中南大学963《材料科学与工程基础》复习资料(十年真题+内部习题与答案)
- 格式:pdf
- 大小:55.29 MB
- 文档页数:81
中南大学考试试卷2012 -- 2012 学年 下 学期 时间110分钟材料科学基础 课程 56 学时 3.5 学分 考试形式: 闭 卷 专业年级: 材料科学09 总分100分,占总评成绩 70 %一、填空(每空0.5分,共20分)1. 点阵常数是指__________________________________________。
以点阵常数a 为单位,fcc 晶体的原子半径是___________,bcc 晶体的原子半径是____________,fcc 晶体(110)面的晶面间距是_______________________,[110]方向的原子间距为_______________,fcc 晶体的结构原子体积为_____________________。
2. fcc 结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______;致密度为___________;配位数是________________;晶胞中原子数为___________;bcc 结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________;hcp 结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为___________。
3.Fe-Fe3C 相图中,铁素体是指 ,奥氏体指 ,珠光体指 ,莱氏体指 ,变态莱氏体指 。
二次渗碳体一般形态为 。
4. 影响正常价化合物形成的主要因素是_____________________________。
5. 影响置换固溶体溶解度大小的主要因素是:(1)_______________________;(2)___________________________;(3)_______________________;(4)___________________________和环境因素。
材料科学基础习题与参考答案(doc14页)完美版第⼀章材料的结构⼀、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离⼦键、⾦属键、组元、合⾦、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第⼆相强化。
⼆、填空题1、材料的键合⽅式有四类,分别是(),(),(),()。
2、⾦属原⼦的特点是最外层电⼦数(),且与原⼦核引⼒(),因此这些电⼦极容易脱离原⼦核的束缚⽽变成()。
3、我们把原⼦在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的⾦属晶格分别为(),()和()。
5、体⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有体⼼⽴⽅晶格的常见⾦属有()。
6、⾯⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有⾯⼼⽴⽅晶格的常见⾦属有()。
7、密排六⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),具有密排六⽅晶格的常见⾦属有()。
8、合⾦的相结构分为两⼤类,分别是()和()。
9、固溶体按照溶质原⼦在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原⼦与溶剂原⼦相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、⾦属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、⾦属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合⾦中不作为()相,⽽是少量存在起到第⼆相()作⽤。
13、CuZn、Cu5Zn8、Cu3Sn的电⼦浓度分别为(),(),()。
一、选择题:第6章1.形成临界晶核时体积自由能的减少只能补偿表面能的。
