九年级元月调考数学模拟试卷(二)
- 格式:doc
- 大小:365.00 KB
- 文档页数:7
湖北省武汉市新观察2020年九年级数学元月调考复习交流卷(二)一、选择题(共10小题,每小题3分,共30分)1.(3分)下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x+=2 C.2(x﹣1)2=4 D.x3+x=12.(3分)将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+1 C.y=(x+2)2﹣1 D.y=(x+2)2+1 3.(3分)下列关于事件的说法,错误的是()A.“通常温度降到0℃以下时,纯净的水结冰”是必然事件B.“随意翻到一本书的某页,这页的页码是奇数”是随机事件C.“从地面发射1枚导弹,未击中目标”是不可能事件D.“购买一张彩票,中奖”是随机事件4.(3分)下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.(3分)如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,MO交圆于E,EM=6,则圆的半径为()A.4 B.2C.D.6.(3分)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2+x1x2的值是()A.﹣1 B.﹣5 C.5 D.17.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取两张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.8.(3分)已知⊙O的半径等于8cm,圆心O到直线l上某点的距离为8cm,则直线1与⊙O 的公共点的个数为()A.0 B.1或0 C.0或2 D.1或29.(3分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有﹣棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB的长为()A.8或24 B.16 C.12 D.16或12 10.(3分)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I为AD上一点,且DC=DB=Dl,AI长为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)已知﹣2是方程x2﹣c=0的一个根,c=.12.(3分)如表记录了一名球员在罚球线上投篮的结果投篮次数n50 100 150 200 250 300 500投中次数m28 60 78 104 123 152 251投中频率(精确到0.01)0.56 0.60 0.52 0.52 0.49 0.51 0.50 由此估计这名球员在罚球线上投中篮的概率约是.(精确到0.01)13.(3分)我国古代南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步(问宽和长各多少步).“如果设矩形田地的宽为x步,则可列出方程再化为一般形式为.14.(3分)正八边形半径为2,则正八边形的面积为.15.(3分)圆锥的侧面展开图是一个扇形,扇形的弧长为10πcm,扇形面积为65πcm2,则圆锥的高为.16.(3分)一元二次方程ax2﹣2ax+c=0有一个根为x=3,且y=ax2﹣2ax+c过(2,﹣3),则不等式ax2﹣2ax+c≤﹣x﹣1的解为.三、解答题(共8题,共72分)17.(8分)解方程:2x2﹣2x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AB=CD,求证:AD=BC.19.(8分)把三张形状、大小完全相同但画面不同的风景图片,都按同样的方式剪成相同的三段,然后将上、中、下三段分别装入甲、乙、丙三个盒子中,从三个盒子中各抽取一张,求所抽取图片恰好组成一张完整的风景图片的概率.20.(8分)如图,在8×8网格上,已知A(﹣2,2)、B(1,1).(1)将B绕A顺时针旋转90°,画出B点对应点D的位置并求其坐标.(2)若A绕某点旋转90°可与B重合,画出旋转中心C的位置并求其坐标.(3)直接写出网格上使∠APB=45°的格点P的个数.21.(8分)如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.22.(10分)系统找不到该试题23.(10分)已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.24.(12分)如图1,抛物线y=x2+bx+c的顶点P在直线y=2x+4上移动,直线y=2x+4与y轴交于点A.(1)若点P的模坐标为﹣1,求b,c的值;(2)当b何值时,c有最小值,求此时抛物线的解析式;(3)如图2,若抛物线的顶点在x轴上,E为线段OA上一点,H(﹣1,a)在抛物线上,直线EH交抛物线于另一点F,连接AF,若FA=FE,求点E的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x+=2 C.2(x﹣1)2=4 D.x3+x=1【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【解答】解:A、因为a可能为0,所以不一定是一元二次方程,故此选项错误;B、因为含有分式,所以不是一元二次方程,故此选项错误;C、因为符合一元二次方程的定义,所以是一元二次方程,故此选项正确;D、因为最高是三次,所以不是一元二次方程,故此选项错误;故选:C.2.(3分)将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+1 C.y=(x+2)2﹣1 D.y=(x+2)2+1 【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【解答】解:原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(﹣2,﹣1).可设新抛物线的解析式为:y=﹣3(x﹣h)2+k,代入得:y=(x+2)2﹣1,化成一般形式得:y=﹣3x2﹣6x﹣5.故选:C.3.(3分)下列关于事件的说法,错误的是()A.“通常温度降到0℃以下时,纯净的水结冰”是必然事件B.“随意翻到一本书的某页,这页的页码是奇数”是随机事件C.“从地面发射1枚导弹,未击中目标”是不可能事件D.“购买一张彩票,中奖”是随机事件【分析】直接利用随机事件以及必然事件的定义进而分析得出答案.【解答】解:A、“通常温度降到0℃以下时,纯净的水结冰”是必然事件,正确,不合题意;B、“随意翻到一本书的某页,这页的页码是奇数”是随机事件,正确,不合题意;C、“从地面发射1枚导弹,未击中目标”是随机事件,原说法错误,符合题意;D、“购买一张彩票,中奖”是随机事件,正确,不合题意;故选:C.4.(3分)下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形,故正确;B、不是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,不是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选:A.5.(3分)如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,MO交圆于E,EM=6,则圆的半径为()A.4 B.2C.D.【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=2,在Rt△COM 中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是.故选:D.6.(3分)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2+x1x2的值是()A.﹣1 B.﹣5 C.5 D.1【分析】利用根与系数的关系可得x1+x2=3,x1x2=2,代入x1+x2+x1x2,计算即可.