科学文献
- 格式:pdf
- 大小:88.63 KB
- 文档页数:3
科技文献的定义科技文献是指记录科学研究成果、科技发展动态和科技管理经验的文献资料。
它是科学研究、技术创新和科技管理的重要依据和参考,对于推动科技进步和社会发展具有重要的作用。
科技文献的主要特点是准确性、权威性和时效性。
作为科学研究成果的记录,科技文献要求准确地反映研究方法、实验数据和结论,确保信息的真实性和可靠性。
同时,科技文献也需要具备权威性,即来源于有专业知识和经验的科学家、工程师和技术专家,经过同行评议和学术机构认可的论文、报告和专著等。
此外,科技文献还要具备时效性,及时反映科技发展的最新成果和动态,使读者能够及时了解科技前沿和最新趋势。
科技文献主要包括学术论文、科技报告、专利文献、技术标准和科技期刊等。
学术论文是科学研究成果的主要表现形式,它通过系统的实验或理论分析,提出新的理论、方法和结论,通过同行评议后发表在学术期刊上。
科技报告是研究项目的成果报告或研究机构的研究成果总结,它通常包含研究目的、方法、实验结果和结论等内容。
专利文献是专利申请和授权的文件,记录了发明创造的具体技术方案和实施方式。
技术标准是科技发展的规范和指南,通过规定产品的技术要求和测试方法,保障产品的质量和安全。
科技期刊是科学研究成果的重要发布渠道,它定期出版学术论文和研究报告,提供科技信息的交流和共享平台。
科技文献的利用可以促进科学研究的发展和技术创新的进步。
科学家和工程师可以通过查阅和分析科技文献,了解前人的研究成果和经验,避免重复劳动和错误,为自己的研究工作奠定基础。
科技管理人员可以通过研究科技文献,掌握科技发展的动态和趋势,制定科技政策和计划,引导科技创新和产业升级。
工程师和技术人员可以通过科技文献,学习新的技术方法和应用案例,提高自己的专业能力和技术水平。
科技文献是科学研究、技术创新和科技管理的重要资源和工具。
科技工作者应该重视科技文献的收集和利用,不断更新自己的知识和技能,推动科技进步和社会发展。
同时,科技出版机构和科技管理部门也应该加强对科技文献的管理和服务,提高科技文献的质量和影响力,为科技创新提供有力支持。
高中生如何有效阅读科学文献科学文献是高中生学习科学知识的重要资源,它们包含了前沿的研究成果和学术观点。
然而,对于许多高中生来说,阅读科学文献可能是一项具有挑战性的任务。
本文将介绍一些帮助高中生有效阅读科学文献的方法和技巧。
一、选择适合的文献在开始阅读科学文献之前,高中生应该学会选择适合自己的文献。
首先,他们可以通过在学校图书馆或在线数据库中搜索关键词来找到相关的文献。
其次,他们应该根据自己的学习目标和兴趣选择文献。
例如,如果他们对生物学感兴趣,那么可以选择与生物学相关的研究论文。
二、了解文献的结构科学文献通常由摘要、引言、方法、结果和讨论等部分组成。
高中生在阅读文献之前,应该先了解这些部分的作用和内容。
摘要通常是文献的概要,可以帮助读者快速了解研究的目的和主要结果。
引言部分介绍了研究的背景和目的,方法部分描述了研究的实验设计和数据采集方法,结果部分展示了实验结果,讨论部分对结果进行解释和分析。
三、注意关键词和术语科学文献中常常使用一些专业的术语和关键词,高中生应该学会识别和理解这些术语。
他们可以通过查阅词典或在线资源来解释这些术语的含义。
此外,高中生还可以将这些术语和关键词记录下来,以便在阅读过程中进行参考和复习。
四、提问和思考在阅读科学文献时,高中生应该保持积极的思考和提问的态度。
他们可以思考文献中的研究问题、实验设计和结果,并提出自己的疑问和观点。
通过提问和思考,他们可以更好地理解文献的内容,并培养批判性思维能力。
五、扩展阅读阅读科学文献不仅限于一篇文章,高中生可以通过扩展阅读来深入了解某个主题。
例如,他们可以查阅相关的综述文章、书籍或其他研究论文,以获取更全面的知识。
扩展阅读还可以帮助高中生了解当前研究领域的热点问题和最新进展。
六、记录和总结在阅读科学文献时,高中生应该养成记录和总结的习惯。
他们可以使用笔记本或电子工具来记录重要的观点、关键词和疑问。
此外,他们还可以将阅读的内容进行总结和归纳,以便后续的学习和复习。
如何阅读科学文献阅读科学文献对于科研工作者和学术界的人士非常重要。
通过阅读科学文献,我们可以了解最新的研究进展,与同行进行交流与合作,提高自身的学术能力和水平。
然而,对于一些初学者或者对特定领域不熟悉的人来说,阅读科学文献可能是一项具有挑战性的任务。
在本文中,我将分享一些关于如何阅读科学文献的方法和技巧。
一、了解文献的分类和来源科学文献通常可以分为多种类型,包括期刊论文、会议论文、学位论文、专著和技术报告等。
这些文献来源的权威性和可信度有所不同,应根据需要选择合适的文献进行阅读。
常见的文献数据库包括PubMed、Scopus、Web of Science等,可以通过检索关键词或者作者的姓名来查找相关的文献。
二、阅读文献之前的准备工作在阅读科学文献之前,我们可以进行一些准备工作,以提高阅读效率和理解能力。
首先,要了解相关领域的基本知识和术语,这样在阅读文献时就能更好地理解和理解作者的观点和实验内容。
其次,可以查找文献的综述或者评论性文章,了解该领域的发展和当前的研究进展,从而对文献有一个整体的了解。
最后,可以制定一个阅读计划,设定合理的阅读时间和目标,提高阅读的效率。
三、阅读科学文献的技巧1. 精读和泛读结合对于篇幅较长或者对自己比较重要的文献,可以进行精读。
在精读时,要认真阅读摘要和介绍部分,了解研究的背景和目的,然后逐段、逐句进行仔细阅读,理解作者的实验设计和研究结果。
在阅读过程中,可以做一些标记或者写下关键点,以便于后续的回顾和整理。
对于篇幅较长或者对自己不是很重要的文献,可以进行泛读。
在泛读时,可以关注文献的结构、图表和重点段落,了解作者的主要观点和研究结果。
泛读可以帮助快速获取信息,筛选出对自己研究有用的文献。
2. 多角度阅读在阅读科学文献时,要注意从多个角度进行思考和分析。
可以思考文献的创新点、实验设计、结果解释以及与其他相关文献的联系。
可以尝试用自己的话总结和表达作者的观点和结论,以帮助更好地理解文献内容。
科学探索的科学文献与资源利用科学探索是人类认识和改造世界的重要途径之一,而科学文献和资源则是科学探索不可或缺的重要支持。
科学文献是研究者们对科学问题进行思考、实验、验证和总结后的成果,它们包含了大量的科学知识和数据,为科学探索提供了可靠的依据和参考。
而资源的有效利用则是科学探索取得进展的关键。
科学文献作为科学研究的记录和传播,其作用不可低估。
它们可以帮助研究者了解和分析前人的研究成果,掌握已有的知识体系和理论框架,为自己的研究提供指导和启示。
在科学探索过程中,科学文献还是进行科学讨论和争议的重要依据,通过对文献的分析和解读,不同的科学观点可以得到评价和比较,真理得以更好地审视和验证。
而科学文献的获取和利用,则需要依赖于相关的资源利用机制。
首先,图书馆和研究机构是科学文献获取的重要渠道。
它们收藏了大量的科学期刊、学术论文和研究报告,提供了方便的阅读和借阅服务。
其次,数字化技术的应用使得科学文献的获取更为便捷。
通过互联网和电子数据库,研究者们可以在线查找和下载所需的文献,大大缩短了获取时间和减少了空间限制。
此外,开放获取的科学文献资源也逐渐增多,研究者们可以免费获取到更多的研究成果,推动了科学的共享和发展。
除了文献的利用,资源的有效利用也是科学探索的重要环节。
资源的有效利用涉及到能源、材料、人力等多个方面。
在能源资源的利用上,科学探索提倡清洁能源的开发和利用,以减少对传统化石能源的依赖,降低环境污染和碳排放。
在材料资源的利用上,科学探索致力于研发高效、环保的生产技术和材料替代方案,以减少对有限资源的消耗和浪费。
在人力资源的利用上,科学探索需要建立良好的教育培训机制,吸引和培养更多的科学研究人才,提高整个社会的科学素质和创新能力。
综上所述,科学文献和资源的利用是科学探索必不可少的支持。
科学文献为科学研究提供了可靠的依据和参考,为研究者们提供了前人经验和科学观点的积累。
资源的有效利用则是科学研究取得进展的关键,它涉及到能源、材料和人力等多个方面。
科学文献的名词解释
文献:
1. Abstract
2. Bibliographic Database
3. Editor
4. Index
一、Abstract:
抽象是科学文献中概述性段落的内容,即文章的摘要,它在文献的开头,能简要介绍文献的内容和目的,是科学文献查找、分析和利用的重要基础。
Abstract由一般性问题、技术方法、重要结果、结论和指出事实的综述性的评论组成,概述文献的内容及方法,是检索文献信息的重要依据。
二、Bibliographic Database:
文献数据库是以文献数据为基础建立起来的文献信息体系,其主要内容是存储文献信息(如书籍、期刊、报纸、图书、报告摘要、摘录、贴文等)的元数据,并提供跨文献的快速检索的功能。
一般而言,文献数据库由代表文献的描述性元数据(如题名、作者、出版社、出版日期等)和用于检索所建立的全文索引组成。
三、Editor:
编辑是指组织、审查和整理文献内容,以便发表的这类编辑服务活动。
编辑可以编排、修改、撰写、组织文献,编辑从文献撰写、组织和修订等方面起着协调作用,以确保出版物的质量。
四、Index:
索引是科学文献检索的一个重要技术工具,它的主要目的是使读者能够轻松找到所需要的信息。
索引包括有关文献的词汇表,能够提供有用的参考资料,而无需检查整个文献的文本内容。
另外,索引还可以帮助读者了解文献的整体框架,有利于从文献中快速获取信息。
十大科技文献源科技的发展日新月异,不断推动着人类社会的进步。
以下是十大科技文献源,它们记录了人类在不同领域的探索和创新。
1.《自然》(Nature)作为世界上最古老的科学杂志之一,《自然》杂志为读者提供了丰富的科学研究成果和前沿的科技进展。
它既包括基础科学领域的研究,也关注应用科学的发展。
2.《科学》(Science)《科学》杂志是世界上最有影响力的综合性科学杂志之一,涵盖了各个学科领域的最新研究成果。
它以其高质量的科学报道和严谨的学术评审而闻名,是科学界的权威之一。
3.《人工智能》(Artificial Intelligence)《人工智能》期刊聚焦于人工智能领域的研究和应用,包括机器学习、自然语言处理、计算机视觉等。
它发布的论文对于推动人工智能技术的发展具有重要意义。
4.《物理评论快报》(Physical Review Letters)《物理评论快报》是物理学领域最具影响力的学术期刊之一,发表了许多重要的物理学突破性研究。
它以其简洁、精确和具有启发性的论文而受到广泛关注。
5.《细胞》(Cell)《细胞》杂志是细胞生物学和分子生物学领域的顶级期刊之一,报道了该领域的最新研究成果和突破性发现。
它对于理解生命的基本机制和疾病的发生机理具有重要意义。
6.《计算机视觉国际会议》(Conference on Computer Vision and Pattern Recognition)计算机视觉是人工智能领域的一个重要分支,该会议是该领域最重要的学术会议之一。
它汇集了来自全球的顶尖研究人员,分享了最新的计算机视觉技术和应用。
7.《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)《美国国家科学院院刊》是美国国家科学院的官方期刊,发表了各个学科领域的重要研究成果。
它是一本跨学科的期刊,涵盖了自然科学、社会科学和工程技术等领域。
8.《医学》(The Lancet)《医学》杂志是世界上最具影响力的医学期刊之一,发表了许多重要的医学研究。
Venus Express Mission Definition ReportESA-SCI(2001)6 ESA-SCI(2001)6 October 20011An Orbiter for the study of the atmosphere, the plasma environment, and the surface of VenusMission Definition ReportEuropean Space Agency Agence Spatiale Européenne3 Venus Express Mission Definition Report ESA-SCI(2001)6ForewordVenus Express, an Orbiter for the study of the atmosphere, the plasma environment, and the surface of Venus, is a mission which was proposed to ESA in response to the Call for Ideas to re-use the Mars Express platform issued in March 2001. Venus Express together with two other missions, Cosmic DUNE and SPORT Express, was selected by ESA’s Space Science Advisory Committee for a Mission Definition Study. The industrial study of the three missions was conducted in parallel by Astrium-SAS (Toulouse, France) from mid-July to mid-October 2001. The payload included in the Venus Express Study comprises 5 instruments (ASPERA/MEx, PFS/MEx, SPICAM/MEx, VeRa/Rosetta, VIRTIS/Rosetta) from the Core payload of the original Proposal and the VENSIS/MEx radar in line with the SSWG recommendation. During the Study