2015高中数学3.3.2简单的线性规划问题教案新人教A版必修5
- 格式:doc
- 大小:246.50 KB
- 文档页数:5
《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。
简单线性规划问题冷静讲课本节课先由师生共同剖析平时生活中的实质问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集能够表示为直角坐标平面上的地区引出问题:在直角坐标系内,怎样用二元一次不等式(组)的解集来解决直角坐标平面上的地区求解问题?再从一个详细的二元一次不等式(组)下手,来研究一元二次不等式表示的地区及确立的方法,作出其平面区域,并经过直线方程的知识得出最值. 经过详细例题的剖析和求解,在这些例题中设置思虑项,让学生研究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的地区的观点,有益于二元一次不等式(组)与平面地区的知识的稳固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新纲领》对数学知识应用的重视. 线性规划是利用数学为工具,来研究必定的人、财、物、时、空等资源在必定条件下,怎样精打细算巧安排,用最少的资源,获得最大的经济效益. 它是数学规划中理论较完好、方法较成熟、应用较宽泛的一个分支,并能解决科学研究、工程设计、经营管理等很多方面的实质问题. 中学所学的线性规划不过规划论中的极小一部分,但这部分内容表现了数学的工具性、应用性,同时也浸透了化归、数形联合的数学思想,为学生此后解决实质问题供给了一种重要的解题方法——数学建模法. 经过这部分内容的学习,可使学生进一步认识数学在解决实质问题中的应用,培育学生学习数学的兴趣和应用数学的意识和解决实际问题的能力 .依照课程标准及教材剖析,二元一次不等式表示平面地区以及线性规划的有关观点比较抽象,按学生现有的知识和认知水平难以透辟理解,再加上学生对代数问题等价转变为几何问题以及数学建模方法解决实质问题有一个学习消化的过程,故本节知识内容定为认识层次.本节内容浸透了多种数学思想,是向学生进行数学思想方法教课的好教材,也是培育学生察看、作图等能力的好教材.本节内容与实质问题联系密切,有益于培育学生学习数学的兴趣和“用数学”的意识以及解决实质问题的能力 .教课要点要点是二元一次不等式(组)表示平面的地区.教课难点难点是把实质问题转变为线性规划问题,并给出解答. 解决难点的要点是依据实质问题中的已知条件,找出拘束条件和目标函数,利用图解法求得最优解. 为突出要点,本节教课应指导学生牢牢抓住化归、数形联合的数学思想方法将实质问题数学化、代数问题几何化.三维目标一、知识与技术1.掌握线性规划的意义以及拘束条件、目标函数、可行解、可行域、最优解等基本观点;2.运用线性规划问题的图解法,并能应用它解决一些简单的实质问题.二、过程与方法1.培育学生察看、联想以及作图的能力,浸透会合、化归、数形联合的数学思想,提升学生“建模”和解决实质问题的能力;2. 联合教课内容,培育学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、感情态度与价值观1.经过本节教课侧重培育学生掌握“数形联合”的数学思想,只管重视于用“数”研究“形”,但同时也用“形”去研究“数”,培育学生察看、联想、猜想、概括等数学能力;2. 联合教课内容,培育学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教课过程第 1课时导入新课师前方我们学习了二元一次不等式x+ y+ > 0 在平面直角坐标系中的平面地区确实定方法,A B C请同学们回想一下 .(生回答)推动新课[合作研究]师在现实生产、生活中,常常会碰到资源利用、人力分配、生产安排等问题.比如,某工厂用 A、 B 两种配件生产甲、乙两种产品,每生产一件甲产品使用 4 个A产品耗时 1小时,每生产一件乙产品使用4个 B 产品耗时 2 小时,该厂每日最多可从配件厂获取16个A配件和 12 个B配件,按每日工作8 小时计算,该厂全部可能的日生产安排是什么?设甲、乙两种产品分别生产x、 y 件,应怎样列式?x 2 y 8,4x16,生由已知条件可得二元一次不等式组: 4 y12,x0,y0.生 (板演)师 比较课本 98 页图 3.39 ,图中暗影部分中的整点(坐标为整数的点)就代表全部可能的日生产安排,即当点P ( x,y )在上述平面地区中时,所安排的生产任务x 、 y 才存心义 .进一步,若生产一件甲产品赢利2 万元,生产一件乙产品赢利3万元,采纳哪一种生产安排收益最大?设生产甲产品 x 件,乙产品 y 件时,工厂获取收益为z ,则怎样表示它们的关系?生 则 z=2x+3y.师 这样,上述问题就转变为:当x 、 y 知足上述不等式组并且为非负整数时, z 的最大值是多少?[教师精讲]师 把 z=2x+3y 变形为 y2x 1z ,这是斜率为2,在 y轴上的截距为1z 的直线 . 当 z 变3333化时能够获取什么样的图形?在上图中表示出来 .生 当 z 变化时能够获取一组相互平行的直线. (板演)师 因为这些直线的 斜率是确立的,所以只需给定一个点〔比如( 1, 2)〕,就能确立一条直线y2 x1z ,这说明,截距 z3 能够由平面内的一个点的坐标独一确立 . 能够看到直线3 3y 2x1 z与表示不等式组的地区的交点坐标知足不等式组,并且当截距z最大时,z 取333最大值,所以,问题转变为当直线y2x 1z 与不等式组确立的地区有公共点时,能够在3 3地区内找一个点P ,使直线经过 P 时截距z 最大.3由图能够看出,当直线y2x 1 z 经过直线 x=4 与直线 x+2y-8=0 的交点 M ( 4, 2)时,截33距 z最大,最大值为14. 此时2x+3y=14. 所以,每日生产甲产品 4 件,乙产品 2 件时,工厂可33获取最大收益 14万元.[知识拓展]再看下边的问题:分别作出x=1 , x-4y+3=0 , 3x+5y-25=0 三条直线,先找出不等式组所表示的平面地区(即三直线所围成的关闭地区), 再作直线 l 0:2x+y=0.而后,作一组与直线l 0 平行的直线: l:2x+y=t,t∈R (或平行挪动直线l 0 ),从而察看 t 值的变化: t=2x+y ∈[ 3,12 ] .x 4 y3,若设 t=2x+y ,式中变量x、 y 知足以下条件3x5y25, 求t的最大值和最小值.x 1.剖析:从变量x 、 y 所知足的条件来看,变量x 、 y 所知足的每个不等式都表示一个平面地区,不ABC.等式组则表示这些平面地区的公共地区作一组与直线l 0平行的直线: l:2x+y=t,t∈R(或平行挪动直线l 0),从而察看t值的变化:t=2x+y ∈[ 3,12 ] .(1)从图上可看出,点(0, 0)不在以上公共地区内,当x=0, y=0 时, t=2x+y=0. 点( 0, 0)在直线l 0: 2x+y=0 上 . 作一组与直线l 0平行的直线(或平行挪动直线l 0)l:2x+y=t,t∈R.