【解答】解:∵x1,x2是一元二次方程x2﹣3x+2=0的两根,∴x1+x2+x1x2=3+2=5.故选:C.7.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取两张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有6种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为5,所以两次抽取的卡片上数字之积为偶数的概率=故选:D.8.(3分)已知⊙O的半径等于8cm,圆心O到直线l上某点的距离为8cm,则直线1与⊙O 的公共点的个数为()A.0 B.1或0 C.0或2 D.1或2【分析】利用直线与圆的位置关系的判断方法得到直线l和⊙O相离,然后根据相离的定义对各选项进行判断.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为8cm,即圆心O到直线l的距离小于或等于圆的半径,∴直线l和⊙O相切或相交,∴直线l与⊙O公共点的个数为1或2.故选:D.9.(3分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有﹣棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB的长为()A.8或24 B.16 C.12 D.16或12【分析】设AB=xm,则BC=(28﹣x)m,根据矩形的面积公式结合矩形花园ABCD的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设AB=xm,则BC=(28﹣x)m,依题意,得:x(28﹣x)=192,解得:x1=12,x2=16.∵P处有一棵树与墙CD、AD的距离分别是15m和6m,∴x2=16不合题意,舍去,∴x=12.故选:C.10.(3分)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I为AD上一点,且DC=DB=Dl,AI长为()A.B.C.D.【分析】如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.首先证明点I是△ABC的内心,再利用面积法求出IE的长即可解决问题.【解答】解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S△ABC=•AB•AC=•IE•(AB+AC+BC),∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)已知﹣2是方程x2﹣c=0的一个根,c= 4 .【分析】将x=﹣2代入求解可得.【解答】解:将x=﹣2代入,得:4﹣c=0,解得c=4,故答案为:4.12.(3分)如表记录了一名球员在罚球线上投篮的结果投篮次数n50 100 150 200 250 300 500投中次数m28 60 78 104 123 152 251 投中频率(精确到0.01)0.56 0.60 0.52 0.52 0.49 0.51 0.50 由此估计这名球员在罚球线上投中篮的概率约是0.50 .(精确到0.01)【分析】根据频率估计概率的方法结合表格数据可得答案.【解答】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.50附近,∴这名球员在罚球线上投篮一次,投中的概率为0.50,故答案为:0.50.13.(3分)我国古代南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步(问宽和长各多少步).“如果设矩形田地的宽为x步,则可列出方程再化为一般形式为x2+12x﹣864=0 .【分析】直接利用长乘以宽=864进而得出答案.【解答】解:设矩形田地的宽为x步,根据题意可得:x(x+12)=864,整理得:x2+12x﹣864=0.故答案为:x2+12x﹣864=0.14.(3分)正八边形半径为2,则正八边形的面积为16.【分析】首先根据正八边形的性质得出中心角度数,进而得出AC的长,从而计算出△ABO 的面积,最后乘以8即可求得正八边形的面积.【解答】解:连接OA,OB,作AC⊥BO于点C,∵⊙O的半径为2,则⊙O的内接正八边形的中心角为:=45°,∴AC=CO=2,∴S△ABO=OB•AC=×2×2=2,∴S正八边形=8S△ABO=16,故答案为:16.15.(3分)圆锥的侧面展开图是一个扇形,扇形的弧长为10πcm,扇形面积为65πcm2,则圆锥的高为12 .【分析】圆锥的侧面积=×弧长×母线长,把相应数值代入即可求解可得圆锥的母线长,然后可以利用勾股定理求得圆锥的高.【解答】解:设母线长为R,由题意得:65π=×10π×R,解得R=13cm.设圆锥的底面半径为r,则10π=2πr,解得:r=5,故圆锥的高为:=12故答案为:12.16.(3分)一元二次方程ax2﹣2ax+c=0有一个根为x=3,且y=ax2﹣2ax+c过(2,﹣3),则不等式ax2﹣2ax+c≤﹣x﹣1的解为﹣1≤x≤2 .【分析】先把(2,﹣3)代入y=ax2﹣2ax+c得到c=﹣3,把x=3代入ax2﹣2ax﹣3=0得a=1,则抛物线为y=x2﹣2x﹣3,通过解方程x2﹣2x﹣3=x﹣1得抛物线为y=x2﹣2x﹣3与直线y=x﹣1的交点的横坐标分别为然后利用函数图象写出直线不在抛物线下方的部分对应的自变量的范围即可.【解答】解:把(2,﹣3)代入y=ax2﹣2ax+c得4a﹣4a+c=﹣3,即c=﹣3,把x=3代入ax2﹣2ax+c=0得9a﹣6a+c=0,解3a﹣3=0,解得a=1,所以抛物线为y=x2﹣2x﹣3,解方程x2﹣2x﹣3=﹣x﹣1,解得x1=﹣1,x2=2,∴抛物线为y=x2﹣2x﹣3与直线y=﹣x﹣1的交点的横坐标分别为﹣1和2,即不等式ax2﹣2ax+c≤﹣x﹣1的解为﹣1≤x≤2,故答案为:﹣1≤x≤2.三、解答题(共8题,共72分)17.(8分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.【解答】解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.18.(8分)如图,A、B、C、D是⊙O上四点,且AB=CD,求证:AD=BC.【分析】想办法证明=即可.【解答】证明:∵AB=CD,∴=,∴+=+,∴=,∴AD=BC.19.(8分)把三张形状、大小完全相同但画面不同的风景图片,都按同样的方式剪成相同的三段,然后将上、中、下三段分别装入甲、乙、丙三个盒子中,从三个盒子中各抽取一张,求所抽取图片恰好组成一张完整的风景图片的概率.【分析】把三张风景图片用甲、乙、丙来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.【解答】解:把三张风景图片用甲、乙、丙来表示,根据题意画如下的树形图:从树形图可以看出,所有可能出现的结果共有27种,这些结果出现的可能性相等.其中恰好组成一张完整风景图片的有3种,所以所抽取图片恰好组成一张完整风景图片的概率为=.20.(8分)如图,在8×8网格上,已知A(﹣2,2)、B(1,1).(1)将B绕A顺时针旋转90°,画出B点对应点D的位置并求其坐标.(2)若A绕某点旋转90°可与B重合,画出旋转中心C的位置并求其坐标.(3)直接写出网格上使∠APB=45°的格点P的个数.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D,从而得到D点坐标;(2)以AB为斜边作等腰直角三角形得到C点和C′点的坐标;(3)分别以C点和C′为圆心,CA为半径作圆,然后再优弧AB上找出格点的个数即可.【解答】解:(1)如图,点D为所作,D(﹣3,﹣1);(2)如图,点C为所作,C点坐标为(3,0)或(﹣1,0);(3)P点的个数为10个.21.(8分)如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.