 。
2.画函数图象的一般步骤是什么?, , .环节二 小组合学,探究新知。
1.试画出二次函数y=x 2的图像。
(1.2.3组黑色笔完成)(1)列表(2)描点 (3)连线2. 试画出二次函数y=-x 2的图像。
(4.5.6组黑色笔完成)3. 在1中画出二次函数y =2x 2的图象(1.2.3组红色笔完成) 在2中画出二次函数y =-2x 2的图象(4.5.6组红色笔完成)环节三:归纳总结,提炼升华。
反思小结:1.当a>0时,a 越大,a ,抛物线开口 。
当a<0时,a 越小,a ,抛物线开口 。
综上:对于任意a ≠0,a越大, 抛物线开口 。
环节四:达标检测,反馈提高 A 组1.二次函数2x y =的函数图像为_________,开口______,顶点坐标为______对称轴为________ 二次函数2-x y =的函数图像为_________,开口______,顶点坐标为______对称轴为________2.判断正误(1)函数y = x2与y = -x2的图像都是抛物线( ); (2)函数y = x2与y = -x2的图像对称轴都是x 轴 ( ); (3)函数y = x2与y = -x2的图像形状相同,开口方向相反( ) (4)抛物线y = 3x2在x 轴的下方(除顶点外)( )(5)在抛物线y = -5x2左侧, y 随着x 的增大而增大( ) 3.已知72)2(--=ax a y 是二次函数,且当0>x 时,y 随x 的增大而增大,则=a 。
4.设边长为x 的正方形的面积为y ,y 是x 的二次函数,该函数的图象是下列各图形中( )B 组:1.在函数y = x 2上有两点,(-1,y 1),(-3,y 2),那么y 1,y 2,0的大小关系是( )A .y 1 < y 2 <0 B. y 2 < y 1 <0 C. y 1 > y 2 >0 D. y 2 > y 1 >02、直线1+-=x y 与抛物线2x y =有( )A .1个交点B . 2个交点C .3个交点D .没有交点3、如图边长为2的正方形ABCD 的中心在直 角坐标系的原点O ,AD ∥x 轴,抛物线y = x 2和 y = -x 2别经过A ,B ,C ,D 点,将正方形成几部 分,则图中阴影部分的面积为 .探索乐趣 :课下猜想并验证抛物线y = 3x2与y = 3x2+4之间有什么关系?它们是轴对称图形吗?开方方向,对称轴、定点坐标分别是什么?温馨提示:只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点. (2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,,且2t t -,是关于x的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II )由(I )得,t m =,即0m >.将t m=代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,,且2t t ,是关于x 的方程222x mx m n +-=的两个实数根. 2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-. ∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大? (说明:市场销售单价和种植成本单价的单位:元/500克.)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >.(3)设纯收益单价为W 元,则W =销售单价-成本单价. )图(1)图(2)(天)故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593;③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56.综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+. 23617BD ∴=-=(米). 解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围); (2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令M N x=,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对AB ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b =+⎧∴⎨=+⎩解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中.(1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=.B A D MFB 图(1)图(2)l130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。
22.3.3 二次函数c bx ax y ++=2的图像和性质导学案
主备课人:孟侠 审批:数学组 2015年9月20日 学习目标:1、会画二次函数的顶点式()k h x a y +-=2
的图像; 2、知道二次函数()k h x a y +-=2
的图像与2ax y =的图像间平移规律; 3、会通过配方法把二次函数的一般式化为顶点式;
4、通过动手操作,总结出二次函数c bx ax y ++=2的图像及性质。
学习过程:一、独学
1、回顾旧知:填写下表,通过表格回答二次函数2ax y =与()2
h x a y -=的图像与性质各是什么?它们之间有何关系?
解析式 开口方向
顶点坐标 对称轴 最值 221x y -=
()222
1+-=x y
()2221--=x y
2、阅读课本P18~21的内容
二、合作学习,动手做一做
1、在同一坐标系中画出函数()()1221,221,21222+-=-==
x y x y x y 的图像,根据此题,回答以下问题:
○1抛物线()k h x a y +-=2
与2ax y =形状______,位置______,把抛物线2ax y =向______平移______个单位长度,再向______平移______个单位长度,可得到抛物线()k h x a y +-=2
的图像,平移方向与距离根据______的值来决定的。
○2抛物线()k h x a y +-=2
的顶点坐标是______,对称轴为______,当a ____时,y 有______值;当a ____时,y 有______值。
2、用配方法把下列函数化为()k h x a y ++=2
的形式,并指出抛物线的开口方向,顶点坐标,对称轴,然后再用描点画出函数图像:
○
17822---=x x y ○2x x y 632+-=○312312-+=x x y ○4()()122+-=x x y 3、用配方法把c bx ax y ++=2化为顶点式,并填写课本P21表格
4、确定下列抛物线的开口方向,对称轴,顶点坐标和当x 为何值时,二次函数的最值为多少? ○1232-+=x x y ○2x x y 612-+-=○34232+-=x x y ○4722
12+--=x x y
三、学后反思。