it was found scientifically reasonable and technically feasible to replace the standard Mars Express engineering Video Monitoring Camera by a scientific instrument, the Venus Monitoring Camera (VMC). The Mission Definition Report describes the scientific objectives of the Venus Express mission, presents selected payload set, and summarizes the results of the Mission Definition Study. This version of the report covers all science aspects of the mission but contains only a brief summary of the industrial study. The combined industrial study report for all the three missions is published in a separate cover. A complete Venus Express Mission Definition Report, including a comprehensive description of scientific goals, payload, and technical aspects of the spacecraft will be prepared by the end of 2001. The Venus Express Study was directly supported by the Science Study Team listed below.Mission science coordinationD.V. Titov, MPAe, Germany E. Lellouch, DESPA, France F.W. Taylor, Oxford University, UK L. Marinangeli, Universita d’Annunzio, Italy H. Opgenoorth, IRF-Uppsala, SwedenPrincipal InvestigatorsS. Barabash, IRF-Kiruna, Sweden /PI ASPERA J.-L. Bertaux, Service de Aeronomie, France /Co-PI SPICAM/ P. Drossart, DESPA, France /Co-PI VIRTIS/ V. Formisano, IFSI, Italy /PI PFS/ B. Haeusler, Universitaet der Bundeswehr, Germany /PI VeRa/ O. Korablev, IKI, Moscow, Russia /Co-PI SPICAM/ W.J. Markiewicz, MPAe, Germany /PI VMC/ M. Paetzold, Universitaet zu Koeln, Germany /Co-PI VeRa/ G. Picardi, Infocom Dpt. Univ. of Rome, Italy /PI VENSIS/ G. Piccioni, IAS, Italy /Co-PI VIRTIS/ J. Plaut, JPL/NASA, Pasadena, California, USA J.-A. Sauvaud, CESR-CNRS, France /Co-PI ASPERA/ P. Simon, BISA, Belgium /CO-PI SPICAM/The ESA members of the Scientific Directorate responsible for the study were: J-P. Lebreton, Study Scientist, Research and Science Support Department (RSSD), ESTEC M. Coradini, Science Planning and Coordination Office, ESA HQ, Paris G. Whitcomb, Future Science Projects and Technology Office, SCI-PF, ESTEC D. McCoy, Mars Express Project Team, SCI-PE, ESTEC. The Industrial study was lead by: Ch. Koeck (Study Manager), Astrium, France with support from: S. Kemble (Mission Analysis), Astrium, UK4 Venus Express Mission Definition Report ESA-SCI(2001)6L. Gautret (Payload Interface Engineering), Astrium, France P. Renard (System Engineering), Astrium, France F. Faye (Mars Express expertise), Astrium, France. Support was provided by the following colleagues within ESA:ESOC: M. Hechler and J. Rodriguez-Canabal, (Mission Analysis); R. Van Holtz, (Ground Segment definition) ESTEC A. Chicarro (Mars Express Project Scientist), RSSD/SCI-SO P. Falkner, (payload support), RSSD/SCI-ST P. Martin (Mars Express Deputy Project Scientist), RSSD/SCI-SO J. Romstedt (radiation environment analysis & payload support), RSSD/SCI-ST R. Schmidt (Mars Express Project Manager), SCI-PE J. Sorensen (radiation environment analysis), TOS-EMA P. Wenzel (Head of Solar System Division), RSSD/SCI-SO O. Witasse, (Science support), RSSD/SCI-SOThis report is available in pdf format at: http://solarsystem.estec.esa.nl/Flexi2005/ Requests for further information and additional hard copies of this report should be addressed to: Jean-Pierre Lebreton: Marcello Coradini: Jean-Pierre.Lebreton@esa.int Marcello.Coradini@esa.int5 Venus Express Mission Definition Report ESA-SCI(2001)6Executive SummaryThe first phase of Venus spacecraft exploration (1962-1985) by the Venera, Pioneer Venus and Vega missions established a basic description of the physical and chemical conditions prevailing in the atmosphere, near-planetary environment, and at the surface of the planet. At the same time, they raised many questions on the physical processes sustaining these conditions, most of which remain as of today unsolved. Extensive radar mapping by Venera-15,-16 and Magellan orbiters, combined with earlier glimpses from landers, have expanded considerably our knowledge of Venus’ geology and geophysics. A similar systematic survey of the atmosphere is now in order. This particularly concerns the atmosphere below the cloud tops, which, with the exception of local measurements from descent probes, has escaped detection from previous Venus orbiters. Many problems of the solar wind interaction, in particularly those related to the impact on the planetary evolution are still not resolved. The present proposal aims at a global investigation of Venus’ atmosphere and plasma environment from orbit, and addresses several important aspects of the geology and surface physics. The fundamental mysteries of Venus are related to the global atmospheric circulation, the atmospheric chemical composition and its variations, the surface-atmosphere physical and chemical interactions including volcanism, the physics and chemistry of the cloud layer, the thermal balance and role of trace gases in the greenhouse effect, the origin and evolution of the atmosphere, and the plasma environment and its interaction with the solar wind. Besides, the key issues of the history of Venusian volcanism, the global tectonic structure of Venus, and important characteristics of the planet’s surface are still unresolved. Beyond the specific case of Venus, resolving these issues is of crucial importance in a comparative planetology context and notably for understanding the long-term climatic evolution processes on Earth. The above problems can be efficiently addressed by an orbiter equipped with a suite of adequate remote sensing and in situ instruments. Compared with earlier spacecraft missions, a breakthrough will be accomplished by fully exploiting the existence of spectral “windows” in the near-infrared spectrum of Venus’ nightside, discovered in the late ‘80’-s, in which radiation from the lower atmosphere and even the surface escapes to space and can be measured. Thus, a combination of spectrometers, spectro-imagers, and imagers covering the UV to thermal IR range, along with other instruments such as a radar and a plasma analyzer, is able to sound the entire Venus