【分析】(1)根据圆内接四边形的性质得到∠EDA=∠ACB,根据圆周角定理得到∠CDA =∠ABC,根据等腰三角形的判定定理证明;(2)连接AO并延长交BC于H,AM⊥CD于M,根据角平分线的性质得到DM=DE=1,AE =AM=2,证明Rt△ABE≌Rt△ACM,得到CM=BE,根据勾股定理列式计算得到答案.【解答】(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.22.(10分)系统找不到该试题23.(10分)已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.【分析】(1)连接AM,则CM=AM,可证明△BCM≌△BAM,可得∠MBA=45°,同理可得∠MDA=45°,则结论得证;(2)延长BM到N,使BM=MN,连EN,DN,BD,BE,则△CBM≌△ENM,再证△DEN≌△ABD,可得DB=DN,DB⊥DN,则结论得证;(3)连BE,BD交AE于N,证明BD为AE的垂直平分线,则EN=AN=,可得BN=,求出BD=+.【解答】解:(1)BM=DM,BM⊥DM;如图1,连接AM,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠BAC=∠EAD=45°,∴∠CAE=90°,∵M为CE中点.∴CM=AM,∵BM=BM,BC=BA,∴△BCM≌△BAM(SSS),∴∠CBM=∠MBA=45°,同理可得∠MDA=45°,∴∠BMD=90°,∴BM=DM,BM⊥DM;(2)如图2,延长BM到N,使BM=MN,连EN,DN,BD,BE,∵∠CMB=∠EMN,CM=ME,∴△CBM≌△ENM(SAS),∴BC=EN,∠BCM=∠MEN,∴EN=AB,∵∠CBA=∠ADE=90°,∴∠BCM+∠BAD=180°,∵∠NED+∠MEN=180°,∴∠NED=∠BAD,又∵AD=DE,∴△DEN≌△ABD(SAS),∴DB=DN,DB⊥DN,∴DM⊥BN,∴BE=EN=BC=AB;(3)如图3,连BE,BD交AE于N,∵BE=AE=AB=2,DE=DA=2,∴BD为AE的垂直平分线,∴EN=DN=AN=,∴BN==,∴BD=+.24.(12分)如图1,抛物线y=x2+bx+c的顶点P在直线y=2x+4上移动,直线y=2x+4与y轴交于点A.(1)若点P的模坐标为﹣1,求b,c的值;(2)当b何值时,c有最小值,求此时抛物线的解析式;(3)如图2,若抛物线的顶点在x轴上,E为线段OA上一点,H(﹣1,a)在抛物线上,直线EH交抛物线于另一点F,连接AF,若FA=FE,求点E的坐标.【分析】(1)设点P(m,2m+4),m=﹣1,则点P(﹣1,2),则抛物线的表达式为:y =(x+1)2+2=x2+x+,即可求解;(2)抛物线的对称轴为:x=﹣b,则点P(﹣b,4﹣2b),将点P的坐标代入抛物线表达式得:b2﹣b2+c=4﹣2b,即c=(b﹣2)2+2,即可求解;(3)FA=FE,则AG=GE,即(2k2﹣2k+)=2k2﹣2k+﹣(k+),解得:k=或﹣,即可求解.【解答】解:(1)设点P(m,2m+4),m=﹣1,则点P(﹣1,2),则抛物线的表达式为:y=(x+1)2+2=x2+x+,故b=1,c=;(2)抛物线的对称轴为:x=﹣b,则点P(﹣b,4﹣2b),将点P的坐标代入抛物线表达式得:b2﹣b2+c=4﹣2b,即c=(b﹣2)2+2,∵0,故c有最小值,此时b=2,故抛物线的表达式为:y=x2+x+4;(3)过点F作FG⊥y轴于点G,∵点P在x轴上,故点P(﹣2,0),则抛物线的表达式为:y=(x+2)2…①,令x=0,则y=4,即点A(0,4),设过点H的直线表达式为:y=kx+k+…②,联立①②并解得:x=2k﹣3,故点F(2k﹣3,2k2﹣2k+),∵FA=FE,∴AG=GE,∴(2k2﹣2k+)=2k2﹣2k+﹣(k+),解得:k=或﹣,故直线EF的表达式为:y=x+或y=﹣x,故点E(0,0)或(0,).。
2021-2022学年武汉市九年级元月调考数学模拟练习试卷(二)一、选择题(共10小题,每小题3分,共30分)1.一元二次方程(3x﹣1)2=5x化简成一般式后,二次项系数为9,其一次项系数为()A.1 B.﹣1 C.﹣11 D.112.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球4.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O的位置关系是()A.相离B.相交C.相切D.不确定5.用配方法解一元二次方程x2﹣4x﹣2=0,下列变形正确的是()A.(x﹣2)2=﹣2+4 B.(x﹣2)2=2+4C.(x﹣4)2=﹣2+4 D.(x﹣4)2=2+46.抛物线y=﹣(x﹣2)2向右平移2个单位得到的抛物线的解析式为()A.y=﹣x2B.y=﹣(x﹣4)2C.y=﹣(x﹣2)2+2 D.y=﹣(x﹣2)2﹣27.如图,△ABC中,∠BAC=65°,将△ABC绕着A点逆时针旋转得到△ADE,连接EC,若EC∥AB,则∠CAD的度数为()A.15°B.25°C.35°D.40°8.小明要给刚结识的朋友小林打电话,他只记住了手机号码的前8位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是()A.B.C.D.9.如图,在⊙O中,=,BC=6,AC=3,I是△ABC的内心,则线段OI的值为()A.1 B.C.D.10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.C.或D.1二、填空题(共6小题,每小题3分,共18分)11.已知点A(a,3)与点B(7,b)关于原点对称,则a+b=.12.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm,将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞以落在阴影圆环内的概率是.13.某村种的水稻前年平均每公顷产7200kg,今年平均每公顷产8450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.14.如图1,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A 的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图2所示,则图象最高点的坐标是.15.如图,△ABC内接于⊙O,BC=12,∠A=60°,点D为上一动点,BE⊥直线OD于点E.当点D从点B沿运动到点C时,点E经过的路径长为.16.抛物线y=ax2+bx+c(a,b,c为常数,a<0)的图象经过(﹣1,0),对称轴为直线x=1,下列结论:①bc>0;②9a+3b+c=0;③关于x的方程a(x+1)(x﹣3)﹣1=0有两根m,n,m<n,则﹣1<m<n<3;④若方程|ax2+bx+c|=b有四个根,则这四个根的和为2.其中正确的是(填序号即可).三、解答题(共8小题,共72分)17.解方程:x2﹣2x﹣3=0.18.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B 顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.19.小孟有两双不同的运动鞋放在一起,上学时间到了,他准备穿起上学.(1)他随手拿出一只,恰好是右脚的概率为;(2)他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.20.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果).(1)如图1,点E是矩形ABCD边AD的中点,过点E画矩形的一条对称轴交BC于F;(2)如图2,正方形ABCD中,点E是AB的中点,在BC上找一点G,使得AG⊥DE;(3)如图3,在正六边形ABCDEF中,点G是AF上一点,在CD上找一点H,使得EH=BG;(4)如图4,在⊙O中,D是劣弧的中点,点B是优弧上一点,在⊙O上找一点I,使得BI∥AC.21.如图,BD是⊙O的直径,直线AC切⊙O于点C,DF⊥AC于点F,连接CD、AO、AB,且CD∥AO.