可知,当l 在 l 0的右上方时,直线l 上的点( x,y) 知足 2x+y > 0, 即 t > 0.并且,直线l 往右平移时,t 随之增大(指引学生一同察看此规律).在经过不等式组所表示的公共地区内的点且平行于l的直线中,以经过点B(5,2)的直线l 2所对应的t最大,以经过点A (1,1)的直线l 1所对应的t最小.所以t max=2×5+2=12,t min=2×1+3=3.(2)(3)[合作研究]师诸如上述问题中,不等式组是一组对变量x、 y 的拘束条件,因为这组拘束条件都是对于x、y 的一次不等式,所以又可称其为线性拘束条件.t=2x+y是欲达到最大值或最小值所波及的变量x、 y 的分析式,我们把它称为目标函数. 因为 t=2x+y 又是对于x 、 y 的一次分析式,所以又可叫做线性目标函数.此外注意:线性拘束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性拘束条件下的最大值或最小值的问题,统称为线性规划问题. 例如:我们方才研究的就是求线性目标函数z=2x+y在线性拘束条件下的最大值和最小值的问题,即为线性规划问题 .那么,知足线性拘束条件的解(x,y)叫做可行解,由全部可行解构成的会合叫做可行域. 在上述问题中,可行域就是暗影部分表示的三角形地区. 此中可行解( 5, 2)和( 1, 1)分别使目标函数获得最大值和最小值,它们都叫做这个问题的最优解.讲堂小结用图解法解决简单的线性规划问题的基本步骤:1.第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区).2.设 t=0 ,画出直线 l 0.3.察看、剖析,平移直线l 0,从而找到最优解 .4.最后求得目标函数的最大值及最小值.部署作业1.某工厂用两种不一样原料均可生产同一产品,若采纳甲种原料,每吨成本 1 000 元,运费 500元,可得产品 90 千克;若采纳乙种原料,每吨成本为1500 元,运费400 元,可得产品100 千克,假如每个月原料的总成本不超出 6 000 元,运费不超出 2 000 元,那么此工厂每个月最多可生产多少千克产品?剖析:将已知数据列成下表:甲原料(吨)乙原料(吨)花费限额成本 1 000 1 500 6 000运费500400 2 000产品90100解:设此工厂每个月甲、乙两种原料各x 吨、 y 吨,生产 z 千克产品,则x0,y0,1000 x1500 y6000,500x400 y2000,z=90x+100y.作出以上不等式组所表示的平面地区,即可行域,如右图:2x3y12,x12 ,得7由4y20.205xy.7令 90x+100y=t ,作直线 :90x+100y=0 ,即 9x+10y=0 的平行线 90x+100y=t ,当 90x+100y=t 过点 M(12,20)时,直线 90x+100y=t 中的截距最大 .7 7由此得出 t 的值也最大, z max =90×12+100×20=440.77答:工厂每个月生产 440 千克产品 .2. 某工厂家具车间造、B 型两类桌子,每张桌子需木匠和漆工两道工序达成. 已知木匠做一张A、B 型桌子分别需要 1 小时和 2 小时,漆工油漆一张、型桌子分别需要 3 小时和 1 小时;又A A B知木匠、漆工每日工作分别不得超出8 小时和9 小时,而工厂造一张、B 型桌子分别获收益 2A千元和 3 千元,试问工厂每日应生产A、 B型桌子各多少张,才能获取收益最大?解:设每日生产 A 型桌子x张, B 型桌子y张,x 2 y8,则 3x y9,x0, y0.目标函数为 z=2x+3y.作出可行域:把直线 l : 2x+3y=0 向右上方平移至l ′的地点时,直线经过可行域上的点 M ,且与原点距离最大,此时 z=2x+3y 获得最大值 .x 2 y 8,解方程y得 M 的坐标为( 2, 3) .3x 9,答:每日应生产 A 型桌子 2 张, B 型桌子 3 张才能获取最大收益 .3. 课本 106页习题 3.3A 组 2.第 2课时导入新课师 前方我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回想一下用图解法解决简单的线性规划问题的基本步骤.生( 1)第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区);(2)设 t=0 ,画出直线 l 0 ;(3) 察看、剖析,平移直线l 0,从而找到最优解 ;(4) 最后求得目标函数的最大值及最小值. 推动新课2x y 300, x 2 y 250, 师 【例 1】 已知 x 、 y 知足不等式组0, 试求 z=300x+900y 的最大值时的整点的坐xy 0,标及相应的 z 的最大值 .师 剖析:先画出平面地区,而后在平面地区内找寻使 z=300x+900y 取最大值时的整点 .解:以下图平面地区A O BC ,点 A ( 0, 125 ),点B ( 150 ,0),点C 的坐标由方程组2x y 300 x 350 ,3 x2 y 250y 200 ,3得 C (350 ,200),3 3令 t=300x+900y , 即y1 x t , ,3 900欲求 z=300x+900y 的最大值,即转变为求截距 t900 的最大值,从而可求 t 的最大值,因直线1 xt与直线 y1x 平行,故作 y 1 A ( 0, 125)时,对y9003 x 的平行线,当过点33应的直线的截距最大,所以此时整点A 使 z 取最大值, z ma x =300×0+900×125=112 500.师 【例 2】 求 z=600x+300y 的最大值,使式中的x 、 y 知足拘束条件 3x+y ≤300,x+2y ≤250,x ≥0,y ≥0 的整数值 .师 剖析:画出拘束条件表示的平面地区即可行域再解 .解:可行域以下图.四边形 A O BC ,易求点 A (0, 126 ), B ( 100 , 0) , 由方程组3x y 300 x 69 3,5 x 2 y252y911.5得点 C 的坐标为(693, 911).5 5因题设条件要求整点(x,y) 使 z=600x+300y 取最大值,将点(69 , 91 ),( 70 , 90 )代入z=600x+300y ,可知当 x=70, y=90 时, z 取最大值为 z m x =600×70+300×900=69 000.ax 2y 2,师 【例 3】 已知 x 、 y 知足不等式 2xy 1, 求 z=3x+y 的最小值 .x0, y0,师剖析:可先找出可行域,平行挪动直线l 0:3x+y=0找出可行解,从而求出目标函数的最小值.解:不等式x+2y≥ 2 表示直线x+2y=2 上及其右上方的点的会合;不等式 2x+y≥1表示直线2x+y=1 上及其右上方的点的会合.可行域如右图所示.作直线 l 0:3x+y=0 ,作一组与直线l 0平行的直线l:3x+y=t(t∈R).∵x、 y 是上边不等式组表示的地区内的点的坐标.