atmosphere from the surface to 200 km, and to address specific questions on the surface that would complement the Magellan investigations. This mission will also tackle still open questions of the plasma environment focusing on the studies of nonthermal atmospheric escape. This issue will be addressed via traditional in situ measurements as well as via innovative ENA (Energetic Neutral Atom) imaging techniques. The instruments developed for the Mars Express and Rosetta missions are very well suited for this task. The following available instruments: SPICAM – a versatile UV-IR spectrometer for solar/stellar occultations and nadir observations, PFS – a high-resolution IR Fourier spectrometer, ASPERA – a combined energetic neutral atom imager, electron, and ion spectrometer, VIRTIS – a sensitive visible spectro-imager and mid-IR spectrometer, a radio science experiment VeRa, a wide-angle monitoring camera VMC, and subsurface and ionosphere sounding radar VENSIS will form the payload of the proposed Venus Express mission. Taken together, these experiments can address all the broad scientific problems formulated above. The Mission Definition Study demonstrated the feasibility of the proposed mission to Venus in 2005. The Mars Express spacecraft can accommodate the above mentioned experiments with minor modifications. The launch with Soyuz-Fregat can deliver this payload to a polar orbit around Venus with a pericenter altitude of ~250 km and apocenter of6 Venus Express Mission Definition Report ESA-SCI(2001)6~45,000 km. This orbit will provide complete coverage in latitude and local solar time. It is also well suited for atmospheric and surface sounding, as well as the studies based on solar and radio occultations. In comparison to the Pioneer Venus spinning spacecraft, Mars Express is an advanced 3 axis stabilised platform which provides significantly enhanced spectroscopic and imaging capabilities. The proposed duration of the nominal orbital mission is two Venus days (sidereal rotation periods) equivalent to ~500 Earth days. The Venus Express mission will achieve the following “firsts”: • First global monitoring of the composition of the lower atmosphere in the near IR transparency “windows”; • First coherent study of the atmospheric temperature and dynamics at different levels of the atmosphere from the surface up to ~200 km; • First measurements of global surface temperature distribution from orbit; • First study of the middle and upper atmosphere dynamics from O2, O, and NO emissions; • First measurements of the non-thermal atmospheric escape; • First coherent observations of Venus in the spectral range from UV to thermal infrared; • First application of the solar/stellar occultation technique at Venus; • First use of 3D ion mass analyzer, high energy resolution electron spectrometer, and energetic neutral atom imager; • First sounding of Venusian topside ionospheric structure; • First sounding of the Venus subsurface. Together with the Mars Express mission to Mars and the Bepi Colombo mission to Mercury, the proposed mission to Venus, through the expected quality of its science results, would ensure a coherent program of terrestrial planets exploration and provide Europe with a leading position in this field of planetary research. The international cooperation formed in the framework of the Mars Express and Rosetta missions will be inherited by the Venus Express and will include efforts of the scientists of European countries, USA, Russia, and Japan. The Venus Express orbiter will play the role of pathfinder for future, more complex missions to the planet, and the data obtained will help to plan and optimize future investigations. Venus studies can have significant public outreach given the exotic conditions of the planet and the interest in comparing Venus to Earth, especially in a context of concern with the climatic evolution on Earth.7 Venus Express Mission Definition Report ESA-SCI(2001)6Table of content1. INTRODUCTION................................................................................................................................................ 8 2. MISSION SCIENCE OBJECTIVES................................................................................................................. 8 2.1 LOWER ATMOSPHERE AND CLOUD LAYER (0 – 60 KM) ................................................................................... 8 2.2 MIDDLE ATMOSPHERE (60 – 110 KM) ........................................................................................................... 12 2.3 UPPER ATMOSPHERE (110 – 200 KM) ............................................................................................................ 13 2.4 PLASMA ENVIRONMENT AND ESCAPE PROCESSES ......................................................................................... 14 2.5 SURFACE AND SURFACE-ATMOSPHERE INTERACTION ................................................................................... 15 3. SCIENTIFIC PAYLOAD ................................................................................................................................. 17 3.1 ASPERA (ANALYZER OF SPACE PLASMAS AND ENERGETIC ATOMS) ......................................................... 17 3.2 PFS (HIGH RESOLUTION IR FOURIER SPECTROMETER) ................................................................................ 18 3.3 SPICAM (UV AND IR SPECTROMETER FOR SOLAR/STELLAR OCCULTATIONS AND NADIR OBSERVATIONS)20 3.4 VERA (VENUS RADIO SCIENCE).................................................................................................................... 22 3.5 VIRTIS (UV-VISIBLE-NEAR IR IMAGING SPECTROMETER) .......................................................................... 23 3.6 VENSIS (LOW FREQUENCY RADAR FOR SURFACE AND IONOSPHERIC STUDIES). ......................................... 25 3.7 VMC (VENUS MONITORING CAMERA) ......................................................................................................... 