(1)求证:AB是⊙O的切线;(2)若AB=BD=10,求线段DF的长度.22.如图,用一段长30的篱笆围成一个一边AD靠墙(无需篱笆)的矩形ABCD菜园,并且中间也用篱笆EF隔开,EF∥AB,墙长12m.(1)设AB=xm,矩形ABCD的面积为ym2,则y关于x的函数关系式为,x的取值范围为.(2)求矩形ABCD面积的最大值,并求出此时BC的长;(3)在(2)的情况下,若将矩形ABFE和矩形EFCD分别种植甲、乙两种农作物.甲种农作物的年收入W1(单位:元)和种植面积S(单位:m2)的函数关系式为W1=60S;乙种农作物的年收入W2(单位:元)和种植面积S(单位:m2)的函数关系式为W2=﹣S2+120S,若两种农作物的年收入之和不少于5184元,求BF的取值范围.23.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)【问题解决】如图1,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)【问题探究】如图2,△AO′E是将图1中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO′的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)【拓展延伸】如图3,△AO′E是将图1中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO,点P,Q分别为CE,BO′的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.24.抛物线y=ax2+bx﹣4交x轴于点A(﹣2,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;(2)如图1,点D在线段BC上.①把点D绕点A逆时针方向旋转90°,恰好落在y轴正半轴的点E处,求点E的坐标;②若点M在抛物线上,△ADM是以AD为斜边的等腰直角三角形,求点D的坐标.(3)如图2,若点P在第四象限的抛物线上,过点A,B,P作⊙O,作PQ⊥x轴于Q,交⊙O1于点H,求HQ的值.。
2021年湖北省武汉市九年级元月调考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.将方程3x2−2x=6化为一般形式,若二次项系数为3,则一次项系数和常数项分别为()A. −2,6B. −2,−6C. 2,6D. 2,−62.下面四个图形,是中心对称图形的是()A. B. C. D.3.关于方程x2+2x−4=0的根的情况,下列结论错误的是()A. 有两个不相等的实数根B. 两实数根的和为2C. 两实数根的差为±2√5D. 两实数根的积为−44.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A. 连续抛掷2次必有1次正面朝上B. 连续抛掷10次不可能都正面朝上C. 大量反复抛掷每100次出现正面朝上50次D. 通过抛掷硬币确定谁先发球的比赛规则是公平的5.如图,AB为⊙O的直径,CD为⊙O的弦,AB⊥CD于E,下列说法错误的是()A. CE=DEB. AC⏜=AD⏜C. OE=BED. ∠COB=2∠BAD6.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A. 相离B. 相切C. 相交D. 相交或相切7.如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A′BC′,若点C′在AB上,则AA′的长为()A. √13B. 4C. 2√5D. 58.若m,n为方程x2−3x−1=0的两根,则多项式m2+3n的值为()A. −8B. −9C. 9D. 109.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. π+√3B. π−√3C. 2π−√3D. 2π−2√310.若方程x2−2x−t=0在−1<x≤4范围内有实数根,则t的取值范围为()A. 3<t≤8B. −1≤t≤3C. −1<t≤8D. −1≤t≤8二、填空题(本大题共6小题,共18.0分)11.若2是方程x2−c=0的一个根,则c的值为______.12.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是______.13.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=______ °.14.有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是______.15.二次函数y=ax2+bx+c(a、b、c为常数,a≠0)中的x与y的部分对应值如表:x−103y n−3−3当n>0时,下列结论中一定正确的是______.(填序号即可)①bc>0;②当x>2时,y的值随x值的增大而增大;③n>4a;④当n=1时,关于x的一元二次方程ax2+(b+1)x+c=0的解是x1=−1,x2=3.16.如图,AB为⊙O的直径,C为⊙O上一动点,将AC绕点A逆时针旋转120°得AD,若AB=2,则BD的最大值为______ .三、解答题(本大题共8小题,共68.0分)17.已知关于x的方程x2+(m+2)x+2m−1=0,当m为何值时,方程的两根相互为相反数?并求出此时方程的解.18.如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD.求证:CE=BE.19.把一副普通扑克牌中的4张:黑2,红3,梅4,方5,洗匀后正面朝下放在桌面上.(1)从中随机抽取一张牌是红心的概率是______;(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽取的两张牌牌面数字之和大于7的概率.20.如图,在下列的网格中,横、纵坐标均为整点的数叫做格点,例如A(3,0)、B(0,4)、C(4,2)都是格点.(1)直接写出△ABC的形状;(2)要求在上图中仅用无刻度的直尺作图:将△ABC绕点B逆时针旋转得到△A1BC1,旋转角=2∠ABC,请你完成作图;(3)在网格中找一个格点G,使得C1G⊥AB,并直接写出G点坐标.21.如图,O是△ABC的外心,I是△ABC的内心,连AI并延长交BC和⊙O于D、E两点.(1)求证:EB=EI;(2)若AB=4,AC=3,BE=2,求AI的长.22.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.23.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC边上的点,将DA绕D逆时针旋转120°得到DE.(1)如图1,若∠DAC=30°.①求证:AB=BE;②直接写出BE2+CD2与AD2的数量关系为______ ;(2)如图2,D为BC边上任意一点,线段BE、CD、AD是否满足(1)中②的关系,请给出结论并证明.24.抛物线y=ax2−ax+b交x轴于A,B两点(A在B的左边),交y轴于C,直线y=−x+4经过B,C两点.(1)求抛物线的解析式;(2)如图1,P为直线BC上方的抛物线上一点,PD//y轴交BC于D点,过点D作DE,求m的最大值及此时P点坐标;DE⊥AC于E点.设m=PD+1021(3)如图2,点N在y轴负半轴上,点A绕点N顺时针旋转,恰好落在第四象限的抛物线上点M处,且∠ANM+∠ACM=180°,求N点坐标.答案和解析1.【答案】B【解析】解:由3x2−2x=6,得3x2−2x−6=0,所以一次项系数是−2、常数项是−6,故选:B.首先移项把6移到等号左边,然后再确定一次项系数和常数项.此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.2.【答案】D【解析】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项符合题意.