《无机材料物理性能》第2讲
- 格式:ppt
- 大小:2.84 MB
- 文档页数:89
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
第一章物理基础知识与理论物理性能本质:外界因素(作用物理量)作用于某一物体,如:外力、温度梯度、外加电场磁场、光照等,引起原子、分子或离子及电子的微观运动,在宏观上表现为感应物理量,感应物理量与作用物理量呈一定的关系,其中有一与材料本质有关的常数——材料的性能。
晶体结构:原子规则排列,主要体现是原子排列具有周期性,或者称长程有序。
非晶体结构:不具有长程有序。
点阵:晶体内部结构概括为是由一些相同点子在空间有规则作周期性无限分布,这些点子的总体称为点阵。
晶体由(基元)沿空间三个不同方向,各按一定的距离(周期性)地平移而构成,(基元)每一平移距离称为周期。
晶格的共同特点是具有周期性,可以用(原胞)和(基失)来描述。
分别求立方晶胞、面心晶胞和体心晶胞的原胞基失和原胞体积?(1)立方晶胞:(2)面心晶胞(3)体心晶胞晶体格子(简称晶格):晶体中原子排列的具体形式。
晶列的特点:(1)一族平行晶列把所有点包括无遗。
(2)在一平面中,同族的相邻晶列之间的距离相等。
(3)通过一格点可以有无限多个晶列,其中每一晶列都有一族平行的晶列与之对应。
(4 )有无限多族平行晶列。
晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面. (2)所有的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情况相同;(4)晶格中有无限多族的平行晶面。
格波:晶体中的原子在平衡位置附近的微振动具有波的形式。
色散关系:晶格振动谱,即频率和波矢的关系。
声子:晶格振动的能量是量子化的,晶格振动的量子单元称作声子,声子具有能量ħ ,与光子的区别是不具有真正的动量,这是由格波的特性决定的。
声学波与光学波的区别:前者是相邻原子的振动方向相同,波长很长时,格波为晶胞中心在振动,可以看作连续介质的弹性波;后者是相邻原子的振动方向相反,波长很长时,晶胞中心不动,晶胞中的原子作相对振动。
德布罗意假设:一切微观粒子都具有波粒二象性。
实验一 测定无机非金属材料的介电常数一、实验目的1、掌握测定无机非金属材料介电常数的操作过程二、实验原理相对介电常数通常是通过测量试样与电极组成的电容、试样厚度和电极尺寸求得。
相对介电常数(εr )测试可用三电极或二电极系统。
对于二电极试样,由于方形电容C x 的计算公式是:dYX C ⋅⋅⋅=0r x εε (1)因此,待测材料的介电常数可以表示为:YX dC ⋅⋅⋅=0x r εε (2)式2中C x 为试样电容(法),X 为电极长度(米),Y 为电极宽度(米),d 为电极板之间的距离(米),ε0=8.854 187 818× 10-12法拉/米(F/m)。
图1 电容法测量材料介电常数示意图测试中,选择电极极为重要。
常用的是接触式电极。
可用粘贴铝箔、烧银、真空镀铝等方法制作电极,但后者不能在高频下使用。
低频测量时,试样与电极应屏蔽。
在高频下可用测微电极以减小引线影响。
在某些特殊场合,可用不接触电极,例如薄膜介电性能测试和频率高于30兆赫时介电性能的测量。
无机材料物理性能课程实验指导书三、实验仪器PGM—2型数字小电容测试仪、玻璃刀、玻璃板、游标卡尺、铝质平板电极、连接导线四、实验步骤1、采取边长为100×100mm的正方型玻璃板,记录电极板的长X、宽Y以及实际玻璃板的厚度d。
2、按照图1连接仪器。
3、开启数字电容仪。
4、松开电极板紧定螺丝,将上电容板台到适当高度,在中间放入一块测量好的玻璃,使上下电容板与玻璃板相接触,然后旋紧固定螺丝。
5、读取电容数字。
6、然后重复4、5步骤,将玻璃板换成2-5块,分别测出其电容值。
7、结束实验,关闭仪器。
实验数据五、思考题1.介电常数与介电材料的厚度有什么样的关系?2.介电现象是如何产生的?实验二 热电效应实验一、实验目的1、了解热电材料的赛贝克(seeback)定律,珀耳帖(Peltier)效应,汤姆孙效应等热电材料的特性。
2、熟练的使用万用表来测量热电效应产生的电势差。
第二章 无机材料的受力变形名义应力应力:单位面积所受的力。
σ=F/S真实应力应变:用来描述物体内部各质点之间的相对位移。
弹性形变:各向同性广义胡克定律: 体积模量弹性系数k s :大小反映了原子间的作用力曲线在r = r 0处斜率的大小。
弹性刚度系数 大小实质上反映了原子间势能曲线极小值尖峭度的大小。
弹性系数k s 测定式架状结构石英和石英玻璃的架状结构是三维空间网络,几乎各向同性;晶体结构 双链结构、环状结构(岛状结构)、层状结构为各向异性,因材料方向不 同而差别很大。
温度:弹性常数随温度升高而降低。
并联模型:E u =V 2E 2+(1-V 2)E 1(上限)复相的弹性模量串联模型:1/E L =V 2/E 2+(1-V 2)/E 1(下限)应变松弛(或蠕变或徐变):固体材料在恒定荷载下,变形随时间延续而缓慢增加的不平衡过程,或材料受力后内部原子由不平衡到平衡的过程。
当外力除去 后,徐变变形不能立即消失。
应力松弛(或应力弛豫):在持续外力作用下,发生变形着的物体,在总的变形值保持不变的情况下,由于徐变变形渐增,弹性变形相应的减小,由此使物体的内部应力随时间延续而逐渐减少。
或一个体系因外界原因引起的不平衡状态逐应力和应变正应变剪切应变弹性形变机理弹性模量影响因素因为大部分固体随温度升高而发生热膨胀现象,原子间结合力减弱 因此温度对弹性刚度系数的影响,通常用弹性刚度系数的温度系数T C 表示。
应用:温度补偿材料,即一种异常的弹性性质材料(Tc 是正的),补偿一般材料的负Tc值。
例如:低温石英有一个方向Tc 是正值,低温石英在570o C 通过四面体旋转,进行位移式相转变,变成充分膨胀的敞旷高温型石英结构。
原因:对高温石英和低温石英施加拉伸应力,前者由于Si -O -Si 键是直的,仅发生拉伸,后者除拉伸外,还有键角改变,即发生转动运动。
随着温度的增加,其刚度增加,温度系数为正值。
温度补偿材料具有敞旷结构,内部结构单位能发生较大转动的物质,这种敞旷式结构具有小的配位数。