26 3.8 SYNERGY OF THE PAYLOAD. .......................................................................................................................... 27 3.9 PAYLOAD ACCOMMODATION ......................................................................................................................... 28 3.10 MISSION AND PAYLOAD SCHEDULE ............................................................................................................. 29 3.11 PAYLOAD TEAMS ......................................................................................................................................... 29 4 MISSION OVERVIEW...................................................................................................................................... 36 4.1 MISSION SCENARIO ........................................................................................................................................ 36 4.2 LAUNCH, DELTA-V, AND MASS BUDGETS ...................................................................................................... 37 4.3 OPERATIONAL ORBIT ..................................................................................................................................... 37 4.4 ORBITAL SCIENCE OPERATIONS ..................................................................................................................... 38 4.5 TELECOMMUNICATIONS ................................................................................................................................. 38 4.6 THERMAL CONTROL ....................................................................................................................................... 39 4.7 RADIATION REQUIREMENTS ........................................................................................................................... 39 4.8 GROUND SEGMENT IMPLEMENTATION AND OPERATIONS SUPPORT ............................................................... 39 4.9 MISCELLANEOUS ............................................................................................................................................ 40 5. SCIENCE OPERATIONS, DATA ANALYSIS, AND ARCHIVING ......................................................... 40 5.1 SCIENCE OPERATIONS CONCEPT ................................................................................................................... 40 5.2 PRINCIPAL INVESTIGATORS ........................................................................................................................... 40 5.3 INTERDISCIPLINARY SCIENTISTS (IDS) ......................................................................................................... 40 5.4 SCIENCE WORKING TEAM ............................................................................................................................. 40 5.6 SCIENCE OPERATION PLAN ............................................................................................................................ 41 5.7 DATA ANALYSIS ............................................................................................................................................. 41 5.8 SCIENCE MANAGEMENT PLAN ...................................................................................................................... 41 5.9 COMPLEMENTARY VENUS GROUND-BASED OBSERVATIONS ........................................................................ 41 6. PROGRAMMATIC VALIDITY ..................................................................................................................... 41 7. SCIENCE COMMUNICATION AND OUTREACH ................................................................................... 42 7.1 GOALS ............................................................................................................................................................ 42 7.2 SCIENTIFIC THEMES ....................................................................................................................................... 42 7.3 IMPLEMENTATION .......................................................................................................................................... 43 8. INTERNATIONAL COOPERATION............................................................................................................ 43 9. REFERENCES................................................................................................................................................... 45 10 ACKNOWLEDGMENTS ................................................................................................................................ 468 Venus Express Mission Definition Report ESA-SCI(2001)61. IntroductionSince the beginning of the space era, Venus has been an attractive target for planetary science. Our nearest planetary neighbour and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense clouds. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, Veneras 4–16, the US Pioneer Venus mission, the Soviet Vega balloons, the Venera 15, 16 and Magellan radar orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. Despite all of this exploration by more than 20 spacecraft, the “morning star” remains a mysterious world. All these studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. It is high time to proceed from the discovery phase to a thorough investigation and deep understanding of what lies behind Venus’ complex chemical, dynamical, and geological phenomena. The data from ground-based observations and previous space missions is very limited in space and time coverage, and, prior to the discovery of the near infrared spectral windows, lacked the capability to sound the lower atmosphere of Venus remotely and study the phenomena hidden behind the thick cloud deck from orbit. Thus a survey of the Venus atmosphere is long overdue. Pioneer Venus, Venera-15, -16, and Magellan provided global comprehensive radar mapping of the surface and investigated its properties. The use of penetrating radar can add a third dimension to the