新课标2018届高考数学二轮复习专题五立体几何专题能力训练14空间中的平行与垂直理
- 格式:doc
- 大小:1.68 MB
- 文档页数:12
限时规范训练十四 空间向量与立体几何限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.(2017·山东青岛模拟)已知正三棱柱ABC A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( )A.64B.104 C.22D.32解析:选A.如图所示建立空间直角坐标系,设正三棱柱的棱长为2,则O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,故sin θ=|AB 1→·BO →||AB 1→||BO →|=|-3|22×3=64.2.在直三棱柱ABC A 1B 1C 1中,AA 1=2,二面角B AA 1C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B. 6C. 5D .2解析:选A.由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1→·BC 1→=(BB 1→-BA →)·(BB 1→+BC →)=4,|AB 1→|=22,|BC 1→|=4,cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=24, 故tan 〈AB 1→,BC 1→〉=7.3.如图所示,在三棱锥P ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB=4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为( )A .-3010B .-305C.305 D.3010解析:选D.因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC . 过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,-2,0). 因为D 为PB 的中点,所以D (2,0,1). 故CP →=(-4,2,2),AD →=(2,0,1).所以cos 〈AD →,CP →〉=AD →·CP →|AD →|×|CP →|=-65×26=-3010.设异面直线PC ,AD 所成的角为θ, 则cos θ=|cos 〈AD →,CP →〉|=3010.4.(2017·山西四市联考)在空间直角坐标系O xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:选D.如图所示,△ABC 为三棱锥在坐标平面xOy 上的正投影,所以S 1=12×2×2=2.三棱锥在坐标平面yOz 上的正投影与△DEF (E ,F 分别为OA ,BC 的中点)全等,所以S 2=12×2×2= 2.三棱锥在坐标平面xOz 上的正投影与△DGH (G ,H 分别为AB ,OC 的中点)全等,所以S 3=12×2×2= 2.所以S 2=S 3且S 1≠S 3,故选D.5.如图,点E ,F 分别是正方体ABCD A 1B 1C 1D 1的棱AB ,AA 1的中点,点M ,N 分别是线段D 1E 与C 1F 上的点,则与平面ABCD 垂直的直线MN 的条数有( )A .0条B .1条C .2条D .无数条解析:选B.假设存在满足条件的直线MN ,如图,建立空间直角坐标系,不妨设正方体的棱长为2,则D 1(2,0,2),E (1,2,0),设M (x ,y ,z ),D 1M →=mD 1E →(0<m <1),∴(x -2,y ,z -2)=m (-1,2,-2),x =2-m ,y =2m ,z =2-2m ,∴M (2-m,2m,2-2m ),同理,若设C 1N →=nC 1F →(0<n<1),可得N (2n,2n,2-n ),MN →=(m +2n -2,2n -2m,2m -n ).又∵MN ⊥平面ABCD .∴⎩⎪⎨⎪⎧m +2n -2=0,2n -2m =0,解得⎩⎪⎨⎪⎧m =23,n =23,即存在满足条件的直线MN ,且只有一条.6.(2017·安徽合肥模拟)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点P 在线段AD 1上运动,给出以下四个命题:①异面直线C 1P 和CB 1所成的角为定值; ②二面角P BC 1D 的大小为定值; ③三棱锥D BPC 1的体积为定值;④直线CP 与平面ABC 1D 1所成的角为定值. 其中真命题的个数为( ) A .1 B .2 C .3D .4解析:选C.如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,1,0),B (1,1,0),C 1(0,1,1),B 1(1,1,1). 设P (t,0,1-t ),0≤t ≤1.①中,C 1P →=(t ,-1,-t ),CB 1→=(1,0,1),因为C 1P →·CB 1→=0,所以C 1P ⊥CB 1,故①对;②中,因为D 1A ∥C 1B ,所以平面PBC 1即平面ABC 1D 1,两平面都固定,所以其二面角为定值,故②对;③中,因为点P 到直线BC 1的距离AB =1,所以V 三棱锥D BPC 1=13×⎝ ⎛⎭⎪⎫12×BC 1×AB ×12CB 1=16,故③对;④中,CP →=(t ,-1,1-t ),易知平面ABC 1D 1的一个法向量为CB 1→=(1,0,1),所以cos 〈CP →,CB 1→〉不是定值,故④错误.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·江苏南京三模)如图,三棱锥A BCD 的棱长全相等,点E 为AD 的中点,则直线CE 与BD 所成角的余弦值为________.解析:设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →)=⎝ ⎛⎭⎪⎫12AD →-AC →·(AD →-AB →)=12AD →2-12AD →·AB →-AC →·AD →+AC →·AB →=12-12cos 60°-cos 60°+cos 60°=14. ∴cos〈CE →,BD →〉=CE →·BD→|CE →||BD →|=1432=36. 答案:368.在直三棱柱ABC A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,点M 为AA 1的中点,点P 为BM的中点,Q 在线段CA 1上,且A 1Q =3QC ,则异面直线PQ 与AC 所成角的正弦值为________.解析:由题意,以C 为原点,以AC 边所在直线为x 轴,以BC 边所在直线为y 轴,以CC 1边所在直线为z 轴建立空间直角坐标系,如图所示.设棱柱的高为a ,由∠BAC =π3,AC =4,得BC =43,所以A (4,0,0),B (0,43,0),C (0,0,0),A 1(4,0,a ),M ⎝⎛⎭⎪⎫4,0,a 2,P ⎝⎛⎭⎪⎫2,23,a 4,Q ⎝ ⎛⎭⎪⎫1,0,a 4.所以QP →=(1,23,0),CA →=(4,0,0).设异面直线QP 与CA 所成的角为θ,所以|cos θ|=|QP →·CA →||QP →|·|CA →|=4413=1313.由sin 2θ+cos 2θ=1得,sin 2θ=1213,所以sin θ=±23913,因为异面直线所成角的正弦值为正,所以sin θ=23913即为所求.答案:239139.(2017·河北衡水模拟)如图,在正方体ABCD A 1B 1C 1D 1中,点M, N 分别在AB 1,BC 1上,且AM =13AB 1,BN =13BC 1,则下列结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④BD 1⊥MN .其中正确命题的序号是________.(写出所有正确命题的序号)解析:如图,建立以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.令正方体的棱长为3,可得D (0,0,0),A (0,3,0),A 1(0,3,3),C 1(3,0,3),D 1(0,0,3),B (3,3,0),M (1,3,1),N (3,2,1).①中,AA 1→=(0,0,3),MN →=(2,-1,0),因为AA 1→·MN →=0,所以①正确;②中,A 1C 1→=(3,-3,0),与MN →不成线性关系,所以②错;③中,易知平面A 1B 1C 1D 1的一个法向量为DD 1→=(0,0,3),而DD 1→·MN →=0,且MN ⊄平面A 1B 1C 1D 1,所以③正确;④中,BD 1→=(-3,-3,3),因为BD 1→·MN →≠0,所以④错误.答案:①③三、解答题(本题共3小题,每小题12分,共36分)10.(2017·高考全国卷Ⅱ)如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为45°,求二面角M AB D 的余弦值. 解:(1)证明:取PA 中点F ,连接EF ,BF ,CE . ∵E ,F 为PD ,PA 中点,∴EF 为△PAD 的中位线, ∴EF ═∥12AD .又∵∠BAD =∠ABC =90°,∴BC ∥AD . 又∵AB =BC =12AD ,∴BC ═∥12AD ,∴EF ═∥BC .∴四边形BCEF 为平行四边形,∴CE ∥BF . 又∵BF ⊂面PAB ,∴CE ∥面PAB .(2)以AD 中点O 为原点,如图建立空间直角坐标系.