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】B【解析】解:方程x2+2x−4=0,这里a=1,b=2,c=−4,∵△=4+16=20>0,∴方程有两个不相等的实数根,且x1+x2=−2,x1x2=−4,∴x1−x2=±√(x1+x2)2−4x1x2=±√(−2)2−4×(−4)=±2√5故选:B.求出根的判别式以及根与系数的关系作出判断即可.此题考查了根与系数的关系,以及根的判别式,弄清根与系数的关系是解本题的关键.4.【答案】D【解析】【分析】概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选D.5.【答案】C【解析】解:连接OD,如图,∵AB⊥CD,∴CE=DE,AC⏜=AD⏜,BC⏜=BD⏜,∵BC⏜=BD⏜,∴∠BOC=∠BOD,∵∠BOD=2∠BAD,∴∠BOC=2∠BAD.故选:C.连接OD,如图,根据垂径定理得到CE=DE,AC⏜=AD⏜,BC⏜=BD⏜,再BC⏜=BD⏜得到∠BOC=∠BOD,然后根据优质课定理得到∠BOC=2∠BAD,从而可对各选项进行判断.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.6.【答案】D【解析】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.欲求直线和圆的位置关系,关键是求出圆心到直线的距离d,再与半径r进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.7.【答案】C【解析】解:根据旋转可知:∠A′C′B=∠C=90°,A′C′=AC=4,AB=A′B,根据勾股定理,得AB=2+AC2=√32+42=5,∴A′B=AB=5,∴AC′=AB−BC′=2,在Rt△AA′C′中,根据勾股定理,得AA′=√AC′2+A′C′2=√22+42=2√5.故选:C.根据旋转可得∠A′C′B=∠C=90°,A′C′=AC=4,由勾股定理求出AB=A′B=5,进而可得AC′的值,再根据勾股定理可得AA′的长.本题考查了旋转的性质,勾股定理,解决本题的关键是掌握旋转的性质.8.【答案】D【解析】解:∵m,n为方程x2−3x−1=0的两根,∴m2−3m−1=0,m+n=3,∴m2−3m=1.∴m2+3n=m2−3m+3m+3n=1+3(m+n)=1+3×3=10.故选:D.根据一元二次方程的解结合根与系数的关系,即可得出m2−3m=1、m+n=3,将其代入m2+3n=m2−3m+3m+3n中,即可求出结论.此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.9.【答案】D【解析】【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=√3BD=√3,∴△ABC的面积为12×BC×AD=12×2×√3=√3,S扇形BAC =60π×22360=23π,∴莱洛三角形的面积S=3×23π−2×√3=2π−2√3,故选:D.10.【答案】D【解析】解:设y1=x2−2x,∵y1=x2−2x的对称轴为直线x=1,∴一元二次方程x2−2x−t=0的实数根可以看作y1=x2−2x与函数y2=t的交点,∵方程在−1<x≤4的范围内有实数根,当x=−1时,y1=3;当x=4时,y1=8;函数y1=x2−2x在x=1时有最小值−1;∴当−1≤t≤8时,y1=x2−2x与函数y2=t有交点,即方程x2−2x−t=0在−1< x≤4范围内有实数根;故选:D.设y1=x2−2x,将一元二次方程x2−2x−t=0的实数根可以看作y1=x2−2x与函数y2=t的有交点,再由−1<x≤4的范围确定y的取值范围即可求解.本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题是解题的关键.11.【答案】4【解析】解:根据题意,将x=2代入方程x2−c=0,得:4−c=0,解得c=4,故答案为:4.根据方程的解的概念将x=2代入方程x2−c=0,据此可得关于c的方程,解之可得答案.本题主要考查一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】y=2(x+2)2−1【解析】解:由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.13.【答案】140【解析】解:∵四边形ABCD内接于⊙O,∠A=110°,∴∠C=180°−∠A=180°−110°=70°,∴∠BOD=2∠C=140°.故答案为:140.先根据圆内接四边形的性质求出∠C的度数,再由圆周角定理即可得出结论.本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.14.【答案】13【解析】解:画树状图为:(两把钥匙能分别打开这两把锁表示为A、a和B、b,第三把钥匙表示为c)共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数为2,所以任意取出一把钥匙去开任意的一把锁,一次打开锁的概率=26=13.故答案为13.画树状图(两把钥匙能分别打开这两把锁表示为A、a和B、b,第三把钥匙表示为c)展示所有6种等可能的结果数,找出任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数,然后根据概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.【答案】①②④【解析】解:①函数的对称轴为直线x=12(0+3)=32,即b2a=−32,则b=−3a,∵n>0,故在对称轴的左侧,y随x的增大而减小,故抛物线开口向上,则a>0,对称轴在y轴的右侧,故b<0,而c=−3,故bc>0正确,符合题意;②x=2在函数对称轴的右侧,故y的值随x值的增大而增大,故②正确,符合题意;③当x=−1时,n=y=a−b+c=4a−3<4a,故③错误,不符合题意;④当n=1时,即:x=−1时,y=1,ax2+(b+1)x+c=0可以变形为ax2+bx+c=−x,即探讨一次函数y=−x与二次函数为y=ax2+bx+c图象情况,当x=1,y=−1,即(1,−1)是上述两个图象的交点,根据函数的对称性,另外一个交×2=3,则该交点为(3,−3),点的横坐标为:32故两个函数交点的横坐标为−1、3,即关于x的一元二次方程ax2+(b+1)x+c=0的解是x1=−1,x2=3,正确,符合题意,故答案为:①②④.①确定对称轴的位置和对称轴左侧函数y随x的变化情况,即可求解;②x=2在函数对称轴的右侧,故y的值随x值的增大而增大,即可求解;③当x=−1时,n=y=a−b+c=4a−3<4a,即可求解;④ax2+(b+1)x+c=0可以变形为ax2+bx+c=−x,即探讨一次函数y=−x与二次函数为y=ax2+bx+c图象情况,即可求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.16.【答案】√7+1【解析】解:如图,将△ABD绕点A顺时针旋转120°,则D与C重合,B′是定点,BD 的最大值即B′C的最大值,即B′、O、C三点共线时,BD最大,过B′作B′E⊥AB于点E,由题意得:AB=AB′=2,∠BAB′=120°,∴∠EAB′=60°,Rt△AEB′中,∠AB′E=30°,AB′=1,EB′=√22−12=√3,∴AE=12由勾股定理得:OB′=√OE2+B′E2=√22+(√3)2=√7,∴B′C=OB′+OC=√7+1.故答案为:√7+1.将△ABD绕点A顺时针旋转120°,则D与C重合,B′是定点,BD的最大值即B′C的最大值,根据圆的性质,可知:B′、O、C三点共线时,BD最大,根据勾股定理可得结论.本题考查了旋转的性质,含30°角的直角三角形的性质,勾股定理等知识,有一定的难度,掌握圆外一点与圆上一点的最大距离过圆心这一性质且正确做出辅助线是本题的关键.17.【答案】解:∵关于x的方程x2+(m+2)x+2m−1=0两根相互为相反数,∴−(m+2)=0,解得m=−2,则方程为x2−5=0,解得x1=√5,x2=−√5.【解析】先由两根互为相反数得出两根之和为0,即−(m+2)=0,据此可得m的值,代入方程,再进一步计算即可.