earlier investigations. While a fully comprehensive exploration of Venus will require, in the long term, in situ measurements from probes, balloons and sample return, so many key questions about Venus remain unanswered that even a relatively simple orbiter mission to the planet can bring a rich harvest of high quality scientific results. The re-use of the Mars Express bus with the payload based on the instruments available from the Mars Express and Rosetta projects is very appropriate in this regard. It offers an excellent opportunity to make major progress in the study of the planet.2. Mission science objectivesThe proposed Venus Express mission covers a broad range of scientific goals including atmospheric physics, subsurface and surface studies, investigation of the plasma environment and interaction of the solar wind with the atmosphere. For clarity we divided the atmosphere into three parts: lower atmosphere (0-60 km), middle atmosphere (60 – 110 km), and upper atmosphere (110 – 200 km). The physics, methods of investigation, and scientific goals are quite different for each atmospheric region. However they all can be studied by a multipurpose remote sensing and in situ payload in the framework of the proposed orbiter mission.2.1 Lower atmosphere and cloud layer (0 – 60 km)Structure. Existing observations of the lower atmosphere hidden below the clouds are limited to in situ measurements, acquired by 16 descent probes mostly in equatorial latitudes, by radiooccultations on previous orbiters (Venera 9, 10, 15, 16, Pioneer Venus, and Magellan), and brief glimpses provided by the Galileo and Cassini fly-bys. The descent probes showed that the temperature structure below 30 km is quite constant all over the planet (Fig. 2.1). However, the temperature structure in the lower scale height is virtually unknown. Mapping the regions of high elevation in sub-micron spectral “windows” at the nightside will determine the surface temperature as a function of altitude (Meadows and Crisp (1996)). Assuming this is equal to the near-surface air temperature, this will allow a determination of the thermal profile and lapse rate in the 0-10 km range and an investigation of its degree of static stability, constraining the dynamics and turbulence in this region. The thermal structure above 35 km altitude will be obtained from radiooccultations with high vertical resolution. Composition. The Venusian atmosphere consists mainly of CO2 and N2 with small amounts of trace gases (Fig. 2.1). Although there is very little observational data, the chemistry of the lower atmosphere is expected to be dominated by the thermal decomposition of sulfuric acid, and cycles that include sulfur and carbon compounds (SO2, CO, COS etc.) and water vapour.9 Venus Express Mission Definition Report ESA-SCI(2001)6The discovery of the near IR spectral “windows” (Allen and Crawford, 1984), through which thermal radiation from the lower atmosphere leaks to space, allows us to study the composition of the atmosphere below the clouds on the nightside of the planet. The windows at 2.3 and 1.74 µm sound the atmosphere in broad altitude regions centered at 30-35 km and 20 km respectively, while the windows shortward of 1.2 µm (0.85, 0.9, 1.01, 1.10,and 1.18 µm) probe the first scale height and the surface. The detailed appearance of the windows results from the combined effect of composition, cloud opacity, and thermal structure, including the surface temperature (Taylor et al., 1997). Highresolution observations covering all windows simultaneously, along with physical cloud models, should allow retrieval of all the variables.Figure 2.1 Structure and main parameters of the lower atmosphere of Venus.Water vapour is important not only for chemistry but also as a greenhouse gas. The few existing measurements of the H2O abundance in the deep atmosphere show no evidence for variability so far. By mapping simultaneously at several wavelengths, corresponding to radiation originating at different altitudes, it will be possible to probe the H2O profile below the clouds and to search for possible spatial variations, including those that might be the signature of volcanic activity. A precise inventory is also needed to better constrain the origin of the present atmospheric water. The H2O abundance at the surface has strong implications for the stability of some hydrated rocks. Carbon monoxide is very abundant in the upper atmosphere due to the dissociation of CO2 by solar ultraviolet radiation. It is much less common in the troposphere, but it does there show a definite trend of increasing from equator to pole. The source near the poles could be the downward branch of a Hadley cell transporting CO-rich air from the upper atmosphere, an important diagnostic of the mean meridional circulation. More detailed observations of CO at all levels, latitudes and times are needed to confirm this hypothesis and reveal details of the global-scale dynamics. CO is also a key player in the equilibrium between surface minerals and the atmosphere. The study of the lower atmosphere composition by means of spectroscopy in the near IR transparency “windows” is one of the main goals of the Venus Express mission. More specific objectives include abundance measurements of H2O, SO2, COS, CO, H2O, HCl, and HF and their horizontal and vertical (especially for H2O) variations, to significantly improve our understanding of the chemistry, dynamics, and radiative balance of the lower atmosphere, and to search for localized volcanic activity. Cloud layer. Venus is shrouded by a 20 km thick cloud layer whose opacity varies between 20 and 40 in the UV, visible and infrared (Fig. 2.1). The clouds are almost featureless in visible light but display prominent markings in the UV-blue spectral region (Fig. 2.2). Earlier observations showed that at least the upper cloud consists of micron size droplets of 75% H2SO4, which is produced by photochemical reactions at the cloud tops. The physical and chemical processes forming the lower clouds are virtually