(A)1/3(B)2/3(C)3/4第7章2.在二元系合金相图中,计算两相相对量的杠杆法则用于。
(A)单相区中(B)两相区中(C)三相平衡水平线上3.已知Cu的T m=1083︒C,则Cu的最低再结晶温度约为。
(A)100︒C (B)200︒C (C)300︒C4.能进行攀移的位错必然是。
(A)刃型位错(B)螺型位错(C)混合位错5.A和A-B合金焊合后发生柯肯达尔效应,测得界面向A试样方向移动,则。
(A)A组元的扩散速率大于B组元(B)B组元的扩散速率大于A组元(C)A、B两组元的扩散速率相同6.,位错滑移的派-纳力越小。
(A)位错宽度越大(B)滑移方向上的原子间距越大(C)相邻位错的距离越大7.形变后的材料再升温时发生回复与再结晶现象,则点缺陷浓度下降明显发生在。
(A)回复阶段(B)再结晶阶段(C)晶粒长大阶段第6章8.凝固时在形核阶段,只有核胚半径等于或大于临界尺寸时才能成为结晶的核心,当形成的核胚半径等于临界半径时,体系的自由能变化。
(A)大于零(B)等于零(C)小于零9.铸锭凝固时如大部分结晶潜热可通过液相散失时,则固态显微组织主要为。
(A)树枝晶(B)柱状晶(C)胞状晶10.下述有关自扩散的描述中正确的为。
(A)自扩散系数由浓度梯度引起(B)自扩散又称为化学扩散(C)自扩散系数随温度升高而增加11.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。
(A)fcc (B)bcc (C)hcp12.对于变形程度较小的金属,其再结晶形核机制为。
(A)晶界合并(B)晶界迁移(C)晶界弓出13.形变后的材料在低温回复阶段时其内部组织发生显著变化的是。
(A)点缺陷的明显下降(B)形成亚晶界(C)位错重新运动和分布第6章14.凝固时不能有效降低晶粒尺寸的是以下哪种方法?(A)加入形核剂(B)减小液相过冷度(C)对液相实施搅拌15.对离异共晶和伪共晶的形成原因,下述说法正确的是。
第三章作业答案1.说明面心立方结构的潜在滑移系有12个,体心立方结构的潜在滑移系有48个。
解:面心立方晶体的滑移系是{111} < 1-10> , (111}有四个,每个{111}面上有三个〈110〉方向,所以共有12个潜在滑移系。
体心立方晶体的滑移系是(110} <- 111 > , {211} <- 111 >以及{312} < -111 >o{110}面共有6个,每个{110}面上有两个<-111 >方向,这种滑移系共有12个潜在滑移系; {211}面有12个,每个“211”面上有1个〈111〉方向,这种滑移系共有12个潜在滑移系;{312}面共有24个,每个{312}面上有1个<-111 >方向,这种滑移系共有潜在滑移系24个, 这样,体心立方晶体的潜在滑移系共有48个。
2.一个位错环能否各部分都是螺位错?能否各部分都是刃位错?为什么?解:螺位错的柏氏矢量与位错线平行,而一个位错只有一个柏氏矢量,一个位错环不可能与一个方向处处平行,所以一个位错环不能各部分都是螺位错。
刃位错的柏氏矢量与位错线垂直,如果柏氏矢量垂直位错环所在的平面,则位错环处处都是刃位错。
这种位错的滑移面是位错环与柏氏矢量方向组成的棱柱面,这种位错又称棱柱位错。
3.纯铁的空位形成能为105kJ/mol.将纯铁加热到850°C后激冷至室温(20°C),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。
解:G,=4exp(-g)850 °C (1123K)后激穆室温可以认为全部空位保留下来Exp(31.87)4.写出距位错中心为R1范围内的位错弹性应变能。
如果弹性应变能为R1范围的一倍,则所涉及的距位错中心距离R2为多大?解:距位错中心为&范围内的位错弹性应变能为E = 竺瓦马。
4忒Ab如果弹性应变能为&范围的一倍,则所涉及的距位错中心距离R2为2 竺= 也4.K Ab A TT K Ab即R,=¥2 Ab5.简单立方晶体(100)面有一个b=[001]的螺位错。
材料科学基础复习题答案第一篇:材料科学基础复习题答案材料科学基础复习题答案2.为什么细金化能提高材料的强度和断裂韧性?答:因为晶粒平均直径越小,位错源到晶界的距离越小,所塞积的位错数目越少,所引起的应力集中不严重。