设AB =BC =1,则O (0,0,0),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,3).M 在底面ABCD 上的投影为M ′,∴MM ′⊥BM ′.又BM 与底面ABCD 所成角为45°,∴∠MBM ′=45°,∴△MBM ′为等腰直角三角形. ∵△POC 为直角三角形,且|OP ||OC |=3,∴∠PCO =60°. 设|MM ′|=a ,|CM ′|=33a ,|OM ′|=1-33a . ∴M ′⎝ ⎛⎭⎪⎫1-33a ,0,0.BM ′→=⎝ ⎛⎭⎪⎫-33a ,1,0,|BM ′|=⎝ ⎛⎭⎪⎫33a 2+12+02=13a 2+1=a ⇒a =62. ∴|OM ′|=1-33a =1-22. ∴M ′⎝ ⎛⎭⎪⎫1-22,0,0,M ⎝⎛⎭⎪⎫1-22,0,62 AM →=⎝ ⎛⎭⎪⎫1-22,1,62,AB →=(1,0,0).设平面ABM 的法向量m =(0,y 1,z 1).y 1+62z 1=0,∴m =(0,-6,2) AD →=(0,2,0),AB →=(1,0,0).设平面ABD 的法向量为n =(0,0,z 2),n =(0,0,1).∴cos〈m ,n 〉=m·n |m ||n |=210×1=21010=105.∴二面角M AB D 的余弦值为105. 11.如图所示的几何体中,ABC A 1B 1C 1为三棱柱,且AA 1⊥平面ABC ,四边形ABCD 为平行四边形,AD =2CD ,∠ADC =60°.(1)若AA 1=AC ,求证:AC 1⊥平面A 1B 1CD .(2)若CD =2,AA 1=λAC ,二面角C A 1D C 1的余弦值为24,求三棱锥C 1A 1CD 的体积. 解:(1)证明:若AA 1=AC ,则四边形ACC 1A 1为正方形, 则AC 1⊥A 1C ,因为AD =2CD ,∠ADC =60°, 所以△ACD 为直角三角形,则AC ⊥CD , 因为AA 1⊥平面ABC ,所以AA 1⊥CD , 又AA 1∩AC =A ,所以CD ⊥平面ACC 1A 1,则CD ⊥AC 1, 因为A 1C ∩CD =C ,所以AC 1⊥平面A 1B 1CD . (2)若CD =2,因为∠ADC =60°,所以AC =23,则AA 1=λAC =23λ,建立以C 为坐标原点,CD ,CA ,CC 1分别为x ,y ,z 轴的空间直角坐标系如图所示,则C (0,0,0),D (2,0,0,),A (0,23,0),C 1(0,0,23λ),A 1(0,23,23λ). 则A 1D →=(2,-23,-23λ),CD →=(2,0,0),C 1A 1→=(0,23,0). 设平面CA 1D 的一个法向量为m =(x ,y ,z ). 则m ·A 1D →=2x -23y -23λz =0,m ·CD →=2x =0, 则x =0,y =-λz ,令z =1,则y =-λ,则m =(0,-λ,1). 设平面A 1DC 1的一个法向量为n =(x 1,y 1,z 1),n ·A 1D →=2x 1-23y 1-23λz 1=0, n ·C 1A 1→=23y 1=0,则y 1=0,2x 1-23λz 1=0,令z 1=1,则x 1=3λ, 则n =(3λ,0,1), 因为二面角C A 1D C 1的余弦值为24. 所以cos 〈m ,n 〉=m·n |m |·|n |=11+λ2·1+3λ2=24. 即(1+λ2)(1+3λ2)=8,得λ=1,即AA 1=AC , 则三棱锥C 1A 1CD 的体积V =VD A 1C 1C =13CD ·12AC ·AA 1=13×2×12×23×23=4. 12.(2017·浙江宁波模拟)如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E A 1B C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB的值;若不存在,说明理由.解析:(1)证明:∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC . 又∵AD 1⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE , ∴DC ⊥A 1E .又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE .(2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴BA 1→=(-2,0,2),BC →=(2,23,0),平面A 1BE 的一个法向量为n =(0,1,0). 设平面A 1BC 的法向量为m =(x ,y ,z ), 由BA 1→·m =0,BC →·m =0, 得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(-3,1,-3),∴cos〈m ,n 〉=m·n |m |·|n |=17×1=77.由图,得二面角E A 1B C 为钝二面角,∴二面角E A 1B C 的余弦值为-77. (3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t,0,0)(0≤t ≤2),则A 1P →=(t,0,-2),A 1D →=(0,23,-2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由⎩⎨⎧A 1D →·p =0,A 1P →·p =0,得⎩⎨⎧ 23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝ ⎛⎭⎪⎫2,t 3,t . ∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23-t3+3t =0,解得t =-3.∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .。
规范答题示例6 空间中的平行与垂直关系典例6 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 的中点M ――――――→考虑平行关系长度关系平行四边形AEFM ―→AM ∥EF ――――→线面平行的判定定理EF ∥平面PAD (2)平面PAD ⊥平面ABCD PA ⊥AD ――――→面面垂直的性质PA ⊥平面ABCD ―→PA ⊥DE ――――――――→正方形ABCD 中E ,H 为AB ,BC 中点DE ⊥AH ―――――→线面垂直的判定定理DE ⊥平面PAH ――――→面面垂直的判定定理平面PAH ⊥平面DEF证明 (1)取PD 的中点M ,连接FM ,AM .∵在△PCD 中,F ,M 分别为PC ,PD 的中点,∴FM ∥CD 且FM =12CD .∵在正方形ABCD 中,AE ∥CD 且AE =12CD ,∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形,∴AM ∥EF , 4分 ∵EF ⊄平面PAD ,AM ⊂平面PAD ,∴EF ∥平面PAD . 6分 (2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD ,侧面PAD ∩底面ABCD =AD , ∴PA ⊥底面ABCD ,∵DE ⊂底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt△ABH ≌Rt△DAE ,则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,∴DE ⊥AH ,8分 ∵PA ⊂平面PAH ,AH ⊂平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH , ∵DE ⊂平面EFD ,∴平面PAH ⊥平面DEF . 12分第一步找线线:通过三角形或四边形的中位线、平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.第二步找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行.第三步找面面:通过面面关系的判定定理,寻找面面垂直或平行.第四步写步骤:严格按照定理中的条件规范书写解题步骤评分细则 (1)第(1)问证出AE 綊FM 给2分;通过AM ∥EF 证线面平行时,缺1个条件扣1分;利用面面平行证明EF ∥平面PAD 同样给分;(2)第(2)问证明PA ⊥底面ABCD 时缺少条件扣1分;证明DE ⊥AH 时只要指明E ,H 分别为正方形边AB ,BC 的中点得DE ⊥AH 不扣分;证明DE ⊥平面PAH 只要写出DE ⊥AH ,DE ⊥PA ,缺少条件不扣分.跟踪演练6 如图,在三棱锥V —ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V —ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,平面VAB ∩平面ABC =AB ,且OC ⊂平面ABC , 所以OC ⊥平面VAB .又OC ⊂平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C —VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V —ABC 的体积与三棱锥C —VAB 的体积相等, 所以三棱锥V —ABC 的体积为33.。