由图可知:当直线 l:3x+y=t经过P(0,1)时,t取到最小值1,即 z min =1.师评论:简单线性规划问题就是求线性目标函数在线性拘束条件下的最优解,不论此类题目是以什么实质问题提出,其求解的格式与步骤是不变的:(1)找寻线性拘束条件,线性目标函数;(2)由二元一次不等式表示的平面地区作出可行域;(3)在可行域内求目标函数的最优解.师讲堂练习:请同学们经过达成练习来掌握图解法解决简单的线性规划问题.y x,(1)求 z=2x+y 的最大值,使式中的x 、 y 知足拘束条件x y1,y 1.5x 3 y15,(2)求 z=3x+5y 的最大值和最小值,使式中的x、 y 知足拘束条件y x 1,x5y 3.[教师精讲]y x,师( 1)求 z=2x+y 的最大值,使式中的x、 y 知足拘束条件x y1,y 1.解:不等式组表示的平面地区如右图所示:当 x=0,y=0 时, z=2x+y=0 ,点( 0, 0)在直线 l 0:2x+y=0 上 .作一组与直线 l 0 平行的直线 l:2x+y=t,t∈R.可知在经过不等式组所表示的公共地区内的点且平行于l 的直线中,以经过点A ( 2, -1 )的直线所对应的 t 最大 .所以 z max =2×2-1=3.5x3 y 15, (2)求 z=3x+5y 的最大值和最小值,使式中的x 、 y 知足拘束条件yx1,x 5y3.解:不等式组所表示的平面地区如右图所示.从图示可知直线 3x+5y=t在经过不等式组所表示的公共地区内的点时,以经过点(-2 , -1 )的直线所对应的 t 最小,以经过点(9 , 17)的直线所对应的 t 最大 .8 8所以 z min =3×(-2)+ 5×(-1)=-11,zmax=3×9+5×17=14.88[知识拓展]某工厂生产甲、乙两种产品 . 已知生产甲种产品 1 t ,需耗 A 种矿石 10 t 、 B 种矿石 5 t 、煤 4 t ;生产乙种产品需耗 A 种矿石 4 t 、 B 种矿石 4 t 、煤 9 t. 每 1 t 甲种产品的收益是600 元,每 1 t乙种产品的收益是1 000 元 . 工厂在生产这两种产品的计划中要求耗费A 种矿石不超出 360 t 、 B种矿石不超出 200 t 、煤不超出 300 t ,甲、乙两种产品应各生产多少(精准到0.1 t),能使收益总数达到最大?师 剖析:将已知数据列成下表:耗费量 产品 甲产品( 1乙产品 (1资源限额( t )资源t ) t)A 种矿石( t ) 10 4 300B 种矿石 (t)5 4 200 煤 (t) 收益(元)4 9 3606001 000解:设生产甲、乙两种产品分别为 x t 、 y t ,收益总数为 z 元,10 x 4 y 300, 5x 4 y 200,那么4 x 9 y 360,x 0, y 0;目标函数为 z=600x+1 000y.作出以上不等式组所表示的平面地区,即可行域.作直线 l:600x+1 000y=0,即直线 :3x+5y=0,把直线 l 向右上方平移至l 1 的地点时,直线经过可行域上的点 M ,且与原点距离最大,此时z=600x+1 000y 取最大值 .5x 4 y 200,解方程组9 y 360,4x得 M 的坐标为 x=360≈12.4,y=1000≈34.4.2929答:应生产甲产品约 12.4 t ,乙产品 34.4 t ,能使收益总数达到最大.讲堂小结用图解法解决简单的线性规划问题的基本步骤:(1)第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区).(2)设 t=0 ,画出直线 l 0 .(3)察看、剖析,平移直线l 0,从而找到最优解 .(4)最后求得目标函数的最大值及最小值.以实质问题为背景的线性规划问题其求解的格式与步骤:(1)找寻线性拘束条件,线性目标函数;(2)由二元一次不等式表示的平面地区作出可行域;(3)在可行域内求目标函数的最优解.自然也要注意问题的实质意义部署作业课本第 105 页习题 3.3A 组 3、 4.第 3课时导入新课师前方我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实质问题为背景的线性规划问题其求解的格式与步骤 . 这节课我们持续来看它们的实质应用问题.推动新课师【例 5】营养学家指出,成人优秀的平时饮食应当起码供给0.075 kg 的碳水化合物,0.06 kg 的蛋白质, 0.06 kg 的脂肪 .1 kg 食品A含有 0.105 kg 碳水化合物,0.07 kg 蛋白质, 0.14 kg脂肪,花销28 元;而1kg 食品B含有 0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花销 21 元 . 为了知足营养学家指出的平时饮食要求,同时使花销最低,需要同时食用食品A和食物 B 各多少克?师剖析:将已知数据列成下表:食品 /kg碳水化合物 /k g蛋白质 /kg脂肪 /kg A0.1050.070.14B0.1050.140.07若设每日食用 x kg食品 A,y kg食品 B,总成本为z,怎样列式?生由题设条件列出拘束条件其目标函数z=28x+21y.二元一次不等式组①等价于0.105x 0.105y 0.075, 0.07x 0.14y 0.06,0.14x 0.07y 0.06,①x0,y0,7 x7 y5,7 x14y6,14 x7 y②6,x0,y 0.师作出二元一次不等式组②所表示的平面地区,即可行域. 请同学们在底稿纸上达成,再与课本上的比较 .生考虑z=28x+21y, 将它变形为y 4 xz, 这是斜率为-4、随 z 变化的一族平行直线. zz3283是直线在 y 轴上的截距,当获得最小值时,z 的值最小 . 自然直线与可行域订交,即2828在知足拘束条件时目标函数z=28x+21y获得最小值 .由图可见,当直线z=28x+21y 经过可行域上的点M时,截距z28 最小,即z 最小 .7x7 y5,1 ,4) ,所以,当x1, y4时, z=28x+21y 取最小值,最解方程组7y 得点 M(14x67777小值为 16.由此可知每日食用食品 A 约143克,食品 B约571克,能够知足平时饮食要求,又使花销最低,最低成本为 16元 .师【例 6】在上一节课本的例题(课本95 页例 3)中,若依占有关部门的规定,初中每人每年每年收取的学费总数最多?学段班级学生数装备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人师由前方内容知若设开设初中班x 个,高中班y 个,收取的学费总数为z 万元 ,此时,目标函数z=0.16 ×45x+0.27 ×40y, 可行域以以下图把 z=7.2x+10.8y 变形为y2x5z,获取斜率为 - -2,在 y 轴上截距为5z,随 z 变化的354354一组平行直线 .由图能够看出,当直线z=7.2x+10.8y经过可行域上的点M时,截距5z最大,即 z 最大 . 54x y30,得点 M( 20,10 ),所以,当 x=20,y=10时, z=7.2x+10.8y取最大值,最解方程组2 y40x大值为 252.