此外,晶粒平均直径较小时,与应力集中作用半径差不多,可使晶内与晶界附近的应力度相差不大,使变形更均匀,因应力集中产生的裂纹机会少,故细金化能提高材料的强度和断裂韧性。
4.晶体、非晶体、准晶体的异同?答:晶体:长程有序,短程有序;非晶体:长程无序,短程有序;准晶体材料:长程有序不完善,短程有序;不能平移。
5.影响晶体生长形态的外因?(简答型)答:温度、杂质、涡流、黏度、结晶速度、晶体析出先后次序、地质条件。
8.晶体的缺陷有哪些?以及各种缺陷对晶体性能的影响?(简答型,或扩展为阐述分析型大题)答:(1)点缺陷、线缺陷和面缺陷。
(2)如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。
因此,无论点缺陷、线缺陷和面缺陷都会造成晶格畸变,从而使晶体强度增加。
同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。
1.在立方系中,晶面族{123}中有24 组平面,晶面族{100}中有3 组平面。
2.获得高能量的原子离开原来的平衡位置,进入其它空位或迁移至晶界或表面,形成肖脱基空位。
如果离位原子进入晶体间隙,形成费仑克尔空位。
11.金属的热变形是指金属材料在再结晶温度以上的加工变形,在此过程中,金属内部同时进行着加工硬化和回复再结晶软化两个过程。
12.扩散的驱动力是化学位梯度;再结晶的驱动力为冷变形所产生的储存能的释放;再结晶后晶粒的长大的驱动力是:晶粒长大前后的界面能差,纯金属结晶的驱动力是温度梯度。
15.材料的结合方式有原子键、离子键、金属键和范德华力四种化学键结合方式。
17.刃型位错的柏氏矢量b与位错线t互相垂直,刃型位错移动的方向与b方向一致。
《材料科学与工程基础》题集大题一:选择题1.下列哪一项是材料的基本属性?A. 密度B. 颜色C. 形状D. 体积2.材料的力学性能主要包括哪一项?A. 导电性B. 耐腐蚀性C. 强度D. 透明度3.下列哪一项不是金属材料的常见类型?A. 钢铁B. 铝合金C. 陶瓷D. 铜合金4.材料的硬度是指其抵抗什么的能力?A. 拉伸B. 压缩C. 弯曲D. 刻划5.下列哪一项是热塑性材料的特性?A. 在加热后不能变形B. 在加热后可以永久变形C. 在冷却后可以恢复原形D. 在任何温度下都不易变形6.材料的韧性是指其在受力时什么的能力?A. 易碎B. 易弯曲C. 吸收能量而不破裂D. 迅速恢复原形7.下列哪一项是陶瓷材料的主要成分?A. 金属B. 塑料C. 无机非金属D. 有机物8.复合材料是由哪两种或多种材料组合而成的?A. 同一种材料的不同形态B. 不同性质的材料C. 相同性质的材料D. 任意两种材料9.下列哪一项不是高分子材料的特性?A. 高强度B. 高韧性C. 低密度D. 低耐温性10.材料的疲劳是指其在什么条件下性能逐渐降低的现象?A. 持续受力B. 持续加热C. 持续冷却D. 持续暴露在潮湿环境中大题二:填空题1.材料的密度是指单位体积内材料的______。
2.材料的导电性是指材料传导______的能力。
3.金属材料的晶体结构常见的有______、体心立方和面心立方。
4.陶瓷材料因其______、高硬度和高耐温性而被广泛应用于高温和腐蚀环境。
5.复合材料的优点包括高强度、高刚性和良好的______。
6.高分子材料的分子结构特点是具有长链状的______结构。
7.材料的疲劳强度是指材料在______作用下抵抗破坏的能力。
大题三:判断题1.材料的力学性能只包括强度和硬度。
()2.金属材料都是良好的导体。
()3.陶瓷材料的主要成分是金属。
()4.复合材料的性能总是优于其单一组分的性能。
()5.高分子材料的耐温性一般较低。
《材料科学与工程基础》习题和思考题及答案第二章2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。
2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。
2-3.试计算N壳层内的最大电子数。
若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少?2-4.计算O壳层内的最大电子数。