unknown, including major problems like (1) the nature of the UV-blue absorber which produces the features observed from space and absorbs half of the energy received by the10 Venus Express Mission Definition Report ESA-SCI(2001)6planet from the Sun, and (2) the origin of the large solid particles detected by the PioneerVenus probe. The remote sensing instruments on Venus Express will sound the structure, composition, dynamics, and variability of the cloud layer, including: • Cloud and haze structure and opacity variations; Distribution and nature of the UV• blue absorber; • Measurements of atmospheric composition which constrain models of cloud formation and evolution. Greenhouse effect. The high surface temperature of about 735 K results from the powerful greenhouse effect created by the presence of sulphuric acid clouds and certain Figure 2.2 Venus images in the violet filter taken gases (CO2, H2O, SO2) in the atmosphere by the Gallileo spacecraft (see Crisp and Titov, 1997). Less than 10% of the incoming solar radiation penetrates through the atmosphere and heats the surface, but thermal radiation from the surface and lower atmosphere has a lower probability of escape to space due to the strong absorption by gas and clouds. The result is about 500K difference between the surface temperature and that of the cloud tops, an absolute record among the terrestrial planets (Fig. 2.1). The measurements of outgoing fluxes over a broad spectral range, combined with temporarily and latitudinally resolved cloud mapping and high resolution spectroscopy in the near IR windows will give an insight into the roles of radiative and dynamical heat transport, and the various species, in the greenhouse mechanism. Atmospheric dynamics. The dynamics of the lower atmosphere of Venus is mysterious. Tracking of the UV markings, descent probes, and Vega balloons trajectories all showed that the atmosphere is involved in zonal retrograde super-rotation with wind velocities decreasing from ~100 m/s at the cloud tops to almost 0 at the surface (Fig. 2.3). At the same time, there appears to be a slower overturning of the atmosphere from equator to pole, with giant vortices at each pole recycling the air downwards. What is most puzzling about the regime represented by this scenario is how the atmosphere is accelerated to such high speeds on a slowly-rotating planet. Additional questions include (1) whether the meridional circulation is one enormous 'Hadley' cell extending from the upper atmosphere to the surface, or a stack of such cells, or something else altogether; (2) how the polar vortices couple the two main components of the global circulation and why they have such a complex shape and behaviour; and (3) what the observed (and observable) distributions of the minor constituents in Venus' atmosphere, including the clouds, are telling us about the motions (Fig.2.4). All attempts to model the zonal superrotation have been unsuccessful so far, indicating that the basic mechanisms of the phenomenon are unclear. There is an even Figure 2.3 Zonal winds in the Venus atmosphere。
小学科学论文参考文献参考文献是对小学科学论文引文进行统计和分析的重要信息源之一,对于小学科学论文起着重要的作用。
下面是店铺带来的关于小学科学论文参考文献的内容,欢迎阅读参考!小学科学论文参考文献(一)[1] 董保良,张国辉,李鑫,李晓燕,杨新旺. 基于信息熵的指挥信息系统效能评估研究[J]. 电子世界. 2013(15)[2] 孙国强. 浅谈出入口控制系统的建设、使用与发展[J]. 中国公共安全. 2013(15)[3] 李爱民. 中国半城镇化研究[J]. 人口研究. 2013(04)[4] 王赐江. 群体性事件现实考察与学理分析--从三起具有“标本意义”的群体性事件谈起[J]. 中国社会公共安全研究报告. 2013(01)[5] 冯文林,帅娟,姚红,邓波,魏莲芳,汪小林,冯荣. 四川特种行业治安管理创新调查研究报告[J]. 四川警察学院学报. 2013(01)[6] 李林. 中国法治的现状、挑战与未来发展[J]. 新视野. 2013(01)[7] 徐田坤,梁青槐,任星辰. 基于故障树模型的地铁750V牵引供电系统安全风险评估[J]. 北京交通大学学报. 2012(06)[8] 黄毅峰. 转型期中国群体性事件的征象考察与调控路径分析[J]. 成都理工大学学报(社会科学版). 2013(04)[9] 苗强,张文良,宗波,步立新,尹洪河,方忻. 核电站实物保护系统有效性评估方法研究工作进展[J]. 中国原子能科学研究院年报. 2012(00)[10] 王华安. 大安防时代:需要多元化发展战略[J]. 中国公共安全. 2013(12)[11] 何穆. 某大学图书馆安全防范系统设计[J]. 建筑电气. 2013(05)[12] 张苏. 司法中的量刑分析与操作--以石柏魁故宫盗窃案为例[J]. 中国检察官. 2013(10)[13] 杜治国,赵兴涛,李培岳. 美国安全管理专业解析[J]. 中国人民公安大学学报(自然科学版). 2013(02)[14] 唐海. 个性化概念图在网络自主学习中的应用研究[D]. 武汉大学 2010[15] 杜治国,赵兴涛,李锦涛. 安全防范系统效能评估仿真模型研究[J]. 中国人民公安大学学报(自然科学版). 2012(01)[16] 朱随江,刘宝旭,刘宇,姜政伟. 有环攻击图中的节点风险概率算法[J]. 计算机工程. 2012(03)[17] 李秀林,李辉. 《安全防范系统运行检验规范》浅析[J]. 中国安防. 2012(Z1)[18] 李晓建. 基于语义的个性化资源推荐系统中关键技术研究[D]. 武汉大学 2010小学科学论文参考文献(二)[1] 赵荣生. 车辆核材料检测装置的研制[J]. 中国原子能科学研究院年报. 2003(00)[2] 王国华,陈敬贤,梁梁. 系统评估研究现状及发展评述[J]. 现代管理科学. 2011(10)[3] 陈合权,魏莲芳. 论视频监控系统在公安工作中的应用[J]. 湖北警官学院学报. 2011(05)[4] 张旺勋,龚时雨,李康伟. 装备系统可靠性维修性保障性仿真策略研究[J]. 计算机仿真. 2011(09)[5] 魏莲芳. 当前群防群治工作存在的问题及对策探究[J]. 湖北警官学院学报. 2011(03)[6] 潘科,王洪德,石剑云. 多级可拓评价方法在地铁运营安全评价中的应用[J]. 铁道学报. 2011(05)[7] 吕海涛. 安全防范系统效能评估关键技术研究[D]. 武汉大学2014[8] 鲍君忠. 面向综合安全评估的多属性专家决策模型研究[D]. 大连海事大学 2011[9] 孙爱军. 工业园区事故风险评价研究[D]. 南开大学 2011[10] 郭熹. 基于风险熵模型的安防系统风险与效能评估技术研究[D]. 武汉大学 2011[11] 邬长城. 安全管理体系质量评估方法研究[D]. 中国矿业大学(北京) 2012[12] 孙亚华,李式巨,李彬. 核电站实物保护系统的量化评估[J]. 核动力工程. 2009(01)[13] 陈志华. 试论安全防范系统的效能评估[J]. 中国人民公安大学学报(自然科学版). 2006(04)[14] 魏莲芳,陈志华. 浅谈安防系统中的风险评估[J]. 中国安防产品信息. 2005(04)[15] 徐哲,贾子君. 基于仿真的武器装备研制系统性能风险评估[J]. 系统工程与电子技术. 2011(04)[16] 吴穹,闫黎黎. 企业安全防范系统风险评价模式研究[J]. 安防科技. 2010(10)[17] 易光旺. 智能建筑安全防范系统的评价指标体系研究[J]. 中国安全生产科学技术. 2010(03)[18] 陈志华. 评估城市社会治安动态防范系统效能促进城市监控报警联网系统应用建设[J]. 中国安防. 2009(12)小学科学论文参考文献(三)[1]刘文帅.关于暗物质与暗能量统一的研究[D].云南师范大学2014[2]梁周昌.怒江少数民族地区高中物理合作学习教学的实践研究[D].云南师范大学2014[3]张云.focusonform对中学英语口语课堂教学的意义[D].华东师范大学2009[4]赵婧.乌海市高中英语课堂文化教学现状的调查与反思[D].内蒙古师范大学2012[5]赵瑶瑶.复数的历史与教学[D].华东师范大学2007[6]潘婧.高中英语课堂中文化教学现状的调查[D].东北师范大学2010[7]赵瑶瑶.复数的历史与教学[D].华东师范大学2007[8]祝露.高中写作教学设计探究[D].海南师范大学2013[9]李玉飞.计算机辅助语言教学在初中英语教学中的应用调查研究[D].河南师范大学2013[10]卫晓丽.中外籍教师在高中英语教学中教学风格的调查研究[D].山西师范大学2013[11]莫雷主编.教育心理学[M].广东高等教育出版社,2002[12]冯忠良等着.教育心理学[M].人民教育出版社,2000[13]杨治良,罗承初编写.心理学问答[M].甘肃人民出版社,1986[14]江桂苹.高中英语教学中的西方文化渗透研究[D].哈尔滨师范大学2012。
数学学术网站收录大全1. /《科学》杂志2. /The NASA Astrophysics Data System -- 世界最大免费全文网站,超过300,000篇全文.主要学科:天体物理学3. 美国洛斯阿拉莫斯核物理实验室的论文预印本服务器,全世界物理学研究者最重要的交流工具,覆盖几乎全部的物理学,大部分计算机科学和一部分数学。
4. /数学论文预印本服务器搜索系统,可以查阅大部分数学分支的预印本资源5. /theses/学位论文库,大部分文章可以看全文6. 计算机科学研究报告和论文7. /《科学美国人》杂志8./计算数学,数值分析/epigone/alt.math.undergrad数学论坛。
一个关于大学本科数学问题和难题的论坛。
数学论坛包括了读者可以发表文章参与讨论的文档,以及可以查看或检索文档化的信息。
/pubs/monthly.html美国数学月刊(MMA联机版)——美国数学协会(MAA)Roger A.Horn,编辑。