由此可知开设20 个初中班和10 个高中班时,每年收取的学费总数最多,为252万元 .师【例 7】在上一节例 4 中(课本96 页例 4),若生产 1 车皮甲种肥料,产生的收益为10 000元,若生产 1车皮乙种肥料,产生的收益为 5 000 元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的收益?生若设生产 x 车皮甲种肥料,y 车皮乙种肥料,能够产生的收益z 万元 . 目标函数z=x+0.5y,可行域以以下图:把 z=x+0.5y变形为y=-2x+2z,获取斜率为-2,在y轴上截距为2z, 随 z 变化的一组平行直线 . 由图能够看出,当直线y=-2x+2z 经过可行域上的点 M 时,截距 2z 最大,即 z 最大 .18x 15y 66,M(2,2), 所以当 x=2,y=2 时, z=x+0.5y取最大值,最大值为解方程组y 10得点 4x 3.因而可知,生产甲、乙两种肥料各 2 车皮,能够产生最大的收益,最大收益为3万元 .[教师精讲]师 以实质问题为背景的线性规划问题其求解的格式与步骤:( 1)找寻线性拘束条件,线性目标函数;( 2)由二元一次不等式表示的平面地区做出可行域;( 3)在可行域内求目标函数的最优解.自然也要注意问题的实质意义.讲堂小结用图解法解决简单的线性规划问题的基本步骤:( 1)第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区);( 2)设 t=0 ,画出直线 l 0 ;(3 )察看、剖析,平移直线l 0,从而找到最优解;(4 )最后求得目标函数的最大值及最小值.以实质问题为背景的线性规划问题其求解的格式与步骤:( 1)找寻线性拘束条件,线性目标函数;( 2)由二元一次不等式表示的平面地区做出可行域;( 3)在可行域内求目标函数的最优解.自然也要注意问题的实质意义.部署作业课本第 105 页习题 3.3 B组 1、 2、 3板书设计第 1课时简单线性规划问题图 1讲堂小结线性规划问题的有关观点图 2第 2课时简单线性规划问题例 1讲堂小结例 3例 2第 3课时简单线性规划问题例 5讲堂小结例 7例 6习题详解(课本第104 页练习)1.(1)目标函数为z=2x+y ,可行域以下图,作出直线y=-2x+z,可知z要取最大值,即直线经过点 C时,x y 1,解方程组得 C(2,-1),y1,所以 z max=2x+y=3.( 2)目标函数为z=3x+5y, 可行域以下图,作出直线z=3x+5y, 可知直线经过点B时,z获得最大值 ; 直线经过点 A 时,z获得最小值.解方程组y x 1,y x1,和x 5y 35x 3 y15.可得点 A(-2,-1)和点 B(1.5,2.5).所以 z max=17,z min =-11.2. 设每个月生产甲产品 x 件,生产乙产品y 件,每个月收入为z,目标函数为z=3x+2y ,需要知足的条件是x 2 y 400,2x y 500,x0,y 0,作直线 z=3x+2y ,当直线经过点 A 时,z获得最大值.解方程组x 2 y 400,2x y 500,可得点 A(200,100),z的最大值为800.( 课本第 106 页习题 3.3)A组1.绘图求解二元一次不等式:(1)x+y≤2;(2)2x-y>2;(3)y ≤ -2;(4) x ≥3.2.3. 解:设每周播放连续剧甲 x 次,播放乙连续剧y 次,目标函数z=60x+20y, 所以题目中包括的80x 40 y 320,x y 6, 80x 40y 320,限制条件为0,解方程组得( 2, 4). 所以 z 的最大值为 200xx y6y 0,(万) .4. 解:设每周生产空调器 x 台、彩电 y 台,则生产冰箱 12-x-y 台,产值为 z ,目标函数为z=4x+3y+2(120-x-y)=2x+y+240,所以题目中包括的限制条件为1 x 1 y1(120 xy) 40,3xy 120,2 3 4x y100,120 x y 20,即0,x 0,xy 0.y0,3x y 120,10 台,可行域如图,解方程组y得 M 点坐标为 ( 10, 90 ). 所以每周应生产空调器x 100,彩电 90 台,冰箱20 台,才能使产值最高,最高产值是1050 千元.B 组1.2.3. 解:设甲粮库要向 A 镇运送大米x 吨、向 B 镇运送大米y 吨,总运费为 z ,则乙粮库要向 A 镇运送大米( 70-x )吨、向 B 镇运送大米( 110-y )吨,目标函数(总运费)为z=12×20×x+25×10×y+15×12×(70 - x)+20 ×8×(110 -y)=60x+90y+30 200.所以题目中包括的限制条件为x y 100,(70 x) (110 y) 80,0 x 70, y 0.所以当 x=70,y=30 时,总运费最省 ,z min=37 100 (元),所以当 x=0,y=100 时,总运费最不合理,z max=39 200 (元) .使国家造成不应有的损失2 100 元.答:甲粮库要向 A 镇运送大米70 吨,向 B 镇运送大米30 吨,乙粮库要向A 镇运送大米0 吨,向B 镇运送大米80吨,此时总运费最省,为37 100元 . 最不合理的调运方案是甲粮库要向 A 镇运送大米 0 吨、向B镇运送大米 100 吨,乙粮库要向 A 镇运送大米70 吨、向B镇运送大米10 吨,此时总运费为39 200元,使国家造成损失 2 100元 .备课资料备用习题1. 某糖果厂生产、两种糖果,A 种糖果每箱获收益40 元,B种糖果每箱获收益 50 元,其生产A B过程分为混淆、烹饪、包装三道工序,下表为每箱糖果生产过程中所需均匀时间:(单位:分钟)混淆烹饪包装A153B241每种糖果的生产过程中,混淆的设施至多能用12 小时,烹饪的设施至多只好用30 小时,包装的设施只好用15 小时,试求每种糖果各生产多少箱可获取最大收益?剖析:找拘束条件,成立目标函数.解:设生产 A 种糖果x 箱,B种糖果y 箱,可获取收益z 元,则此问题的数学模式在拘束条件x 2 y 720,5x 4y 1800,3x y 900,下,求目标函数z=40x+50y的最大值,作出可行域,其界限O A: y=0,AB:x0,y 03x+y-900=0 ,BC: 5x+4y- 1 800=0,C D: x+2y-720=0 , DO: x=0.由 z=40x+50y, 得y 4 x z,它表示斜率为4,截距为z50 的平行直线系,z550550越大,从而可知过 C 点时截距最大,z 获得了最大值 .越大, zx 2 y720解方程组C(120,300).5x 4 y1800∴z max=40×120+50×300=19 800, 即生产A种糖果 120 箱,生产B种糖果 300 箱,可得最大收益19 800 元.