专题能力训练13 空间几何体能力突破训练1.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32πA.+1B.+3C.+1D.+33.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π4.已知平面α截球O的球面得圆M,过圆心Μ的平面β与α的夹角为,且平面β截球O的球面得圆N.已知球Ο的半径为5,圆M的面积为9π,则圆N的半径为()A.3B.C.4D.5.在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则() A.S1=S2=S3B.S2=S1,且S2≠S3C.S3=S1,且S3≠S2D.S3=S2,且S3≠S16.(2017北京,理7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.27.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为.8.(2017山东,理13)由一个长方体和两个圆柱构成的几何体的三视图如图,则该几何体的体积为.9.如图,已知多面体ABCDEFG中,AB,AC,AD两两互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为.10.下列三个图中,左面是一个正方体截去一个角后所得多面体的直观图.右面两个是其正视图和侧视图.(1)请按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程);(2)求该多面体的体积(尺寸如图).11.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.思维提升训练12.(2017中原名校质检)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.9(+1)π+8B.9(+2)π+4-8C.9(+2)π+4D.9(+1)π+8-813.(2017江苏,6)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.14.(2017全国Ⅰ,理16)15.若三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为.16.如图①,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B(如图②),并且点D在平面ABC内的射影落在AB上.(1)证明:AD⊥平面DBC;(2)若在四面体D-ABC内有一球,问:当球的体积最大时,球的半径是多少?参考答案专题能力训练13 空间几何体能力突破训练1.C解析由题意可知,该几何体由同底面的一个圆柱和一个圆锥构成,圆柱的侧面积为S1=2π×2×4=16π,圆锥的侧面积为S2=2π×2=8π,圆柱的底面面积为S3=π×22=4π,故该几何体的表面积为S=S1+S2+S3=28π,故选C.2.A解析V=3+1,故选A.3.A解析由三视图可知该几何体是球截去后所得几何体,则R3=,解得R=2,所以它的表面积为4πR2+πR2=14π+3π=17π.4.B解析如图,∵OA=5,AM=3,∴OM=4.∵∠NMO=,∴ON=OM·sin=2又∵OB=5,∴NB=,故选B.5.D解析三棱锥的各顶点在xOy坐标平面上的正投影分别为A1(2,0,0),B1(2,2,0),C1(0,2,0),D1(1,1,0).显然D1点为A1C1的中点,如图(1),正投影为Rt△A1B1C1,其面积S1=2×2=2.三棱锥的各顶点在yOz坐标平面上的正投影分别为A2(0,0,0),B2(0,2,0),C2(0,2,0),D2(0,1,).显然B2,C2重合,如图(2),正投影为△A2B2D2,其面积S2=2三棱锥的各顶点在zOx坐标平面上的正投影分别为A3(2,0,0),B3(2,0,0),C3(0,0,0),D3(1,0,),由图(3)可知,正投影为△A3D3C3,其面积S3=2综上,S2=S3,S3≠S1.故选D.图(1)图(2)图(3)6.B解析由题意可知,直观图为四棱锥A-BCDE(如图所示),最长的棱为正方体的体对角线AE==2故选B.7解析构造一个长方体,使得它的三条面对角线长分别为4,5,6,设长方体的三条边长分别为x,y,z,则x2+y2+z2=,而长方体的外接球就是四面体的外接球,所以S=4πR2=8.2+解析由三视图还原几何体如图所示,故该几何体的体积V=2×1×1+212×1=2+9.4解析(方法一:分割法)几何体有两对相对面互相平行,如图,过点C作CH⊥DG于H,连接EH,即把多面体分割成一个直三棱柱DEH-ABC和一个斜三棱柱BEF-CHG.由题意,知V三棱柱DEH-ABC=S△DEH×AD=2=2,V三棱柱BEF-CHG=S△BEF×DE=2=2.故所求几何体的体积为V多面体ABCDEFG=2+2=4.(方法二:补形法)因为几何体有两对相对面互相平行,如图,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V正方体ABHI-DEKG=23=8,故所求几何体的体积为V多面体ABCDEFG=8=4.10.解(1)作出俯视图如图所示.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)得到的,所以截去的三棱锥体积A1E=1=,正方体体积=23=8,故所求多面体的体积V=8-11.解(1)交线围成的正方形EHGF如图所示.(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为思维提升训练12.D解析由三视图可知,该几何体是由一个四棱锥和一个圆锥拼接而成,故S=(2π×3)×3+π×32-(2)2+4=9(+1)π+8-8.故选D.13解析设球O的半径为r,则圆柱O1O2的高为2r,故,答案为14.4解析如图所示,连接OD,交BC于点G.由题意知OD⊥BC,OG=BC.设OG=x,则BC=2x,DG=5-x,三棱锥的高h=因为S△ABC=2x×3x=3x2,所以三棱锥的体积V=S△ABC·h=x2令f(x)=25x4-10x5,x,则f'(x)=100x3-50x4.令f'(x)=0,可得x=2,则f(x)在(0,2)单调递增,在单调递减,所以f(x)max=f(2)=80.所以V=4,所以三棱锥体积的最大值为415.64π解析如图,三棱锥S-ABC的所有顶点都在球O的球面上,因为AB=1,AC=2,∠BAC=60°,所以BC=,所以∠ABC=90°.所以△ABC截球O所得的圆O'的半径r=1.设OO'=x,球O的半径为R,则R2=x2+12,R2=(SA-x)2+12,所以x2+1=+1,解得x=,R2=+12,R=4.所以球O的表面积为4πR2=64π.16.(1)证明设D在平面ABC内的射影为H,则H在AB上,连接DH,如图,则DH⊥平面ABC,得DH⊥BC.又AB⊥BC,AB∩DH=H,所以BC⊥平面ADB,故AD⊥BC.又AD⊥DC,DC∩BC=C,所以AD⊥平面DBC.(2)解当球的体积最大时,易知球与三棱锥D-ABC的各面相切,设球的半径为R,球心为O,则V D-ABC=R(S△ABC+S△DBC+S△DAC+S△DAB).由已知可得S△ABC=S△ADC=6.过点D作DG⊥AC于点G,连接GH,如图,可知HG⊥AC.易得DG=,HG=,DH=,S△DAB=4在△DAB和△BCD中,因为AD=BC,AB=DC,DB=DB,所以△DAB≌△BCD,故S△DBC=,V D-ABC=6则, 于是(4+)R=,所以R=。
第2讲空间中的平行与垂直1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定定理与性质定理对命题的真假进行判断,属于基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.热点一空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1 (1)(2017·四川省眉山中学月考)已知m,n为空间中两条不同的直线,α,β为空间中两个不同的平面,下列命题正确的是( )A.若n⊥α,n⊥β,m⊂β,则m∥αB.若m⊥α,α⊥β,则m∥βC.若m,n在α内的射影互相平行,则m∥nD.若m⊥l,α∩β=l,则m⊥α答案 A解析由题意知,n⊥α,n⊥β,则α∥β,又m⊂β,则m∥α,A正确;若m⊥α,α⊥β,可能会现m⊂β,B错误;若m,n在α内的射影互相平行,两直线异面也可以, C错误;若m⊥l,α∩β=l,可能会出现m⊂α,D错误.故选A.(2)(2017届泉州模拟)设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面α( )A.有无数多个B.恰有4个C.只有1个D.不存在答案 A解析如图,由题知面PAD与面PBC相交,面PAB与面PCD相交,可设两组相交平面的交线分别为m,n,由m,n决定的平面为β,作α与β平行且与四条侧棱相交,交点分别为A1,B1,C1,D1,则由面面平行的性质定理得A1B1∥n∥C1D1,A1D1∥m∥B1C1,从而得截面必为平行四边形.由于平面α可以上下平移,可知满足条件的平面α有无数多个.故选A.思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.跟踪演练1 (1)α,β,γ是三个平面,m, n是两条直线,则下列命题正确的是( )A.若α∩β=m, n⊂α,m⊥n,则α⊥βB.