并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。
2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。
2-6.按照杂化轨道理论,说明下列的键合形式:(1)CO2的分子键合(2)甲烷CH4的分子键合(3)乙烯C2H4的分子键合(4)水H2O的分子键合(5)苯环的分子键合(6)羰基中C、O间的原子键合2-7.影响离子化合物和共价化合物配位数的因素有那些?2-8.试解释表2-3-1中,原子键型与物性的关系?2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象?2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少?2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比?2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少?2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子?2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?2-15.铁的单位晶胞为立方体,晶格常数a=0.287nm,请由铁的密度算出每个单位晶胞所含的原子个数。
第八章回复与再结晶1 名词变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构;再结晶织构是具有变形织构的金属经过再结晶退火后出现的织构,位向于原变形织构可能相同或不同,但常与原织构有一定位向关系。
再结晶全图:表示冷变形程度、退火温度与再结晶后晶粒大小的关系(保温时间一定)的图。
冷加工与热加工:再结晶温度以上的加工称为热加工,低于再结晶温度又是室温下的加工称为冷加工。
带状组织:多相合金中的各个相在热加工中可能沿着变形方向形成的交替排列称为带状组织;加工流线:金属内部的少量夹杂物在热加工中顺着金属流动的方向伸长和分布,形成一道一道的细线;动态再结晶:低层错能金属由于开展位错宽,位错难于运动而通过动态回复软化,金属在热加工中由温度和外力联合作用发生的再结晶称为动态再结晶。
临界变形度:再结晶后的晶粒大小与冷变形时的变形程度有一定关系,在某个变形程度时再结晶后得到的晶粒特别粗大,对应的冷变形程度称为临界变形度。
二次再结晶:某些金属材料经过严重变形后在较高温度下退火时少数几个晶粒优先长大成为特别粗大的晶粒,周围较细的晶粒逐渐被吞掉的反常长大情况。
退火孪晶:某些面心立方金属和合金经过加工和再结晶退火后出现的孪晶组织。
2 问答1 再结晶与固态相变有何区别?答:再结晶是一种组织转变,从变形组织转变为无畸变新晶粒的过程,再结晶前后组织形态改变,晶体结构不变;固态相变时,组织形态和晶体结构都改变;晶体结构是否改变是二者的主要区别。
2 简述金属冷变形度的大小对再结晶形核机制和再结晶晶粒尺寸的影响。
答:变形度较小时以晶界弓出机制形核,变形度大的高层错能金属以亚晶合并机制形核,变形度大的低层错能金属以亚晶长大机制形核。
冷变形度很小时不发生再结晶,晶粒尺寸基本保持不变,在临界变形度附近方式再结晶晶粒特别粗大,超过临界变形度后随变形度增大,晶粒尺寸减少,在很大变形度下,加热温度偏高,少数晶粒发二次再结晶,使部分晶粒粗化。
第十章 原子扩散1、 简要说明影响溶质原子在晶体中扩散的因素。
答: 影响扩散的因素主要有温度,温度越高,扩散越快;晶体缺陷如界面、晶界位错容易扩散;不同致密度的晶体结构溶质原子扩散速度不一样,低致密度的晶体中溶质原子扩散快,各向异性也影响溶质原子扩散;在间隙固溶体中溶质原子扩散容易;扩散原子性质与基体金属性质差别越大,扩散越容易;一般溶质原子浓度越高,扩散越快;加入其它组元与溶质原子形成化合物阻碍其扩散。
2、Ni 板与Ta 板中有0.05mm 厚MgO 板作为阻挡层,1400℃时Ni +通过MgO 向Ta 中扩散,此时Ni +在MgO 中的扩散系数为D=9×10-12cm 2/s ,Ni 的点阵常数为3.6×10-8cm 。
问每秒钟通过MgO 阻挡层在2×2cm 2的面积上扩散的Ni +数目,并求出要扩散走1mm 厚的Ni 层需要的时间。