本题主要考查根与系数的关系及解一元二次方程,若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=−p,x1x2=q,反过来可得p=−(x1+ x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.18.【答案】证明:∵AB=CD,∴AB⏜=CD⏜,∴AB⏜−CB⏜=CD⏜−CB⏜,即AC⏜=BD⏜,∴∠C=∠B,∴CE=BE.【解析】根据圆心角、弧、弦的关系定理的推论得到AB⏜=CD⏜,结合图形得到AC⏜=BD⏜,进而得到∠C=∠B,根据等腰三角形的判定定理证明结论.本题考查的是圆心角、弧、弦的关系定理的推论,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.19.【答案】14【解析】解:(1)从黑2,红3,梅4,方5这4张扑克牌中任摸一张,是红心的可能性,为14;故答案为:14(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中和大于7的有4种,所以抽取的两张牌牌面数字之和大于7的概率为412=13.(1)根据概率的意义,从4张扑克牌中,任选一张,是红心的概率为14;(2)用列表法表示所有可能出现的结果情况,再求相应的概率即可.本题考查列表法或树状图法求随机事件发生的概率,用列表法或树状图法表示所有可能出现的结果是解决问题的前提.20.【答案】解:如图所示:(1)△ABC的形状为:直角三角形;(2)将△ABC绕点B逆时针旋转得到△A1BC1,旋转角=2∠ABC;(3)在网格中找一个格点G,使得C1G⊥AB,G点坐标为(2,2).【解析】(1)根据所画图形即可写出△ABC的形状;(2)将△ABC绕点B逆时针旋转得到△A1BC1,旋转角=2∠ABC,即可完成作图;(3)在网格中找一个格点G,使得C1G⊥AB,即可写出G点坐标.本题考查了作图−旋转变换,解决本题的关键是利用勾股定理及其逆定理.21.【答案】(1)证明:∵I是△ABC的内心,∴AE平分∠CAB,BI平分∠ABC,∴∠BAE=∠CAE,∠ABI=∠CBI,∵∠BIE=∠BAE+∠ABI,∠IBE=∠IBD+∠EBD,∵∠CBE=∠CAE,∴∠BIE=∠EBI,∴EB =EI ;(2)解:连接EC .∵∠BAE =∠CAE ,∴BE⏜=EC ⏜, ∴BE =EC =2,∵∠ADB =∠CDE ,∠BAD =∠DCE ,∴△ADB∽△CDE ,∴BD DE =AD DC =AB EC =42=2,设DE =m ,CD =n ,则BD =2m ,AD =2n , 同法可证:△ADC∽△BDE ,∴AD BD =AC BE ,∴2n 2m =32, ∴n :m =3:2,设n =3k ,m =2k ,∵∠CED =∠AEC ,∠ECD =∠BAE =∠CAE ,∴△ECD∽△BAC ,∴EC 2=ED ⋅EA ,∴4=m ⋅(m +2n),∴4=2k(2k +6k)∴k =12或−12(舍弃),∴DE =1,AD =3,∴AE =4,∵EI =BE =2,∴AI =AE −EI =2.【解析】(1)欲证明EB =EI ,只要证明∠EBI =∠EIB ;(2)连接EC.由△ADB∽△CDE ,可得BD DE =AD DC =AB EC =42=2,设DE =m ,CD =n ,则BD =2m ,AD =2n ,同法可证:△ADC∽△BDE ,推出AD BD =AC BE ,推出2n 2m =32,推出n :m =3:2,设n =3k ,m =2k ,由△ECD∽△BAC ,可得EC 2=ED ⋅EA ,推出4=m ⋅(m +2n),即4=2k(2k +6k)解得k =12或−12(舍弃),由此即可解决问题;本题考查的是三角形的内切圆与内心,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考压轴题. 22.【答案】解:(1)设函数的表达式为y =kx +b ,将(40,80)、(60,60)代入上式得:{40k +b =8060k +b =60,解得{k =−1b =120, 故y 与x 的关系式为y =−x +120;(2)公司销售该商品获得的最大日利润为w 元,则w =(x −20)y =(x −20)(−x +120)=−(x −70)2+2500,∵x −2=≥0,−x +120≥0,x −20≤20×100%,∴20≤x ≤40,∵−1<0,故抛物线开口向下,故当x <70时,w 随x 的增大而增大,∴当x =40(元)时,w 的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)由题意得:w =(x −20×2)(−x +120)=−x 2+160x −4800=−(x −80)2+1600,当w 最大=1500时,−(x −80)2+1600=1500,解得x 1=70,x 2=90,∵20≤x ≤a ,∴有两种情况,①a <80时,在对称轴左侧,w 随x 的增大而增大,∴当x =a =70时,w 最大=1500,②a ≥80时,在40≤x ≤a 范围内w 最大=1600≠1500,∴这种情况不成立,∴a=70.【解析】(1)用待定系数法即可求解;(2)公司销售该商品获得的最大日利润为w元,则w=(x−20)y=(x−20)(−x+ 120)=−(x−70)2+2500,进而求解;(3)由题意得:w=(x−20×2)(−x+120)=−x2+160x−4800=−(x−80)2+ 1600,当w最大=1500时,−(x−80)2+1600=1500,解得x1=70,x2=90,而40≤x≤a,进而求解.该题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目.23.【答案】BE2+CD2=4AD2【解析】(1)①证明:如图1中,∵AB=AC,∠BAC=120°∴∠ABC=∠ACB=30°,∵∠DAC=30°∴∠DAC=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°,∴△BDE≌△BDA(SAS),∴AB=BE.②解:∵△BDE≌△BDA,∴∠BED=∠BAD=90°,BE=AB,∴BE2+CD2=BE2+DE2=BD2∵ADBD =cos∠ADB=cos60°=12,∴BD=2AD,∴BE2+CD2=4AD2.故答案为:BE2+CD2=4AD2.(2)能满足(1)中的结论.理由:将△ACD绕点A顺时针旋转120°得到△ABD′,使AC与AB重合,连接ED′,DD′,AE,设AB交DD′于点J.∵∠DBJ=∠ADJ=30°,∠BJD=∠D′JA,∴△BJD∽△D′JA,∴BJD′J =DJAJ,∴BJDJ =D′JAJ,∵∠BJD′=∠DJA,∴△BJD′∽△DJA,∴∠JBD=∠JDA=30°,同法可证,∠EBD=∠EAD=30°,∠ED′D=∠EAD=30°,∵∠ABC=∠D′BJ=∠EBD=30°,∴∠D′BE=90°,∵∠ADE=120°,∠ADD′=30°,∴∠D′DE=90°,∵∠ED′D=30°,∴D′E=2DE=2AD,在Rt△D′BE中,D′E2=D′B2+BE2,∵CD=BD′,∴CD2+BE2=4AD2.(1)①证明△BDE≌△BDA(SAS),可得结论.②利用全等三角形的性质以及勾股定理即可解决问题.(2)能满足(1)中的结论.将△ACD 绕点A 顺时针旋转120°得到△ABD′,使AC 与AB 重合,连接ED′,DD′,AE ,设AB 交DD′于点J.利用直角三角形30度角的性质以及勾股定理解决问题即可.本题属于几何变换综合题,考查了相似三角形的判定和性质、等腰三角形性质、勾股定理、旋转的性质、动点的运动路径问题等;解题关键是通过旋转变换构造全等三角形解决问题,属于中考压轴题.24.