若α⊥β,α∩β=m, α∩γ=n,则m⊥nC.若m不垂直平面α,则m不可能垂直于平面α内的无数条直线D.若m⊥α,n⊥β,m∥n,则α∥β答案 D解析逐一分析所给的命题:A项,若α∩β=m, n⊂α,m⊥n,并非一条直线垂直于平面内的两条相交直线,不一定有α⊥β,该说法错误;B项,若α⊥β,α∩β=m, α∩γ=n,无法确定m,n的关系,该说法错误;C项,若m不垂直平面α,则m可能垂直于平面α内的无数条直线,该说法错误;D项,若m⊥α,n⊥β,m∥n,则α∥β,该说法正确.故选D.(2)(2017届株洲一模)如图,平面α⊥平面β,α∩β=直线l, A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l, M,N分别是线段AB,CD的中点.下列判断正确的是( )A.当CD=2AB时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与l不可能相交C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交D.当AB,CD是异面直线时,直线MN可能与l平行答案 B解析由于直线CD的两个端点都可以动,所以M,N两点可能重合,此时两条直线AB,CD共面,由于两条线段互相平分,所以四边形ACBD是平行四边形,因此AC∥BD,则BD⊂β,所以由线面平行的判定定理可得AC∥β,又因为AC⊂α,α∩β=l,所以由线面平行的性质定理可得AC∥l,故应排除答案A,C,D,故选B.热点二 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2 (1)(2017·全国Ⅱ)如图,四棱锥P —ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.①证明:直线BC ∥平面PAD ;②若△PCD 的面积为27,求四棱锥P —ABCD 的体积.①证明 在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD .②解 如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD , 所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2. 于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P —ABCD 的体积V =13×2(2+4)2×23=4 3.(2)(2017·重庆市巴蜀中学三模)如图,平面ABCD ⊥平面ADEF ,四边形ABCD 为菱形,四边形ADEF 为矩形, M ,N 分别是EF ,BC 的中点, AB =2AF, ∠CBA =60°.①求证: DM ⊥平面MNA ; ②若三棱锥A -DMN 的体积为33,求MN 的长. ①证明 连接AC ,在菱形ABCD 中, ∠CBA =60°,且AB =BC ,∴△ABC 为等边三角形, 又∵N 为BC 的中点, ∴AN ⊥BC , ∵BC ∥AD , ∴AN ⊥AD ,又∵平面ABCD ⊥平面ADEF ,平面ABCD ∩平面ADEF =AD ,AN ⊂平面ABCD , ∴AN ⊥平面ADEF ,又DM ⊂平面ADEF ,∴DM ⊥AN . ∵在矩形ADEF 中, AD =2AF ,M 为EF 的中点, ∴△AMF 为等腰直角三角形,∴∠AMF =45°, 同理可证∠DME =45°,∴∠DMA =90°, ∴DM ⊥AM ,又∵AM ∩AN =A ,且AM ,AN ⊂平面MNA , ∴DM ⊥平面MNA .②设AF =x ,则AB =2AF =2x ,在Rt△ABN 中, AB =2x, BN =x, ∠ABN =60°, ∴AN =3x ,∴S △ADN =12×2x ×3x =3x 2.∵平面ABCD ⊥平面ADEF, AD 为交线, FA ⊥AD , ∴FA ⊥平面ABCD ,设h 为点M 到平面ADN 的距离,则h =AF =x , ∴V M -ADN =13×S △ADN ×h =13×3x 2×x =33x 3,∵V M -ADN =V A -DMN =33,∴x =1. ∴MN =AN 2+AM 2= 5.思维升华 垂直、平行关系的基础是线线垂直和线线平行,常用方法如下(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换. (2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质,即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l ⊥α,a ⊂α⇒l ⊥a .跟踪演练2 (2017·北京市海淀区适应性考试)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =3, E 是侧棱PA 上的动点. (1)求四棱锥P -ABCD 的体积;(2)如果E 是PA 的中点,求证:PC ∥平面BDE ;(3)是否无论点E 在侧棱PA 的任何位置,都有BD ⊥CE ?证明你的结论. (1)解 ∵PA ⊥平面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PA =13×12×3=33,即四棱锥P -ABCD 的体积为33.(2)证明 连接AC 交BD 于O ,连接OE . ∵四边形ABCD 是正方形, ∴O 是AC 的中点,又∵E 是PA 的中点,∴PC ∥OE , ∵PC ⊄平面BDE, OE ⊂平面BDE , ∴PC ∥平面BDE .(3)解 无论点E 在任何位置,都有BD ⊥CE . 证明如下:∵四边形ABCD 是正方形,∴BD ⊥AC , ∵PA ⊥底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PA , 又∵AC ∩PA =A ,AC ,PA ⊂平面PAC , ∴BD ⊥平面PAC .∵无论点E 在任何位置,都有CE ⊂平面PAC , ∴无论点E 在任何位置,都有BD ⊥CE . 热点三 平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化,有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3 (2017·孝义质检)如图(1),在五边形ABCDE 中, ED =EA ,AB ∥CD ,CD =2AB ,∠EDC =150°.如图(2),将△EAD 沿AD 折到△PAD 的位置,得到四棱锥P -ABCD .点M 为线段PC 的中点,且BM ⊥平面PCD .(1)求证:平面PAD ⊥平面ABCD ;(2)若四棱锥P -ABCD 的体积为23,求四面体BCDM 的体积.(1)证明 取PD 的中点N ,连接AN ,MN ,如图所示,则MN ∥CD ,MN =12CD .又AB ∥CD ,AB =12CD ,∴MN ∥AB 且MN =AB ,∴四边形ABMN 为平行四边形,∴AN ∥BM , 又BM ⊥平面PCD , ∴AN ⊥平面PCD , ∴AN ⊥PD ,AN ⊥CD .由ED =EA ,即PD =PA 及N 为PD 的中点,可得△PAD 为等边三角形, ∴∠PDA =60°,又∠EDC =150°, ∴∠CDA =90°,∴CD ⊥AD , 又AN ∩AD =A ,AN ⊂平面PAD ,AD ⊂平面PAD ,∴CD ⊥平面PAD ,又∵CD ⊂平面ABCD , ∴平面PAD ⊥平面ABCD .(2)解 设四棱锥P -ABCD 的高为h ,四边形ABCD 的面积为S ,则V P -ABCD =13hS =23,又S △BCD =23S ,四面体BCDM 的高为h2.∴V BCDM =13×h 2×S △BCD =16×23hS=16×23×63=233, ∴四面体BCDM 的体积为233.思维升华 (1)折叠问题中不变的数量和位置关系是解题的突破口.(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.跟踪演练3 (2017届四川省成都市九校模拟)如图,在直角梯形ABCD 中, AD ∥ BC, AB ⊥BC, BD ⊥DC ,点E 是BC 边的中点, 将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE, AC, DE, 得到如图所示的空间几何体.(1)求证: AB ⊥平面ADC ;(2)若AD =1,AB =2,求点B 到平面ADE 的距离. (1)证明 因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD ,又BD ⊥DC ,DC ⊂平面BCD ,所以DC ⊥平面ABD . 因为AB ⊂平面ABD ,所以DC ⊥AB .又AD ⊥AB ,DC ∩AD =D ,AD ,DC ⊂平面ADC , 所以AB ⊥平面ADC .(2)解 因为AB =2,AD =1,所以BD = 3. 依题意△ABD ∽△DCB , 所以AB AD =CD BD ,即21=CD3. 所以CD = 6. 故BC =3.由于AB ⊥平面ADC ,AB ⊥AC ,E 为BC 的中点,所以AE =BC 2=32.同理DE =BC 2=32.所以S △ADE =12×1×⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122=22.因为DC ⊥平面ABD , 所以V A —BCD =13CD ·S △ABD =33.