评论:因为生产 A 种糖果120箱,生产B种糖果300箱,就使得两种糖果合计使用的混淆时间为120+2×300= 720 (分),烹饪时间5×12 0+4×300= 1 800 (分),包装时间3×120+ 300 =660(分),这说明该计划已完好利用了混淆设施与烹饪设施的可用时间,但对包装设施却有240分钟的包装时间未加利用,这类“剩余”问题构成了该问题的“废弛”部分,有待于改良研究.2.甲、乙、丙三种食品的维生素A、 B含量及成本以下表:甲乙丙维生素(单位 /千600700400 A克)维生素(单位 /千800400500 B克)成本(元 / 千克)1194某食品营养研究所想用x 千克甲种食品,y 千克乙种食品,z 千克丙种食品配成100 千克的混淆食品,并使混淆食品起码含56 000 单位维生素A和 63 000单位维生素B.(1)用x、y表示混合食品成本 C;(2)确立x、y、z的值,使成本最低.剖析 : 找到线性拘束条件及目标函数,用平行线挪动法求最优解.解: ( 1)依题意 x 、 y、 z 知足 x+y+z=100z=100-x-y.∴ 成本=11x+9y+4z=7x+5y+400 (元) .C(2)依题意600x700y400z56000, 800x400y500z63000,∵z=100 -x-y,2x3y160,∴ 3x y130,x0, y0.作出不等式组所对应的可行域,如右图所示.联立3xy130交点(50,20). 2x 3 y160A作直线 7x+5y+400= C,则易知该直线截距越小,C越小,所以该直线过A(50,20)时,直线在y 轴截距最小,从而C最小,此时7×50+5×20+ 400 =C=850 元 .∴x=50 千克, z=30 千克时成本最低 .。
3.3.2简单的线性规划问题一、教学目标:知识与技能:(1)、了解,了解线性约朿条件、(线性)目标函数、线性规划问题、可行解、可行域和最优解等概念;(2)、掌握求解线性规划问题的步骤与方法。
过程与方法:(1)、让学生从实际生活屮发现数学问题,把数学问题与实际生活相结合,培养学生发现问题、提出问题的能力;(2)、在画图的过程中培养学生的分析能力、观察能力、理解能力。
(3)、在目标函数变式训练的中,培养学生的类比能力、探索能力。
(4)、培养学生运用数形结合思想解题的能力和化归能力。
情感、态度与价值观:(1)、把身边的实际问题数学化,让学生品尝学习数学的乐趣。
(2)、培养学生勤于思考、勇于探索的精神;(3)、让学生能用运动与静止的辩证关系处理问题,开拓学生的思维活动。
二.重点难点重点:求解线性规划问题的步骤与方法;难点:如何提高学生分析问题的能力。
三、教材与学情分析本节课内容是在学生学一习了直线与直线方程的关系,初步了解了二元一次不等式(组)的几何意义的基础上,进-步研究用图解法解决线性规划问题,使学生体会数与形的转化过程,逐步形成学生应用几何图形解决代数问题的意识.面对基础饺为薄弱的学生,课堂教学容量不能太大,而本节课内容需要频繁地在代数和几何上转换,学生理解起來相当的艰难.本教学设计力求让学生充分地体验数与形的转化,适当使用多媒体,让学生更直观地理解代数问题的几何形态,感受用“图解法”解决简单的线性规划问题的必要性和有效性,进而掌握解题基本方法和步骤.作为解题的步骤,若老师没有经过仔细斟酌想要把过程表述清楚都有一定难度,更何况是学生,因此,对于刚接触新知识的学生来说必需明确解题的步骤,这样也有助于学生更深入地理解和掌握知识.四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)导入新课在这堂课,我進备把我去兴农中学参观的一些图片用动画的形式播放给学生看,然后指出借助社会力量办学是教育发展的一个方向,兴农中学是贵州办得不错的一所私立中学,但是办学不是租用儿间教室,招用儿个老师就能解决问题的,必须要考虑到很多具体问题。
简单的线性规划问题教学目标: 1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神;3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用.教学重点和难点:求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y 轴上的截距的最值问题以及如何想到要这样转化存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点. 教学过程:>(一)引入(1)情景某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h.该产每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么请学生读题,引导阅读理解后,列表 →建立数学关系式 → 画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表 →建立数学关系式→ 画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】教师打开几何画板,作出平面区域.(2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大学生不难列出函数关系式y x z 32+=.师:这是关于变量y x 、的一次解析式,从函数的观点看y x 、的变化引起z 的变化,而y x 、是区域内的动点的坐标,对于每一组y x 、的值都有唯一的z 值与之对应,请算出几个z 的值. 填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现《学生会选择比较好算的点,比如整点、边界点等.【学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】(二)实验教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.【在信息技术与课程整合过程中,为改变老师单机的演示学生被动观看的现状,让学生参与进来,老师(可以根据学生要求)操作,学生记录,共同提出猜想,在当前技术条件受限时不失为一个好方法】师:这有限次的实验得来的结论可靠吗我们毕竟无法取遍所有点,因为区域内的点是无数的!况且没有计算机怎么办,数据复杂手工无法计算怎么办 因此,有必要寻找操作性强的可靠的求最优解的方法.【形成认知冲突,激发求知欲望,调整探究思路,寻找解决问题的新方法】继续观察实验报告单,聚焦每一行的点坐标和对应的度量值,比如M (, )时方程是1032=+y x ,填写表中的第6—7列,引导学生先在点与直线之间建立起联系 ------点M 的坐标是方程1032=+y x 的解,那么点M 就应该在直线1032=+y x 上,反过来直线1032=+y x 经过点M ,当然也就经过平面区域,所以点M 的运动就可转化为直线的平移运动。
《简单的线性规划问题》(第一课时)一、内容及其解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、教学目标(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。