答:Ni 为fcc 结构,一个晶胞中的原子个数为4,依题意有:在Ni/MgO 界面镍板一侧的Ni 的浓度C Ni 为100%,每cm 3中Ni 原子个数为:N Ni/MgO =(4原子/晶胞)/(3.6×10-8cm 3)=8.57×1022原子/cm 3,在Ta/MgO 界面Ta 板一侧的Ni 的浓度0%,这种扩散属于稳态扩散,可以利用菲克第一定律求解。
故浓度梯度为dc/dx =(0-8.57×1022原子/cm 3)/(0.05cm )=-1.71×1024原子/(cm 3.cm ), 则Ni 原子通过MgO 层的扩散通量:J =-D (dc/dx )=-9×10-12cm 2/s ×(-1.71×1024原子/(cm 3.cm )) =1.54×1013Ni 原子/(cm 2.s)每秒钟在2×2cm 2的面积上通过MgO 层扩散的Ni 原子总数N 为 N =J ×面积=[1.54×1013Ni 原子/(cm 2.s)]×4cm 2=6.16×1013Ni 原子/s 。
1.为什么室温下金属晶粒越细强度,硬度越高,塑性韧性也越好?答:金属晶粒越细,晶界面积越大,位错障碍越多,需要协调的具有不同位向的晶粒越多,金属塑性变形的抗力越高,从而导致金属强度和硬度越高。
金属的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目也越多,变形越均匀,推迟了裂纹的形成和扩展,使得在断裂前发生较大的塑性变形。
在强度和塑性同时增加的情况下,金属在断裂前消耗的功增大,因而其韧性也比较好。
因此,金属的晶粒越细,其塑性和韧性也越好。
2.冷塑性变形金属产生加工硬化的原因?随变形量增加,空密度增加。
④由于晶粒由有利位向而发生几何硬化,因此使变形抗力增加。
随变形量增加,亚结构细化,亚晶界对位错运动有阻碍作用。
答:①晶体内部存在位错源,变形时发生了位错增值,随变形量增加,位错密度增加。
由于位错之间的交互作用,使变形抗力增加。
3.某厂用冷拉钢丝绳吊运出炉热处理工件去淬火,钢丝绳的承载能力远超过工件的质量,但在工件的运送过程中钢丝绳发生断裂,试分析其原因?答:冷拉钢丝绳是利用热加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。
在淬火的温度下保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复软化状态。
在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。
4细化晶粒方法1.在浇注过程中:1)增大过冷度;2)加入变质剂;3)进行搅拌和振动等。
2. 在热轧或锻造过程中:1)控制变形度;2)控制热轧或锻造温度。
3. 在热处理过程中:控制加热和冷却工艺参数利用相变重结晶来细化晶粒。
4. 对冷变形后退火态使用的合金:1)控制变形度;2)控制再结晶退火温度和时间5、试说明滑移,攀移及交滑移的条件,过程和结果,并阐述如何确定位错滑移运动的方向。
解答:滑移:切应力作用、切应力大于临界分切应力;台阶攀移:纯刃位错、正应力、热激活原子扩散;多余半原子面的扩大与缩小交滑移:纯螺位错、相交位错线的多个滑移面;位错增殖位错滑移运动的方向,外力方向与b一致时从已滑移区→未滑移区。
材料科学与工程学院硕士研究生入学专业考试大纲根据材料院教授(学术)委员会的研究决定,材料院硕士研究生入学专业试题形式为1+4的模式:“1”为所有考生必答题模块,占50分,主要考点为材料科学与工程学科基础;“4”为专业特色模块,各占100分,其专业特色模块名称为:材料物理、材料化学(含无机非)、材料学、材料加工,考生可根据自身的优势选择其中的1个模块答题。
材料物理模块考点:一、X射线的产生和性质X射线的本质;X射线的波长范围;连续辐射;标志辐射(特征辐射);连续X射线谱;特征X射线谱;短波限;X射线命名规则;X射线相干散射;X射线非相干散射;光电效应;二次特征辐射(荧光辐射);吸收限;俄歇效应;俄歇电子;X射线吸收系数;吸收限的应用(靶材、滤波片的选择)。
二、X射线晶体学基础晶体和点阵的定义;面角守衡定律;晶体中晶系和点阵类型的分类(布拉菲点阵);倒易点阵;晶带轴定律;球面投影;极射赤面投影;极图。