【答案】解:(1)当x =0时,y =4;当y =0时,−x +4=0,x =4;∴B(4,0),C(0,4), ∵点B ,C 在抛物线上,∴{16a −4a +b =0b =4,解得:{a =−13b =4, ∴y =−13x 2+13x +4;(2)如图1,连接AD ,延长PD 交x 轴于H ,∵PD//y 轴,∴PH ⊥x 轴,设D(t,−t +4),P(t,−13t 2+13t +4),∵PD =−13t 2+13t +4−(−t +4)=−13t 2+43t ,∵S △ABC =S △ADC +S △ADB ,且A(−3,0),B(4,0),C(0,4),∴12×7×4=12AC ⋅DE +12×7×(−t +4), ∵AC =√32+42=5,∴DE =75t ,∵m =PD +1021DE ,∴m =−13t 2+43t +1021⋅75t =−13t 2+2t =−13(t −3)2+3,∴当t=3时,m有最大值是3,此时P(3,2);(3)过N作NF⊥MC交MC于点F,过N点作NG⊥AC,交CA的延长线于点G,则∠G=∠CFN=90°,∴∠ACM+∠GNF=180°,由旋转得:AN=MN,∵∠ANM+∠ACM=180°,∴∠ANM=∠GNF,∴∠ANG=∠MNF,∵∠G=∠MFN=90°,∴△NGA≌△NFM(AAS),∴NG=NF,∴NC平分∠ACM,∵CO⊥AB,∴OK=OA=3,∴K(3,0),∴CK的解析式为:y=−43x+4,∴−43x+4=−13x2+13x+4,解得:x1=0,x2=5,∴M(5,−83),设N(0,y),∵AN=MN,∴(−3)2+y2=52+(y+83)2,解得:y=−133,∴N(0,−13 3 ).【解析】(1)利用直线y=−x+4经过B、C两点,先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据表达式m=PD+1021DE,设出D点坐标(t,−t+4),P(t,−13t2+13t+4),用含t的代数式分别表达出线段PD、DE,转化成m关于a的二次函数,再求m的最大值及P点坐标;(3)根据条件∠ANM+∠ACM=180°,且AN=MN,利用三角形的全等去确定满足条件的M、N点,再根据函数解析式求它们的坐标.本题是二次函数的综合题,考查了待定系数法求解析式,还考查了用二次函数求最值,三角形全等的性质和判定,等腰三角形的性质和判定等知识,合理运用二次函数的性质是解决本题的关键.第21页,共21页。
武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠102.下列四种图案中,不是中心对称图形的为()03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60 06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-408.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 209.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 12.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为16.已知⊙O 的直径AB 为4cm ,点C 是⊙O 上的动点,点D 是BC 的中点,AD 延长线交⊙O 于点E ,则BE 的最大值为三、解答题(共72分) 17.(8分)用公式法解方程:x 2-4x +2=0.第8题图第9题图第12题图AB第16题图18.(8分)如图,⊙O 的直径AB 为10cm ,点E 是圆内接正△ABC 的内心,CE 的延长线交⊙O 于点D .⑴求AD 的长;⑵求DE 的长;19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .20.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.BADBAD21.(8分)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?BFBD F23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .G FE DCBA图1图2A BC DE FNM图3ABCDEF24.(12分)已知一次函数y=kx+b的图象1l与抛物线F:y=ax2分别交于A、B两点,与x轴,y轴分别交于点C、D两点,记点A(m,n),且m≠0.⑴若m=-32,n=98,k=34,求a、b的值及点B的坐标;⑵如图1,若a=12,k=-12m,求CDBD的值;⑶如图2,若k=-am,过点A的直线2l与抛物线F只有一个公共点,与y轴交于点E,连接BO,求证:∠AED=∠BOD.武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠1答案:D02.下列四种图案中,不是中心对称图形的为()答案:D03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起答案:B04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个答案:C05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60答案:D06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm答案:C07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-4答案:C08.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 2答案:C09.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 答案:A10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3 答案:B提示:如图所示,也可用求根公式分析.二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 答案:x 1=x 2=112.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为 答案:4π13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 答案:y =-2(x -1)-3 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 答案:35002(x +1)=5040 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为 答案:-2≤m第8题图第9题图C B第12题图16.已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC的中点,AD延长线交⊙O于点E,则BE的最大值为答案:4 3三、解答题(共72分)17.(8分)用公式法解方程:x2-4x+2=0.解:x1=22,x2=22,18.(8分)如图,⊙O的直径AB为10cm,点E是圆内接正△ABC的内心,CE的延长线交⊙O于点D.⑴求AD的长;⑵求DE的长;解:⑴连接OD,∵点E是圆内接△ABC的内心,∴∠ACD=∠BCD,∴∠AOD=∠BOD.在Rt△AOD中,AD=A B第16题图=p2BADB AD⑵连接AE ,∠CAE =∠BAE ,∠BAD =∠BCD =∠DCA , ∠DAE =∠DEA ,AD =DE =19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .解:⑴13.⑵由题意,可列如下树状图:由此可知,共有9种等可事件,其中两次记录的数字和小于数字4的只有3种, ∴P (两次记录的数字和小于数字4)=39=13.⑶2920.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.乙甲312321233211解:⑴在图中画出线段CD ,保留作图痕迹. ⑵a =.⑶4. 21.(8分)(2019-9-1 36501)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.解:略 22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?解:⑴(1800-6x )千克;(10+0.5x )元/千克.