(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。
三、教学重、难点1、教学重点 :求线性规划问题的最优解2、教学难点 :学生对为什么要将求目标函数的最值问题转化为经过可行域的直线在y 轴上的截距的最值问题以及如何想到这样转化存在疑惑,在教学中应紧扣实际,突出知识的形成发展过程。
四、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。
3.3.2 简单线性规划问题从容说课本节课先由师生共同分析日常生活中的实际问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集可以表示为直角坐标平面上的区域引出问题:在直角坐标系内,如何用二元一次不等式(组)的解集来解决直角坐标平面上的区域求解问题?再从一个具体的二元一次不等式(组)入手,来研究一元二次不等式表示的区域及确定的方法,作出其平面区域,并通过直线方程的知识得出最值.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的知识的巩固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.课时安排3课时三维目标一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学过程 第1课时导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下. (生回答) 推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义. 进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z ,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,截距z[]3可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z 取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大. 由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0. 然后,作一组与直线l 0平行的直线:l:2x+y=t,t∈R(或平行移动直线l 0),从而观察t 值的变化:t=2x+y∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t∈R(或平行移动直线l 0),从而观察t 值的变化:t=2x+y∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3)[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. 布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品? 分析:将已知数据列成下表:甲原料(吨)乙原料(吨)费用限额 成本 1 000 1 500 6 000 运费 500 400 2 000 产品90100解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y x z=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时导入新课师 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.生(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域); (2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解; (4)最后求得目标函数的最大值及最小值. 推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y , 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500. 师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t∈R). ∵x、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min =1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t,需耗A种矿石10 t、B种矿石5 t、煤4 t;生产乙种产品需耗A种矿石4 t、B种矿石4 t、煤9 t.每1 t甲种产品的利润是600元,每1 t乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过360 t、B种矿石不超过200 t、煤不超过300 t,甲、乙两种产品应各生产多少(精确到0.1 t),能使利润总额达到最大?师分析:将已知数据列成下表:消耗量产品资源甲产品(1 t)乙产品(1 t) 资源限额(t)A种矿石(t)10 4 300B种矿石(t) 5 4 200 煤(t) 利润(元) 4 9 360600 1 000解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410yxyxyxyx目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域.作直线l:600x+1 000y=0,即直线:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=600x+1 000y取最大值.解方程组⎩⎨⎧=+=+,36094,20045yxyx得M的坐标为x=29360≈12.4,y=291000≈34.4.答:应生产甲产品约12.4 t,乙产品34.4 t,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义 布置作业课本第105页习题3.3A 组3、 4.第3课时导入新课师 前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题. 推进新课师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克? 师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B0.1050.140.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0 其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z 取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小.