本月刊刊登数学方面的论文,评论以及其它相关的文章。
/software/uasft.htmlArizona数学软件。
超过60个教育程序的集合,可被教师和学生在课堂上、实验室和家庭环境中使用。
/BNALib,一个运行于个人pc上的数值分析软件库。
以源代码形式提供的BNALib软件包,是一个子例程,函数和演示程序组成的工具箱,它可进行数值分析计算。
/ccma/计算数学和应用中心------Penn州立大学数学系。
Penn州数值分析和应用数学的教学与科研工作中心之一。
应用与计算数学研究班课程系列,PDEs与数值方法研究班课程系列,教职人员与研究生的情况等。
/cdsns/动力系统和非线性研究中心———Georgia Tech数学学院。
始建于1988年9月,以加强数学学院已经开展了的研究活动,研究重点包括动力系统,微分方程,非线性分析和应用。
/CyberMath/Waterloo Maple公司。
科学文献阅读的注意事项科学文献阅读的注意事项在探索科学文献的广阔海洋时,如同旅行者在陌生土地上航行。
每一篇文献都是知识的岛屿,而你则是一位探险家,渴望在这些岛屿上发现宝藏。
然而,要想从这些文献中获得宝贵的知识和洞见,你需要具备一定的技巧和注意事项。
首先,作为一位文献的探险家,你应该学会如何“与文献对话”。
文献有时像是一个沉默的学者,蕴藏着无限的智慧。
当你打开一篇文献时,不要仅仅停留在表面信息的浏览上。
要善于提出问题,文献便会像是回答你的问题一样,逐渐揭示其内涵和深度。
其次,了解文献的“语言和风格”也是非常重要的。
每一篇文献都有其独特的表达方式和专业术语。
有时候,文献可能会使用复杂的句子结构或专业术语,这并不意味着你需要被吓倒。
相反,你可以像是学习一门新语言一样,逐步熟悉并理解这些语言的规则和习惯用法。
此外,保持“批判性思维”的能力也是阅读科学文献不可或缺的技能。
作为文献的探险家,你需要时刻保持怀疑和探索的精神。
不要轻信一切,而是要学会分析和评估文献的内容。
提出质疑,寻找证据,这样才能真正理解文献背后的意图和科学观点。
进一步地,要善于“比较和综合”不同的文献。
科学文献世界就像是一个多面体,不同的角度和视角可能带来不同的认知和发现。
因此,阅读多篇相关的文献,比较它们之间的异同,从中获取更为全面和深入的理解。
最后,永远不要忘记“记录和引用”的重要性。
在你的探险旅程中,收集到的每一个知识宝藏都应该被妥善保存和记录。
正确引用文献不仅是对知识贡献者的尊重,也是维护学术诚信的基础。
综上所述,阅读科学文献不仅是获取知识的途径,更是一种探险和发现的过程。
作为一名文献的探险家,你需要具备探索精神、批判思维、比较能力和记录技巧。
只有这样,你才能在科学的海洋中畅行无阻,发现属于你的知识宝藏。
a r X i v :q u a n t -p h /0507189v 4 13 A u g 2005|0 |1 +|1 |0S.J.van EnkBell Labs,Lucent Technologies600-700Mountain Ave,Murray Hill,NJ 07974(Dated:February 1,2008)I give a simple argument that demonstrates that the state |0 |1 +|1 |0 ,with |0 denoting a state with 0particles and |1 a 1-particle state,is entangled in spite of recent claims to the contrary.I also discuss new viewpoints on the old controversy about whether the above state can be said to display single-particle or single-photon nonlocality.Every now and then I hear or read the claim that there is no entanglement in the state|ψ A,B =|0 A |1 B +|1 A |0 B ,(1)where |0 A,B and |1 A,B denote states with zero and one particles,respectively,in modes A and B .(See,for exam-ple,Ref.[1];on the other hand,see also papers [2]that use or propose to use the same state for teleportation,quantum cryptography or violating Bell inequalities,or that perform tomography on a similar state.)The reason for that claim is usually one of the following:1.One needs at least two particles for entanglement.2.The state of Eq.(1)when written in second-quantized form as|ψ A,B =(a †A +a †B )|vacuum(2)clearly has no entanglement.3.The entanglement is a property of a pathologicalrepresentation of CCR/CAR algebras [1].Those reasons probably all seem crystal clear and utterly convincing.But here is a simple counter argument [3]that shows there is in fact entanglement in the state (1)provided modes A and B are spatially separated [5].Just for the argument let us assume the particles are photons [6].Also let us assume we place a cavity in each of the loca-tions of the modes A and B and put an atom,initially in a ground state denoted by |g ,inside each cavity.There are techniques [7]to make sure a photon in the proper mode will enter the cavity and excite the atom to a par-ticular excited state,denoted by |e .In the ideal case,this process occurs with 100%efficiency.Starting with the two atoms both in state |g we can then generate the joint atomic state (where the obvious assumption is made that the vacuum will not excite the atom)|Ψ A,B =|g A |e B +|e A |g B ,(3)where A and B now refer to the locations of the atoms.The joint state of the two (photonic)modes is no longer relevant or entangled as both modes end up in the state |0 .In the state (3)there are two particles so that objec-tion 1from the above list does not apply.Furthermore,no one would insist on writing the state of the two atoms in separate cavities in a second-quantized form,so objec-tion 2would not be raised.Moreover,the atoms used in the above-mentioned procedure do not have to be iden-tical at all,so (i)Eq.(2)would not apply in any case,and (ii)there are no problems arising from the role of quantum statistics of identical particles in the definition of entanglement.Finally,no one would complain about pathological representations of any sort of algebras when discussing (nonidentical)atoms.Thus I would say there is no doubt there is entanglement in the state (3).But since that state can be generated in principle,as just shown,from the state (1)by local operations,I would conclude that the state |0 |1 +|1 |0 must have entan-glement too.That concludes the simple argument.Some further remarks are in order:First,in the fa-mously [8]entangled two-mode squeezed state one has a Fock-state expansion |0 |0 +|1 |1 +|2 |2 ...in the ideal (unrealistic)case of infinite squeezing,but in that case no one complains about the “vacuum term.”Moreover,in a realistic finitely-squeezed two-mode squeezed state the |0 |0 term has,in fact,the largest amplitude,and that part does contribute to the total entanglement [9].For example,for small amounts of squeezing the state is,approximately,|0 |0 +r |1 |1 ,with r ≪1,which has a small amount of entanglement on the order of r log 2(r ).Second,the entanglement in the state (1)is not be-tween the photon and the vacuum,but between modes A and B .This point has been made in more general-ity (for different physical systems,for different types of states and relative to sets of observables)in [5].Sim-ilarly,in the case of the two-mode squeezed state with small squeezing,the entanglement is not between two photons and the vacuum:here the name of the state quite appropriately indicates what is entangled.Third,a different reason altogether for not attributing entanglement to the state (1)under certain conditions is given in [10].That paper refers to the situation where the relative phase between the two states |0 A |1 B and |1 A |0 B is not well defined.This occurs when,e.g.,the two parties located at A and B do not share a reference that defines that phase (for instance,a clock or a spatial reference frame).More precisely,suppose Alice and Bob,to use modern parlance,share a state|ψ A,B =|0 A |1 B +exp(iφ)|1 A |0 B ,(4)where φis defined relative to a (possibly fictituous)third-party reference frame;the