三、X射线衍射原理劳埃方程组的推导及原理;第一、第二、第三干涉指数;衍射产生的条件;劳埃法;旋转晶体法;粉末多晶法;布拉格方程原理及推导;反射级数;干涉面指数;布拉格方程的几何意义;衍射的矢量方程推导及原理;衍射的矢量方程与布拉格方程、劳埃方程组的一致性;埃瓦尔德球;用埃瓦尔德球解释劳埃法、旋转晶体法和粉末晶体法产生衍射时的几何特点。
四、X射线衍射强度一个电子对X射线的散射公式;偏振因子;一个原子对X射线的散射特点;原子的散射因子及特点;结构因子(结构振幅)表达式及其推导;点阵的消光规律;引起X射线衍射花样峰形宽化的原因;谢乐公式及其推导;小晶体衍射及干涉函数;干涉函数的表达式;尺寸效应;选择反射区;小晶体衍射的积分强度公式及推导;粉末多晶体衍射强度表达式及推导;多重性因子对强度的影响。
五、多晶X射线衍射及其实验方法德拜-谢乐法;德拜相机;相机的分辨本领表达式及其含义;立方及密排六方晶体衍射花样特点;衍射仪法;测角仪;衍射仪中的光路;衍射仪中聚焦圆的几何关系;探测器;衍射峰位的确定方法;衍射仪实验中的误差来源。
六、X射线物相分析PDF卡片及所包含内容;PDF卡片索引类型及规则;物相定性分析的一般步骤;物相定性分析时应注意的问题;物相的定量分析方法;单线条法原理及表达式;内标法原理及表达式;K值法(含参比强度法)原理及表达式;参比强度值;绝热法原理及其表达式;直接对比法原理及表达式。
材料化学模块考点:一、无机非金属材料知识点:(1)无机非金属材料的结构基础结合键的概念与特性、离子键与静电吸引理论、配位键与晶体场理论、传统价键理论、现代价键理论、分子轨道理论、无机化合物晶体结构、硅酸盐晶体结构、无机化合物晶体结构缺陷、非晶态结构与表征、表面吸附与润湿、多晶体的晶界构型等。
(2)无机非金属材料性能的微观解析包括晶格振动与热学性能,包括比热的爱因斯坦模型、德拜模型,晶格振动与热膨胀,声子激发与热传导,吸热与热反射原理等;载流子运动与材料的电磁性能,包括离子导电、电子导电、介电性、磁性、法拉第效应等;质点间结合强度与材料的力学行为,包括弹性变形机理、弹性变形机理、材料断裂原理与特征;材料中光学现象,包括光折射、光反射、光吸收、光弹性质、热光性质、非线性光学效应、发光与受激发射、光损伤等;材料化学稳定性的表征、化学组成、结构与化学稳定性的关系等。
(3)无机非金属材料的制备科学基础包括硅酸盐熔体形成与结构、非晶态形成学、相变过程、扩散、烧结等内容。
(4)主要无机非金属材料玻璃、陶瓷及其它无机非金属材料。
包括概念、组成设计方法与技术、性能调控技术、制备工艺过程与原理、结构特点、性能特点、应用、综合分析及前沿探讨等。
二、高分子材料知识点(1)高分子材料的结构基础高分子的基本概念,高分子化合物的分类与命名,高分子链的形态与化学结构,聚合物的多分散性等。
(2)高分子材料性能的微观解析高分子材料的化学结构的表征,分子量的分布,立体化学等。
(3)高分子材料的制备科学基础包括聚合物的聚合方法与聚合机理:逐步聚合反应与链式聚合反应的特点与机理、均聚与共聚、活性聚合、开环聚合、高分子的各种化学反应、聚合过程中的组成与分子量控制、聚合实施方法等。
(4)主要功能高分子材料高分子试剂、高分子催化剂、高分子分离膜、离子交换树脂、导电高分子、生物高分子等。
材料学模块考点:一、材料中的原子排列1、了解金属材料中的原子键合方式和特点,对工程材料性能的影响2、了解晶体结构的原子规则排列特点3、了解晶系、晶胞划分方法4、掌握立方系晶胞、六方系晶胞的几何特征和晶面指数、晶向指数的标定和意义5、掌握晶带和晶带定律6、掌握金属的三种常见晶体结构的几何特征7、了解影响原子半径的因素8、了解晶体缺陷概念和基本分类9、了解点缺陷的产生及其运动和对材料性能的影响10、了解点缺陷的平衡浓度概念,掌握影响点缺陷的平衡浓度的因素11、了解位错分类、位错的几何模型和滑移模型12、掌握位错的性质、柏氏矢量概念和特点13、了解位错的运动特点和方式14、了解位错的应变能与线张力15、了解位错的应力场16、掌握位错与其它缺陷的相互作用17、了解位错的增殖机制18、掌握位错反应19、了解实际晶体中的位错类型20、掌握堆垛层错与扩展位错。