解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段班级学生数 配备教师数 硬件建设/万元 教师年薪/万元 初中45 2 26/班 2/人 高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z ,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z 最大,即z 最大.解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大.解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时简单线性规划问题图1课堂小结线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结例3例2第3课时简单线性规划问题例5课堂小结例7例6。
高一数学人教A版必修5:3.3.2《简单的线性规划问题》(1)教案一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第三章不等式第三节简单的线性规划问题第一课时。
简单的线性规划问题是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,简单的线性规划问题与直线方程密不可分;另一方面,学习简单的线性规划问题也为进一步学习解析几何等内容做好准备。
二、学生学习情况分析本节课学生很容易在以下一个地方产生困惑:1. 线性约束条件的几何意义三、教学目标(1)知识和技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值(2)过程与方法:本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。
考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。
同时,可借助计算机的直观演示可使教学更富趣味性和生动性(3)情感与价值:渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣四、教学重点与难点教学重点:线性规划的图解法教学难点:寻求线性规划问题的最优解五、教学过程(一).创设情境例 1.甲、乙、丙三种食物的维生素A、B的含量及成本如下表:营养师想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?问题1:如何将此实际问题转化为数学问题呢?解:设所购甲、乙两种食物分别为千克,则丙食物为千克.又设成本为元.由题意可知应满足条件:即①.问题转化为:当满足①求成本的最小值问题.(二).分析问题问题2:如何解决这个求最值的问题呢?学生基于上一课时的学习,一般都能意识到要将不等式组①表示成平面区域(教师动画演示画不等式组①表示的平面区域).问题3:当点(x,y)在此平面区域运动时,如何求z=2x+y+50的最小值.(第一次转化)引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2x+y+50作某种几何解释呢?将等式z=2x+y+50视为x,y的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线,于是问题又转化为当这族直线与不等式组①所表示的平面区域有公共点时,求z的最小值.(第二次转化)问题4:如何更好地把握直线y+2x+50=z的几何特征呢?将其改写成斜截式y=-2x+z-50,让学生明白原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小,于是问题又转化为当直线y=-2x+z-50与平面区域有公共点时,在区域内找一个点P,使直线经过P时在y轴上的截距最小.(第三次转化)让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元)(三).形成概念1. 不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.z=2x+y+50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数.由于z=2x+y+50又是x、y的一次解析式,所以又叫做线性目标函数.2.一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.其中使目标函数取得最大值或最小值的可行解它们都叫做这个问题的最优解.(四).反思过程求解步骤:(1)画可行域---画出线性约束条件所确定的平面区域;(2)过原点作目标函数直线的平行直线;(3)平移直线,观察确定可行域内最优解的位置;(4)求最值---解有关方程组求出最优解,将最优解代入目标函数求最值. 简记为画作移求四步.(五).例题讲解例1、设2z x y =+,式中变量x 、y 满足下列条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值。
课题:线性规划在实际生活中的应用
教材:人教A版必修五第三章
教学目标:
1.知识目标:会用线性规划的理论和方法解决一些较简单的实际问题;
2.能力目标:培养学生观察、分析、联想、以及作图的能力,渗透集合、化归、数形结合的数学思想,培养学生自主探究意识,提高学生“建模”和解决实际问题的能力;
3.情感目标:培养学生学习数学的兴趣和“用数学”的意识,激励学生创新,鼓励学生讨论,学会沟通,培养团结协作精神.
教学重、难点:
教学重点:把实际问题转化成线性规划问题,即建模,并给出解答.
教学难点:1.建立数学模型.把实际问题转化为线性规划问题;
2.寻找整点最优解的方法.
教学方法:讲练结合、分组讨论法
教学过程:
(一)讲解新课
1.实例1讲解。
引入:《速度与激情7》刚刚上映.
(播放视频:7的结尾)
影院负责人在思考着另外一个问题:
例1:《速7》有两个宣传片,其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万,宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.规定广告每周至少有3.5分钟广告,而每周只能为该电影宣传片提供不多于16分钟的节目时间.那么每周应播映两套宣传片各多少次,才能使得观影人最多?
应用题是同学们最头痛的题型之一,它的特点是文字多、数据多,条件复杂,要看懂题目意思,理清题目中的数据,可以采用什么方式?请学生回答.
分析:将已知数据列成下表
播放片甲播放片乙节目要求
片集时间(min) 3.5 1
≤16 广告时间(min)0.5 1 ≥3.5
收视观众(万) 60
20
解:设电视台每周应播映片甲x 次, 片乙y 次,总收视观众为z 万人.