设点B 到平面ADE 的距离为d ,则13d ·S △ADE =V B —ADE =V A —BDE =12V A —BCD =36, 所以d =62,即点B 到平面ADE 的距离为62.真题体验1.(2017·全国Ⅰ改编)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是______.答案(1)解析对于(1),作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;对于(2),作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;对于(3),作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;对于(4),作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.2.(2017·江苏)如图,在三棱锥A—BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以AB∥EF.又EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又AC⊂平面ABC,所以AD⊥AC.押题预测1.不重合的两条直线m,n分别在不重合的两个平面α,β内,下列为真命题的是( )A.m⊥n⇒m⊥βB.m⊥n⇒α⊥βC.α∥β⇒m∥βD.m∥n⇒α∥β押题依据空间两条直线、两个平面之间的平行与垂直的判定是立体几何的重点内容,也是高考命题的热点.此类题常与命题的真假性、充分条件和必要条件等知识相交汇,意在考查考生的空间想象能力、逻辑推理能力.答案 C解析构造长方体,如图所示.因为A1C1⊥AA1,A1C1⊂平面AA1C1C,AA1⊂平面AA1B1B,但A1C1与平面AA1B1B不垂直,所以平面AA1C1C与平面AA1B1B不垂直.所以选项A,B都是假命题.CC1∥AA1,但平面AA1C1C与平面AA1B1B相交而不平行,所以选项D为假命题.“若两平面平行,则一个平面内任何一条直线必平行于另一个平面”是真命题,故选C.2.如图(1),在正△ABC中,E,F分别是AB,AC边上的点,且BE=AF=2CF.点P为边BC上的点,将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面BEFC,连接A1B,A1P,EP,如图(2)所示.(1)求证:A1E⊥FP;(2)若BP=BE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE平行,若存在,请给予证明;若不存在,请说明理由.押题依据以平面图形的翻折为背景,探索空间直角与平面位置关系的考题创新性强,可以考查考生的空间想象能力和逻辑推理能力,预计将成为今年高考的命题形式.(1)证明在正△ABC中,取BE的中点D,连接DF,如图所示.因为BE=AF=2CF,所以AF=AD,AE=DE,而∠A=60°,所以△ADF为正三角形.又AE=DE,所以EF⊥AD.所以在题图(2)中A1E⊥EF,又A1E⊂平面A1EF,平面A1EF⊥平面BEFC,且平面A1EF∩平面BEFC=EF,所以A1E⊥平面BEFC.因为FP⊂平面BEFC,所以A1E⊥FP.(2)解在平面A1FP上存在过点K的直线与平面A1BE平行.理由如下:如题图(1),在正△ABC中,因为BP=BE,BE=AF,所以BP=AF,所以FP∥AB,所以FP∥BE.如图所示,取A1P的中点M,连接MK,因为点K为棱A1F的中点,所以MK∥FP.因为FP∥BE,所以MK∥BE.因为MK⊄平面A1BE,BE⊂平面A1BE,所以MK∥平面A1BE.故在平面A1FP上存在过点K的直线MK与平面A1BE平行.A组专题通关1.(2017·河南省六市联考)如图,G, H, M, N分别是正三棱柱的顶点或所在棱的中点,则表示GH, MN是异面直线的图形的序号为( )A.①② B.③④C.①③ D.②④答案 D解析由题意可得图①中GH与MN平行,不合题意;图②中的GH与MN异面,符合题意;图③中GH与MN相交,不合题意;图④中GH与MN异面,符合题意.则表示GH, MN是异面直线的图形的序号为②④.故选D.2.(2017·宣城调研)已知m, n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题,错误的命题是( )A.若m∥α,m∥β,α∩β=n,则m∥nB.若α⊥β,m⊥α,n⊥β,则m⊥nC.若α⊥β,α⊥γ,β∩γ=m,则m⊥αD.若α∥β,m∥α,则m∥β答案 D解析由m∥α,m∥β,α∩β=n,利用线面平行的判定与性质定理可得m∥n,A正确;由α⊥β,m⊥α,n⊥β,利用线面、面面垂直的性质定理可得m⊥n,B正确;由α⊥β,α⊥γ,β∩γ=m,利用线面、面面垂直的性质定理可得m⊥α,C正确;由α∥β,m∥α,则m∥β或m⊂β,可得D不正确.故选D.3.已知平面α及直线a,b下列说法正确的是( )A.若直线a,b与平面α所成角都是30°,则这两条直线平行B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直C.若直线a,b平行,则这两条直线中至少有一条与平面α平行D.若直线a,b垂直,则这两条直线与平面α不可能都垂直答案 D解析由题意逐一分析所给的选项.若直线a,b与平面α所成角都是30°,则这两条直线不一定平行;若直线a,b与平面α所成角都是30°,则这两条直线可能垂直;若直线a,b平行,则这两条直线中可能两条都与平面α不平行;若直线a ,b 垂直,则这两条直线与平面 α不可能都垂直. 故选D.4.已知m ,n ,l 1,l 2表示不同的直线,α,β表示不同的平面,若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2答案 D解析 对于选项A ,当m ∥β且l 1∥α时,α,β可能平行也可能相交,故A 不是α∥β的充分条件;对于选项B ,当m ∥β且n ∥β时,若m ∥n ,则α,β可能平行也可能相交,故B 不是α∥β的充分条件;对于选项C ,当m ∥β且n ∥l 2时,α,β可能平行也可能相交,故C 不是α∥β的充分条件;对于选项D ,当m ∥l 1,n ∥l 2时,由线面平行的判定定理可得l 1∥α,l 2∥α,又l 1∩l 2=M ,由面面平行的判定定理可以得到α∥β,但α∥β时,m ∥l 1且n ∥l 2不一定成立,故D 是α∥β的一个充分条件.故选D. 5.对于四面体A —BCD ,有以下命题:①若AB =AC =AD ,则AB ,AC ,AD 与底面所成的角相等;②若AB ⊥CD ,AC ⊥BD ,则点A 在底面BCD 内的射影是△BCD 的内心; ③四面体A —BCD 的四个面中最多有四个直角三角形;④若四面体A —BCD 的6条棱长都为1,则它的内切球的表面积为π6.其中正确的命题是( ) A .①③ B .③④ C .①②③ D .①③④ 答案 D解析 ①正确,若AB =AC =AD ,则AB ,AC ,AD 在底面的射影相等,即与底面所成角相等;②不正确,如图,点A 在平面BCD 的射影为点O ,连接BO ,CO ,可得BO ⊥CD ,CO ⊥BD ,所以点O 是△BCD 的垂心;③正确,如图, AB ⊥平面BCD, ∠BCD =90°,其中有4个直角三角形;④正确,正四面体的内切球的半径为r ,棱长为1,高为63,根据等体积公式13×S ×63=13×4×S ×r ,解得 r =612,那么内切球的表面积S =4πr 2=π6,故选D.6.正方体ABCD -A 1B 1C 1D 1中,E 为线段B 1D 1上的一个动点,则下列结论中正确的是________.(填序号) ①AC ⊥BE ;②B 1E ∥平面ABCD ;③三棱锥E -ABC 的体积为定值; ④直线B 1E ⊥直线BC 1. 答案 ①②③解析 因为AC ⊥平面BDD 1B 1,故①正确;因为B 1D 1∥平面ABCD ,故②正确;记正方体的体积为V ,则V E -ABC =16V ,为定值,故③正确;B 1E 与BC 1不垂直,故④错误.7.下列四个正方体图形中,点A ,B 为正方体的两个顶点,点M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.(写出所有符合要求的图形序号)答案 ①③解析 对于①,注意到该正方体的面中过直线AB 的侧面与平面MNP 平行,因此直线AB ∥平面MNP ;对于②,注意到直线AB 和过点A 的一个与平面MNP 平行的平面相交,因此直线AB 与平面MNP 相交;对于③,注意到此时直线AB 与平面MNP 内的一条直线MP 平行,且直线AB 位于平面MNP 外,因此直线AB 与平面MNP 平行;对于④,易知此时AB 与平面MNP 相交.综上所述,能得出直线AB 平行于平面MNP 的图形的序号是①③.8.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,点D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案 a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1, 所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可. 令CF ⊥DF ,设AF =x ,则A 1F =3a -x . 易知Rt△CAF ∽Rt△FA 1D , 得AC A 1F =AF A 1D ,即2a 3a -x =x a, 整理得x 2-3ax +2a 2=0, 解得x =a 或x =2a .9.