21、了解表面和表面吸附,22、了解晶界、相界概念和分类,了解界面特性23、掌握晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化)中的作用、二、固体中的相结构1、了解合金与相概念2、了解固溶体、中间相概念及分类3、掌握影响固溶体固溶体固溶度因素4、了解形成固溶体和中间相后对材料性能的影响三、纯金属的结晶1、了解凝固与结晶概念和凝固在材料中的作用2、了解材料结晶的基本过程3、掌握金属材料结晶的过冷现象和过冷度4、了解纯金属结晶的基本条件5、了解非均匀形核过程和条件6、掌握临界晶核和临界形核功7、了解形核率与过冷度、外来物质(夹杂)表面结构的关系8、了解动态过冷、液固界面微结构、温度梯度9、掌握晶体的长大形态的影响因素10、掌握凝固理论在控制材料铸态晶粒大小、铸锭组织、单晶体的制备、定向凝固等的应用四、二元相图1、了解相图、相律的概念和获得相图的方法2、掌握杠杆定律及应用3、了解匀晶相图及平衡结晶过程分析4、了解相与组织概念5、掌握固溶体合金非平衡结晶过程分析6、掌握固溶体合金溶质再分配概念及对合金结晶的影响7、掌握固溶体合金结晶中的成分过冷8、了解共晶相图和共晶转变,9、掌握共晶相图中合金的平衡、非平衡结晶及其组织分析10、了解共晶组织的形成机制11、了解包晶转变及相图分析12、掌握包晶相图中合金平衡、非平衡结晶过程及其组织13、了解包晶转变的应用14、掌握铁碳合金相图的构成、分析和使用15、掌握结合铁碳合金相图分析合金结晶过程及其组织分析五、三元相图1、掌握三元合金的成分表示法2、了解三元合金相图中成分三角形中特殊的点和线、共线法则与杠杆定律、重心定律3、了解平衡转变的类型4、了解三元固溶体合金的结晶规律、等温界面(水平截面)、变温截面(垂直截面)和投影图5、掌握结合给出的等温界面、变温截面或投影图分析合金的平衡结晶过程六、固体中的扩散1、了解扩散概念、本质、分类2、了解菲克第一定律和菲克第二定律一般表达式和适用条件3、掌握半无限长条件下的特征解和应用4、掌握扩散机制5、了解扩散的驱动力与上坡扩散、反应扩散6、掌握影响扩散的主要因素七、金属材料冷塑性变形1、了解常温下塑性变形的主要方式2、了解滑移滑移的表象学3、掌握滑移系4、了解滑移的临界分切应力和滑移时晶体的转动、多滑移与交滑移5、了解孪生的晶体学和孪生变形的特点6、掌握晶界对多晶体金属的塑性变形的影响7、掌握固溶体合金的塑性变形特点8、掌握多相合金的塑性变形特点9、掌握塑性变形对材料组织和性能的影响10、掌握金属材料强化机制八、金属材料回复与再结晶和热加工1、了解冷变形金属加热时可能的三个过程2、掌握冷变形金属加热时可能的三个过程的性能变化3、了解回复动力学及特点、回复机理4、掌握回复退火的应用5、了解再结晶形核、长大机制6、了解再结晶动力学7、掌握再结晶温度8、了解影响再结晶速度、再结晶温度的因素9、掌握影响再结晶晶粒大小的因素10、了解再结晶退火的应用11、了解晶粒长大驱动力、晶粒的稳定形状和影响晶粒长大的因素12、了解晶粒的异常长大13、了解再结晶织构、退火孪晶14、掌握再结晶全图15、了解金属的动态回复与动态再结晶概念16、掌握金属的热加工、冷加工的区分17、掌握热加工温度的制订18、了解热加工后的组织与性能材料加工模块考点:一、应力分析与应变分析1、应力与点的应力状态2、点的应力状态分析3、应力张量的分解与几何分析4、应力平衡微分方程5、点的应变状态6、应变张量7、应变增量8、应变速度张量9、主应变图与变形程度表示二、金属塑性变形物理基础1、金属塑性变形过程和力学特点2、塑性条件方程3、塑性变形的应力应变关系4、变形抗力曲线与加工硬化5、影响变形抗力的因素三、金属塑性加工的宏观规律1、塑性流动规律(最小阻力定律)2、影响金属塑性流动与变形的因素3、不均匀变形、附加应力和残余应力4、金属塑性加工诸方法的应力与变性特点5、塑性加工过程的断裂与可加工性四、金属塑性加工的摩擦与润滑1、金属塑性加工时摩擦的特点及作用2、塑性加工中摩擦的分类及机理3、摩擦系数与其影响因素4、测量摩擦系数方法5、塑性加工的工艺润滑五、金属的塑性1、金属塑性的概念、指标、测量方法及塑形图2、金属多晶体塑性变形的主要机制3、影响金属塑性的因素4、金属的超塑性六、塑性加工过程的组织性能变化与温度-速度条件1、塑性加工过程中组织与性能变化2、金属塑性变形的温度-速度效应3、形变热处理。