42160.5 3.5,x y x y x y N +≤⎧⎪
+≥⎨⎪∈⎩
6020z x y =+ 列约束条件时,要注意讲清x ∈N .y ∈N ,这是学生容易忽略的问题.
列出了约束条件和目标函数后,应用问题转化为线性规划问题,用图解法求解.
先请学生回忆图解法求线性规划问题的一般步骤,然后教师用多媒体课件展示画图、平移过程:
①画出了可行域后用闪动的方式加以强调;
②拖动直线l 平移,平移过程中可以显示z 值的大小变化.
由图解法可得:当x =3, y =2时,z max =220.
答:电视台每周应播映甲种片集3次,乙种片集2次才能使得收视观众最多.
例题小结:
简单线性规划应用问题的求解步骤:
(教师示意学生观看板书,并给予适当的提示) 1. 将已知数据列成表格的形式,设出变量x
,y 和z ; 2. 找出约束条件和目标函数;
3. 作出可行域,并结合图象求出最优解; 4. 按题意作答.
2.实例2讲解 (课本例题修改,数据基本不变,改了题目的实际背景)
引入: “中国结”是中国特有的民间手工编结装饰品,“中国结”经过几千年的结艺演变,现已成为广大群众喜爱的具有中国特色的艺术品:
(展示中国结的图片,及其它相关图片,配有背景音乐)
例2:某校高二(9)班举行野外生存闭幕式,布置会场要制作“中国结”,班长购买了甲、乙两种颜色不同的彩绳,把它们截成A 、B 、C 三种规格.甲种彩绳每根8元,乙种彩绳每根6元,已知每根彩绳可同时截得三种规格彩绳的根数如下表所示:
A 规格
B 规格
C 规格 甲种彩绳 2 1 1 乙种彩绳
1
2
3
今需要A 、B 、C 三种规格的彩绳各15、18、27根,问各截这两种彩绳多少根,可得所需三种规格彩绳且花费最少?
分析:将已知数据列成下表
甲种彩绳
乙种彩绳
所需条数 A 规格 2 1 15 B 规格 1 2 18 C 规格 1 3 27 彩绳单价
8
6
解:设需购买甲种彩绳x 根、乙种彩绳y 根,共花费z 元;
215218327,x y x y x y x y N
+≥⎧⎪+≥⎪
⎨
+≥⎪⎪∈⎩ z=8x+6y
在用图解法求解的过程中,学生发现:
直线l 最先经过可行域内的点A(3.6,7.8)并不是最优解,学生马上想到最优解可能是(4,8),引导学生计算花费,花费为80元,有没有更优的选择?
进一步激发学生兴趣:可能是(3,9)吗? 此时花费为78元,可能是(2,10)吗?此时花费为76元,可能是……,如何寻找最优解?
满足题意的点是可行域内的整点,首先要找整点,引导学生采用打网格或利用坐标纸的方法;根据线性规划知识,平移直线l ,最先经过的整点坐标是整数最优解.
由网格法可得:当x =3,y =9时,z min =78.
答:班长应购买3根甲种彩绳、9根乙种彩绳,可使花费最少!
例题小结:
确定最优整数解的方法:
1.若可行域的“顶点”处恰好为整点,那么它就是最优解;(在包括边界的情况下)
2.若可行域的“顶点”不是整点或不包括边界时,一般采用网格法,即先在可行域内打网格、描整点、平移直线l、最先经过或最后经过的整点坐标是整数最优解;这种方法依赖作图,所以作图应尽可能精确,图上操作尽可能规范.
(结合例题1、例题2,可以归纳出以上两点)
(二)课堂练习
练习:某中学想组织学生去野外生存,校车每天至少要运送480名学生.该中学后勤集团有7辆小巴、4辆大巴,其中小巴能载16人、大巴能载32人.已知每辆客车每天往返次数小巴为5次、大巴为3次,每次运输成本小巴为48元,大巴为60元.请问每天应派出小巴、大巴各多少辆,能使总费用最少?
学生练习分为三部分,引导学生动手,分解难点:
(每个学生发一张习题纸和一把直尺,在习题纸上作答、画图)
1.练习填表理解题意(习题纸上课堂练习题下印有下表)
小巴
大巴
思考片刻,请学生回答.
2.练习列约束条件和目标函数;
①将学生分为三组,分组讨论,各组竞争,教师巡视,对学生列式中出现的错误及时纠正;
②从三组中选出一位完成的好的同学的习题纸,用投影仪展示,教师讲解、点评,提醒学生注意解题的规范性;
3.练习画图,寻找整数最优解;
①习题纸上的课堂练习已画好网格和坐标系,学生在习题纸上练习画图,教师巡视,对学生画图中出现的错误及时纠正;
②把最先找出整点最优解的同学的习题纸用投影仪展示,教师讲解、点评.
解:设每天派出小巴x 辆、大巴y 辆,总运费为z 元;
56300704,x y x y x y N
+≥⎧⎪≤≤⎪⎨≤≤⎪⎪∈⎩ z=240x+180y 由网格法可得:x=2,y=4时,z min =1200. 答:派4辆小巴、2辆大巴费用最少.
(三)回顾与小结
请同学们相互讨论交流: 1.本节课你学习到了哪些知识? 2.本节课渗透了些什么数学思想方法?
(引导学生从知识和思想方法两个方面进行小结)
知识:1.把实际问题转化成线性规划问题即建立数学模型的方法.建模主要分清已知条件中,哪些属于约束条件,哪些与目标函数有关,如例题1.(链接到例题1,进行具体实例回顾)
2.求解整点最优解的解法:网格法.网格法主要依赖作图,要规范地作出精确图形.(链接到例题2,进行具体实例回顾)
思想方法:数形结合思想、化归思想,用几何方法处理代数问题.
(四)布置作业
课后习题。