(2017·山东)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1-B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD.又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.10.(2017届宁夏六盘山高级中学模拟)如图所示,矩形ABCD中,AB=3, BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影E落在BC上.(1)求证:平面ACD⊥平面ABC;(2)求三棱锥A-BCD的体积.(1)证明∵AE⊥平面BCD,∴AE⊥CD.又BC⊥CD,且AE∩BC=E,∴CD⊥平面ABC.又CD⊂平面ACD,∴平面ACD ⊥平面ABC .(2)解 由(1)知,CD ⊥平面ABC , 又AB ⊂平面ABC ,∴CD ⊥AB . 又AB ⊥AD ,CD ∩AD =D , ∴AB ⊥平面ACD .∴V A -BCD =V B -ACD =13·S △ACD ·AB .又在△ACD 中,AC ⊥CD ,AD =BC =4,AB =CD =3, ∴AC =AD 2-CD 2=42-32=7, ∴V A -BCD =13×12×7×3×3=372.B 组 能力提高11.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )答案 C解析 过M 作MQ ∥DD 1,交AD 于点Q ,连接QN . ∵MN ∥平面DCC 1D 1,MQ ∥平面DCC 1D 1,MN ∩MQ =M , ∴平面MNQ ∥平面DCC 1D 1,又平面ABCD 与平面MNQ 和DCC 1D 1分别交于直线QN 和直线DC , ∴NQ ∥DC ,可得QN =CD =AB =1,AQ =BN =x ,∵MQ AQ =DD 1AD=2,∴MQ =2x .在Rt△MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1, ∴y 2-4x 2=1 (0≤x ≤1),∴函数y =f (x )的图象为焦点在y 轴上的双曲线上支的一部分.故选C.12.(2017届江西省重点中学协作体联考)如图,在长方体ABCD -A 1B 1C 1D 1中, AA 1=6,AB =3,AD =8, 点M 是棱AD 的中点,N 在棱AA 1上,且满足AN =2NA 1,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的最小值是________. 答案17解析 取A 1D 1的中点Q ,过点Q 在平面ADD 1A 1内作MN 的平行线交DD 1于E ,则易知平面C 1QE ∥平面CMN ,在△C 1QE 中作C 1P ⊥QE ,则C 1P =17为所求.13.(2017届江西省重点中学协作体联考)如图,多面体ABCB 1C 1D 是由三棱柱ABC -A 1B 1C 1截去一部分后而成, D 是AA 1的中点.(1)若F 在CC 1上,且CC 1=4CF ,E 为AB 的中点,求证:直线EF ∥平面B 1C 1D ; (2)若AD =AC =1,AD ⊥平面ABC, BC ⊥AC, 求点C 到面B 1C 1D 的距离.(1)证明 方法一 取AC 的中点G ,CC 1的中点为H ,连接AH ,GF ,GE ,如图所示.∵AD 綊C 1H ,∴四边形ADC 1H 为平行四边形, ∴AH ∥C 1D ,又F 是CH 的中点, G 是AC 的中点, ∴GF ∥AH, ∴GF ∥C 1D ,又GF ⊄平面C 1DB 1,C 1D ⊂平面C 1DB 1,∴GF ∥平面C 1DB 1, 又G ,E 分别是AC ,AB 的中点, ∴GE ∥BC ∥B 1C 1,又GE ⊄平面C 1DB 1,B 1C 1⊂平面C 1DB 1,∴GE ∥平面C 1DB 1,又GE ∩GF =G ,GE ⊂平面GEF ,GF ⊂平面GEF , ∴平面GEF ∥平面DB 1C 1,又EF ⊄平面DB 1C 1,EF ⊂平面GEF , ∴EF ∥平面DB 1C 1.方法二 取B 1D 的中点M ,连接EM ,MC 1,则EM 是梯形ABB 1D 的中位线, ∴EM ∥BB 1,EM =12()AD +BB 1=12⎝ ⎛⎭⎪⎫12CC 1+CC 1=34CC 1,又C 1F =CC 1-CF =34CC 1, BB 1∥CC 1,∴ EM 綊C 1F ,故四边形EMC 1F 为平行四边形, ∴C 1M ∥EF , 又EF ⊄平面C 1DB 1, C 1M ⊂平面C 1DB 1, ∴EF ∥平面C 1DB 1.(2)解 AD ⊥平面ABC, AC ⊂平面ABC, ∴AD ⊥AC , 又AD =AC =1, CC 1=2AD ,AD ∥CC 1, ∴C 1D 2=DC 2=AC 2+AD 2=2AD 2=2,C 1C 2=4, 故CC 21=CD 2+C 1D 2,即C 1D ⊥CD , 又BC ⊥AC, AD ⊥BC ,AC ∩AD =A , ∴BC ⊥平面ACC 1D ,又CD ⊂平面ACC 1D , ∴BC ⊥CD ,又B 1C 1∥BC, ∴B 1C 1⊥CD ,又DC 1∩B 1C 1=C 1,∴CD ⊥平面B 1C 1D ,∴点C 到平面B 1C 1D 的距离为CD 的长,即为 2.14.(2017届云南省师范大学附属中学月考)如图,矩形AB ′DE (AE =6,DE =5),被截去一角(即△BB ′C ),AB =3, ∠ABC =135°,平面PAE ⊥平面ABCDE, PA +PE =10.(1)求五棱锥P -ABCDE 的体积的最大值; (2)在(1)的情况下,证明: BC ⊥PB . (1)解 因为AB =3,∠ABC =135°,所以∠B ′BC =45°, BB ′=AB ′-AB =5-3=2, 所以截去的△BB ′C 是等腰直角三角形, 所以S ABCDE =S AB ′DE -S △BB ′C =6×5-12×2×2=28.如图,过P 作PO ⊥AE ,垂足为O , 因为平面PAE ⊥平面ABCDE ,平面PAE ∩平面ABCDE =AE ,PO ⊂平面PAE , 所以PO ⊥平面ABCDE, PO 为五棱锥P -ABCDE 的高.在平面PAE 内, PA +PE =10>AE =6, P 在以A ,E 为焦点,长轴长为10的椭圆上,由椭圆的简单的几何性质知,点P 为短轴端点时, P 到AE 的距离最大,此时PA =PE =5, OA =OE =3,所以PO max =4,所以()V P -ABCDE max =13S ABCDE ·PO max=13×28×4=1123.(2)证明 连接OB ,如图,由(1)知, OA =AB =3, 故△OAB 是等腰直角三角形,所以∠ABO =45°, 所以∠OBC =∠ABC -∠ABO =135°-45°=90°, 即BC ⊥BO .由于PO ⊥平面ABCDE ,所以PO ⊥BC , 而PO ∩BO =O ,PO ,BO ⊂平面POB , 所以BC ⊥平面POB ,又PB ⊂平面POB ,所以BC ⊥PB .。
(新课标)2018届高考数学二轮复习专题五立体几何专题能力训练14空间中的平行与垂直理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018届高考数学二轮复习专题五立体几何专题能力训练14 空间中的平行与垂直理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018届高考数学二轮复习专题五立体几何专题能力训练14空间中的平行与垂直理的全部内容。
专题能力训练14空间中的平行与垂直能力突破训练1.如图,O为正方体ABCD—A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DﻩB。
AA1ﻩC.A1D1ﻩD。
A1C12。
如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O.则下列说法正确的是()A.O是△AEF的垂心B。
O是△AEF的内心C.O是△AEF的外心ﻩD。
O是△AEF的重心(第1题图)(第2题图)3。
α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β。
②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等。
其中正确的命题有。
(填写所有正确命题的编号)4.已知正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.5。
下列命题中正确的是.(填上你认为正确的所有命题的序号)①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;③若球O与棱长为a的正四面体各面都相切,则该球的表面积为a2;④在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则PC⊥AB.6.在正三棱柱A1B1C1—ABC中,点D是BC的中点,BC=BB1.设B1D∩BC1=F。