states|0 and|1 may refer now to any types of orthogonal quantum states,be it polarization states of single photons,states of Josephson junctions with different charges,or spin“up”and“down”states of electrons.Alice and Bob may have their own local reference frames but the difference between their local phases or their relative orientation is not known to them.Hence Alice and Bob do not know the phaseφand so they would in fact not assign the state(4)but rathera mixture over the unknown phaseφto a single copy[11].The description(4)is used by anyone with access to the third-party reference frame.In this situation Alice and Bob cannot make use of a single copy[11]of the state(4)for teleportation or violating Bell inequalities. In that sense,according to Alice and Bob,there is no entanglement between Alice and Bob’s systems A and B when they do not share a reference frame.Of course, when they do share a reference frame(and in experiments this is always explicitly or implicitly assumed),there is entanglement(see also[4]).Note,for example,that the above-mentioned operation involving atoms in cavities requires a phase reference,too.In contrast,let us note that even in the absence of a shared reference frame, one can still perform quantum communication protocols and violate Bell inequalities by using a reference-frame invariant encoding,as discussed in[15].Fourth,in the90s a related but different discussion arose as to whether nonlocality can arise from a single-particle or single-photon state[12].The issue then was not whether there is entanglement in the state|0 |1 + |1 |0 (apparently,there was agreement there is entangle-ment),but whether an experiment using that state can demonstrate nonlocality with just1particle or photon. The idea is simply that all proposed(and in the meantime performed)optics experiments with the state(1)detect, at least sometimes,more than a single photon.In that case,it was argued,nonlocality arises from multiparticle entanglement.We can add some new insights to that discussion by relating it to the role reference frames play in quantum-communication protocolsIn certain types of experiments the shared reference frame is such a trivial resource that no one cares to men-tion it.This applies,for instance,to experiments using a spatial reference frame(the earth or thefixed stars).On the other hand,the role of a clock(another example of a reference frame)in optics experiments is inevitably,con-veniently,and quite visibly,played by lasers(e.g.,Alice and Bob both having a laser,phase-locked to one an-other)[13].The confusing aspect is that in optics exper-iments on Bell inequalities photons are detected that may originate both from the entangled state(1)and from the phase reference laser beam.In contrast,in experiments with a spin-entangled electron pair or a polarization-entangled photon pair the particles making up the spa-tial reference frame are not detected by the same detec-tor that detects the electrons or photons.Hence it may seem that indeed only2electrons or2photons have to be detected.However,this apparent distinction is not so clear:One could argue,on the one hand,that the refer-ence frame particles are detected,not by a detector but by the experimenter.On the other hand,one could argue that in optics experiments a different sort of clock could be used,at least in principle,that requires no photons (say,based purely on electronics).In that case,Bell in-equalities could be violated using just the single-photon state(1)without more than one photodetector clicking. In fact,this is a good example of the difference between “internal”and“external”reference frames[14]:In optics experiment one is more inclined to treat the laserfield as an internal reference frame that must be quantized too, whereas the earth or thefixed stars are typically treated as a classical,external,reference frame.However,as a matter of principle,there is no difference between those two cases,and in both cases one has a choice whether to internalize or externalize the reference frame.In short,if one has the point of view that a singlet state of two spin-entangled electrons or two polarization-entangled photons can display“2-particle nonlocality,”then it is just as valid to claim that the state(1)can display“single-particle nonlcality.”|0 |1 +|1 |0 is en-tangled.I thank Bj¨o rn Hessmo,Myungshik Kim and Howard Wiseman for their useful comments,and Lev Vaidman for bringing to my attention his work on this issue.[1]M.Pawlowski and M.Czachor,quant-ph/0507151.[2]A.I.Lvovsky et al.,Phys.Rev.Lett.87,050402(2001);G.Bj¨o rk,P.Jonsson,and L.L Sanchez-Soto,Phys.Rev.A64,042106(2001); E.Lombardi et al.,Phys.Rev.Lett.88,070402(2002);J.W.Lee et al.,Phys.Rev.A 68,012324(2003);B.Hessmo et al.,Phys.Rev.Lett.92, 180401(2004).[3]This argument is not new:it appears in C.G.Gerry,Phys.Rev.A53,4583(1996).Also,M.S.Kim has used this argument in the same way,(M.S.Kim,private com-munication).See also[4].[4]Y.Aharonov and L.Vaidman,Phys.Rev.A61,052108(2000).[5]The qualification that the modes be spatially separated isimportant,and in certain cases absolutely crucial.This should be clear from the argument presented here,but also from S.J.van Enk,Phys.Rev.A67,022303(2003);see also P.Zanardi,Phys.Rev.A65,042101(2002);Y.Shi,ibid.67,024301(2003);and for a generalized and more technical notion of what is important for en-tanglement,see H.Barnum et al.,quant-ph/0305023;quant-ph/0506099.[6]Actually,the argument would work just as well in prin-ciple with electrons instead of photons,as electrons,too, can be used to excite atoms.[7]J.I.Cirac et al.,Phys.Rev.Lett.78,3221(1997).Ac-tually,how one does this precisely,or whether one can achieve this perfectly experimentally at the present mo-ment is not relevant.[8]Famously,because the original EPR(A.Einstein,B.Podolski,N Rosen,Phys.Rev.47,777(1935))stateis equivalent to an infinitely squeezed two-mode squeezed state.[9]The two-mode squeezed state for general(finite)squeez-ing parameter r is(D.Walls and burn,Quantum Optics,Springer-Verlag,Berlin,1994)1。