第二篇专题五第2讲空间中的平行与垂直[限时训练·素能提升](限时50分钟,满分76分)一、选择题(本题共6小题,每小题5分,共30分)1.(2018·潍坊模拟)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A不正确.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B、C.故选D.答案 D2.(2018·乌鲁木齐二模)关于直线a,b及平面α,β,下列命题中正确的是A.若a∥α,α∩β=b,则a∥bB.若α⊥β,m∥α,则m⊥βC.若a⊥α,a∥β,则α⊥βD.若a∥α,b⊥a,则b⊥α解析A是错误的,因为a不一定在平面β内,所以a,b有可能是异面直线;B是错误的,若α⊥β,m∥α,则m与β可能平行,可能相交,也可能线在面内,故B错误;C 是正确的,由直线与平面垂直的判断定理能得到C正确;D是错误的,直线与平面垂直,需直线与平面中的两条相交直线垂直.答案 C3.(2018·全国卷Ⅱ)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为A.22B.32C.52D.72解析如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C. 答案 C4.如图,在三棱锥P -ABC 中,不能证明AP ⊥BC 的条件是 A .AP ⊥PB ,AP ⊥PC B .AP ⊥PB ,BC ⊥PBC .平面BPC ⊥平面APC ,BC ⊥PCD .AP ⊥平面PBC解析 A 中,因为AP ⊥PB ,AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC .又BC ⊂平面PBC ,所以AP ⊥BC ,故A 正确;C 中,因为平面BPC ⊥平面APC ,BC ⊥PC ,所以BC ⊥平面APC .又AP ⊂平面APC ,所以AP ⊥BC ,故C 正确;D 中,由A 知D 正确;B 中条件不能判断出AP ⊥BC ,故选B.答案 B5.(2018·某某质检)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若α⊥γ,β⊥γ,则α∥β 其中真命题的个数是A .0B .1C .2D .3解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误.答案 B6.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.334 B.233 C.324 D.32解析记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′-AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝ ⎛⎭⎪⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A.答案 A二、填空题(本题共2小题,每小题5分,共10分)7.(2018·全国卷Ⅲ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.解析 由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.答案 8π8.(2018·某某模拟)如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,请你补充一个条件________,使平面MBD ⊥平面PCD .①DM ⊥PC ;②DM ⊥BM ;③BM ⊥PC ;④PM =MC (填写你认为是正确的条件对应的序号).解析 因为在四棱锥A -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,所以BD ⊥PA ,BD ⊥AC ,因为PA ∩AC =A ,所以BD ⊥平面PAC ,所以BD ⊥PC . 所以当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD ,所以平面MBD ⊥平面PCD . 答案 ①(或③)三、解答题(本题共3小题,每小题12分,共36分)9.(2018·某某期末)如图,三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,∠ACB =90°,AC =CB =CC 1=2,M 是AB 的中点.(1)求证:平面A 1CM ⊥平面ABB 1A 1; (2)求点M 到平面A 1CB 1的距离.解析 (1)证明 由A 1A ⊥平面ABC ,CM ⊂平面ABC ,得A 1A ⊥CM .由AC =CB ,M 是AB 的中点,得AB ⊥CM .又A 1A ∩AB =A ,则CM ⊥平面ABB 1A 1,又CM ⊂平面A 1CM ,所以平面A 1CM ⊥平面ABB 1A 1. (2)设点M 到平面A 1CB 1的距离为h .连接MB 1.由题意可知A 1C =CB 1=A 1B 1=2MC =22,A 1M =B 1M =6, 则S △A 1CB 1=23,S △A 1MB 1=2 2.由(1)可知CM ⊥平面ABB 1A 1,则CM 是三棱锥C -A 1MB 1的高,由VC -A 1MB 1=13MC ·S △A 1MB 1=VM -A 1CB 1=13h ·S △A 1CB 1,得h =2×2223=233,即点M 到平面A 1CB 1的距离为233.10.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解析 (1)由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.11.(2018·某某模拟)如图所示的空间几何体ABCDEFG 中,四边形ABCD 是边长为2的正方形,AE ⊥平面ABCD ,EF ∥AB ,EG ∥AD ,EF =EG =1.(1)求证:平面CFG ⊥平面ACE ;(2)在AC 上是否存在一点H ,使得EH ∥平面CFG ?若存在,求出CH 的长,若不存在,请说明理由.解析(1)证明 连接BD 交AC 于点O ,则BD ⊥AC . 设AB ,AD 的中点分别为M ,N , 连接MN ,则MN ∥BD .连接FM,GN,则FM∥GN,且FM=GN,所以四边形FMNG为平行四边形,所以MN∥FG,所以BD∥FG,所以FG⊥AC.因为AE⊥平面ABCD,所以AE⊥BD.所以FG⊥AE,又AC∩AE=A,所以FG⊥平面ACE,又FG⊂平面CFG,所以平面CFG⊥平面ACE.(2)设平面ACE交FG于点Q,则Q为FG的中点,连接EQ,CQ,连接BD交AC于点O,取CO的中点为H,连接EH,则CH∥EQ,CH=EQ=22,所以四边形EQCH为平行四边形,所以EH∥CQ,所以EH∥平面CFG.所以在AC上存在一点H,使得EH∥平面CFG,且CH=22.。
专题能力训练14 空间中的平行与垂直能力突破训练1.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C12.如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O.则下列说法正确的是() A.O是△AEF的垂心 B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心(第1题图)(第2题图)3.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)4.已知正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.5.下列命题中正确的是.(填上你认为正确的所有命题的序号)①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;③若球O与棱长为a的正四面体各面都相切,则该球的表面积为a2;④在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则PC⊥AB.6.在正三棱柱A1B1C1-ABC中,点D是BC的中点,BC=BB1.设B1D∩BC1=F.求证:(1)A1C∥平面AB1D;(2)BC1⊥平面AB1D.7.如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.8.(2017山东青岛统一质检)如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=3,F是棱PA上的一个动点,E为PD的中点.(1)求证:平面BDF⊥平面PCF;(2)若AF=1,求证:CE∥平面BDF.思维提升训练9.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A. B. C. D.10.如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.11.如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将△ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.12.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=,点D为AC的中点,点E在线段AA1上.(1)当AE∶EA1=1∶2时,求证:DE⊥BC1;(2)是否存在点E,使三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的?若存在,求AE的长,若不存在,请说明理由.13.如图,在四边形ABCD中(如图①),E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将△ABD(如图①)沿直线BD折起,使二面角A-BD-C为60°(如图②).(1)求证:AE⊥平面BDC;(2)求异面直线AB与CD所成角的余弦值;(3)求点B到平面ACD的距离.参考答案专题能力训练14空间中的平行与垂直能力突破训练1.D解析易知A1C1⊥平面BB1D1D.∵B1O⊂平面BB1D1D,∴A1C1⊥B1O,故选D.2.A解析如图,易知PA,PE,PF两两垂直,∴PA⊥平面PEF,从而PA⊥EF,而PO⊥平面AEF,则PO⊥EF,∴EF⊥平面PAO,∴EF⊥AO.同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.3.②③④解析对于①,若m⊥n,m⊥α,n∥β,则α,β的位置关系无法确定,故错误;对于②,因为n∥α,所以过直线n作平面γ与平面α相交于直线c,则n∥c.因为m⊥α,所以m⊥c,所以m⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.4解析如图,取CD的中点F,SC的中点G,连接EF,EG,FG.设EF交AC于点H,连接GH,易知AC⊥EF.又GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH.又GH∩EF=H,∴AC⊥平面EFG.故点P的轨迹是△EFG,其周长为5.②③④解析①中也可以α与γ相交;②作平面与a,b,c都相交;③中可得球的半径为r=a;④中由PA⊥BC,PB⊥AC得点P在底面△ABC的射影为△ABC的垂心,故PC⊥AB.6.证明(1)连接A1B,设A1B交AB1于点E,连接DE.∵点D是BC的中点,点E是A1B的中点,∴DE∥A1C.∵A1C⊄平面AB1D,DE⊂平面AB1D,∴A1C∥平面AB1D.(2)∵△ABC是正三角形,点D是BC的中点,∴AD⊥BC.∵平面ABC⊥平面B1BCC1,平面ABC∩平面B1BCC1=BC,AD⊂平面ABC,∴AD⊥平面B1BCC1.∵BC1⊂平面B1BCC1,∴AD⊥BC1.∵点D是BC的中点,BC=BB1,∴BD=BB1.,∴Rt△B1BD∽Rt△BCC1,∴∠BDB1=∠BC1C.∴∠FBD+∠BDF=∠C1BC+∠BC1C=90°.∴BC1⊥B1D.∵B1D∩AD=D,∴BC1⊥平面AB1D.7.(1)证法一取AD的中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD.又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC.又PC⊂平面POC,所以PC⊥AD.证法二连接AC,依题意可知△PAD,△ACD均为正三角形.因为M为PC的中点,所以AM⊥PC,DM⊥PC.又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD.因为AD⊂平面AMD,所以PC⊥AD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA.因为M为PC的中点,所以QM∥BC.在菱形ABCD中,AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离.由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD,即PO为三棱锥P-ACD的高.在Rt△POC中,PO=OC=,PC=,在△PAC中,PA=AC=2,PC=,边PC上的高AM=,所以△PAC的面积S△PAC=PC·AM=设点D到平面PAC的距离为h,由V D-PAC=V P-ACD,得S△PAC·h=S△ACD·PO.因为S△ACD=22=,所以h=,解得h=,所以点D到平面PAM的距离为8.证明(1)连接AC交BD于点O.∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.∵PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴BD⊥平面PAC,∴BD⊥平面PCF.∵BD⊂平面BDF,∴平面BDF⊥平面PCF.(2)过点E作EG∥FD交AP于点G,连接CG,连接FO.∵EG∥FD,EG⊄平面BDF,FD⊂平面BDF.∴EG∥平面BDF.∵底面ABCD是菱形,∴O是AC的中点.∵E为PD的中点,∴G为PF的中点.∵AF=1,PA=3,∴F为AG的中点,∴OF∥CG.∵CG⊄平面BDF,OF⊂平面BDF,∴CG∥平面BDF.又EG∩CG=G,EG,CG⊂平面CGE,∴平面CGE∥平面BDF.又CE⊂平面CGE,∴CE∥平面BDF.思维提升训练9.A解析(方法一)∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,∴m∥B1D1.∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,∴n∥CD1.∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.∵△B1D1C为正三角形,∴∠B1D1C=60°,∴m,n所成的角的正弦值为(方法二)由题意画出图形如图,将正方体ABCD-A1B1C1D1平移,补形为两个全等的正方体如图,易证平面AEF∥平面CB1D1,∴平面AEF即为平面α,m即为AE,n即为AF,∴AE与AF所成的角即为m与n所成的角.∵△AEF是正三角形,∴∠EAF=60°,故m,n所成角的正弦值为10.(1)证明①因为C1B1∥A1D1,C1B1⊄平面ADD1A1,所以C1B1∥平面ADD1A1.因为平面B1C1EF∩平面ADD1A1=EF,所以C1B1∥EF.所以A1D1∥EF.②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,所以B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,即tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B.故BA1⊥B1F.又B1F∩B1C1=B1,所以BA1⊥平面B1C1EF.(2)解设BA1与B1F的交点为H,连接C1H(如图).由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形ABB1A1中,AB=,AA1=2,得BH=在Rt△BHC1中,BC1=2,BH=,得sin∠BC1H=所以BC1与平面B1C1EF所成角的正弦值是11.(1)解线段AB上存在一点K,且当AK=AB时,BC∥平面DFK.证明如下:设H为AB的中点,连接EH,则BC∥EH.又因为AK=AB,F为AE的中点,所以KF∥EH,所以KF∥BC.因为KF⊂平面DFK,BC⊄平面DFK,所以BC∥平面DFK.(2)证明因为F为AE的中点,DA=DE=1,所以DF⊥AE.因为平面ADE⊥平面ABCE,所以DF⊥平面ABCE.因为BE⊂平面ABCE,所以DF⊥BE.又因为在折起前的图形中E为CD的中点,AB=2,BC=1,所以在折起后的图形中AE=BE=,从而AE2+BE2=4=AB2,所以AE⊥BE.因为AE∩DF=F,所以BE⊥平面ADE.因为BE⊂平面BDE,所以平面BDE⊥平面ADE.12.(1)证明因为三棱柱ABC-A1B1C1为正三棱柱,所以△ABC是正三角形.因为D是AC的中点,所以BD⊥AC.又平面ABC⊥平面CAA1C1,所以BD⊥DE.因为AE∶EA1=1∶2,AB=2,AA1=,所以AE=,AD=1,所以在Rt△ADE中,∠ADE=30°.在Rt△DCC1中,∠C1DC=60°,所以∠EDC1=90°,即DE⊥DC1.因为C1D∩BD=D,所以DE⊥平面BC1D,所以DE⊥BC1.(2)解假设存在点E满足题意.设AE=h,则A1E=-h,所以-S △AED-=2h-(-h)-h.因为BD⊥平面ACC1A1,所以h,又V棱柱=2=3,所以h=1,解得h=,故存在点E,当AE=,即E与A1重合时,三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的13.(1)证明如图,取BD的中点M,连接AM,ME.∵AB=AD=,DB=2,∴AM⊥BD.∵DB=2,DC=1,BC=满足DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵E是BC的中点,∴ME为△BCD的中位线,ME CD,∴ME⊥BD,ME=,∴∠AME是二面角A-BD-C的平面角,∴∠AME=60°.∵AM⊥BD,ME⊥BD,且AM,ME是平面AME内两相交于M的直线,∴BD⊥平面AEM.∵AE⊂平面AEM,∴BD⊥AE.∵△ABD为等腰直角三角形,∴AM=BD=1.在△AEM中,∵AE2=AM2+ME2-2AM·ME·cos∠AME=1+-2×1cos60°=,∴AE=,∴AE2+ME2=1=AM2,∴AE⊥ME.∵BD∩ME=M,BD⊂平面BDC,ME⊂平面BDC,∴AE⊥平面BDC.(2)解取AD的中点N,连接MN,则MN是△ABD的中位线,MN∥AB.又ME∥CD,∴直线AB与CD所成角θ等于MN与ME所成的角,即∠EMN或其补角.AE⊥平面BCD,DE⊂平面BCD,∴AE⊥DE.∵N为Rt△AED斜边的中点,∴NE=AD=,MN=AB=,ME=,∴cosθ=|cos∠EMN|=(3)解记点B到平面ACD的距离为d,则三棱锥B-ACD的体积V B-ACD=d·S△ACD.又由(1)知AE是三棱锥A-BCD的高,BD⊥CD,∴V B-ACD=V A-BCD=AE·S△BCD=∵E为BC中点,AE⊥BC,∴AC=AB=又DC=1,AD=,△ACD为等腰三角形,S△ACD=DC1,∴点B到平面ACD的距离d=。