⑵简解:由题意得:-3x 2+840x +18000-10×1800-240x =22500, 解方程得:x 1=50,x 2=150(不全题意,舍去), 故需将这批产品存放50天后出售. ⑶简解:设利润为w ,由题意得:w =-3x 2+840x +18000-10×1800-240x =-32(x -100)+30000. ∵a =-3<0,∴抛物线开口方向向下, ∴x =90时,w 最大=29700,∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.BFBF23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .⑴证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,∴△ADF ≌△ABG ,可得DF =BG ,易知△AFE ≌△AGE ,术EF =GE ,∴EF =BE +DF . ⑵解法1:猜测:EF 2=BE 2+DF 2.理由:过点A 作AG ⊥AF 且AG =AF ,连接BG 、EG ,延长FN 交BG 于H ,易知△AFD ≌△AGB 和△AFE ≌△AGE . 在△AND 与△NHB 中,可得FH ⊥BG ,而BM ∥DN ,∴BE ⊥BG . 在Rt △BEG 中,得EF 2=BE 2+DF 2.解法2:作AH =AD 且∠F AH =∠DAF ,连接EH ,易知△AFD ≌△AFH 和△AEB ≌△AEH ,G FE DCBA图1图2A BC DE FNM图3ABCDEFH MNFE DC BA 图2GMNFE DCB A 图2H⑶解:当点E 、F 分别在对角线BD 、边CD 上,若FC =3cm ,则BE.24.(12分)已知一次函数y =kx +b 的图象1l 与抛物线F :y =ax 2分别交于A 、B 两点,与x 轴,y 轴分别交于点C 、D 两点,记点A (m ,n ),且m ≠0. ⑴若m =-32,n =98,k =34,求a 、b 的值及点B 的坐标; ⑵如图1,若a =12,k =-12m ,求CDBD的值;⑶如图2,若k =-am ,过点A 的直线2l 与抛物线F 只有一个公共点,与y 轴交于点E ,连接BO ,求证:∠AED =∠BOD .⑴解:F :y =12x 2,1l :y =34x +94,B (3,92). ⑵解:∵A (m ,n )在抛物线上,∴A (m ,12m 2),则1l :y =-12mx +m 2. 联立221212y mx m y x ⎧⎪⎪⎨⎪⎪⎩=-+=,∴x A +x B =-m ,x B =-2m .又x C =2m ,作BH ⊥y 轴于H ,得△COD ≌△BHD ,∴CD =BD ,CDBD=1. ⑶证明:∵A (m ,n )在抛物线上,∴A (m ,a m 2),k =-am ,则1l :y =-am (x -m )+am 2=-amx +2am 2,FEDCBA图3G图3ABCD EFNM图3ABCDEF联立22y mx m y ax⎧⎪⎨⎪⎩=-a +2a =,∴x A +x B =-m ,x B =-2m ,y B =4am 2.则点B 关于y 轴对称点B '(2m ,4am ), ∴OB l :y =2amx .∵直线2l 过点A ,设2l : y =k 2(x -m )+am 2, 联立222AE y x m m y ax⎧⎪⎨⎪⎩=k (-)+a =, ∴∆=0,∴k 2=2am ,∴AE ∥O B ',即∠AEO =∠B 'OD =∠BOD .。
2021-2022学年湖北省武汉市新动力九年级元月调考数学模拟练习试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共10小题,每小题3分,共30分)1.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.02.把“武汉加油”的首字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.军运会射击运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是()A.某运动员两次射击总环数大于1B.某运动员两次射击总环数等于1C.某运动员两次射击总环数大于20D.某运动员两次射击总环数等于204.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定5.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+96.二次函数y=﹣2x2+4x+1的图象如何移动就得到y=﹣2x2的图象()A.向左移动1个单位,向上移动3个单位B.向右移动1个单位,向上移动3个单位C.向左移动1个单位,向下移动3个单位D.向右移动1个单位,向下移动3个单位7.如图,在矩形ABCD中,AD=2,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则四边形ABCE的面积为()A.B.C.D.8.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.9.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.10.已知二次函数y=x2﹣2x﹣2022的图象上有两点A(a,﹣1)和B(b,﹣1),则a2+2b ﹣3的值等于()A.2020 B.2021 C.2022 D.2023二、填空题(共6小题,每小题3分,共18分)11.已知点P(2,﹣3)关于原点对称的点的坐标是.12.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.13.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是%.14.如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是⊙O上一点(不与G、E重合),∠CDE=18°,则∠GFE的度数是.15.已知一个圆心角为270°的扇形工件,没搬动前如图所示,A、B两点触地放置,滚动至点B再次触地时停止,扇形工件直径为5m,则圆心O所经过的路线长是m.16.如图,二次函数y=ax2+bx+c的图象经过点A(1,0),与y轴的交点为C,对称轴为直线x=﹣1,下列结论:①;②若点P(﹣2﹣t2,y1)和Q(t2+3,y2)是该抛物线上的两点,则y1>y2;③不等式cx2+bx+a<0的解集为;④在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形.其中一定正确的是(填序号即可).三、解答题(共8小题,共72分)17.若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.19.一个不透明的袋子中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸出一个小球然后放回,再随机摸出一个小球.求第二次摸出的小球标号能整除第一次摸出的小球标号的概率.(2)随机摸出一个小球然后不放回,则两次摸出的小球标号之和为的概率最大,这个最大概率是.20.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果).(1)如图1,点E是▱ABCD边CD上一点,在AB边上取一点F,使得DE=BF;(2)如图2,在3×3正方形网格中,点A、B、C在格点上,过点C作CH⊥AB于H;(3)如图3,AB是⊙O的直径,弦DE⊥AB,点C在⊙O外,过点C作CG∥DE交AB 于G;(4)如图4,点E是正方形ABCD边BC上一点,连接AE,将△ABE绕A点逆时针旋转90°得到△ADG,画出△ADG.21.如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连接DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求的值.22.个体户小陈新进一种时令水果,成本为20元/kg,经过市场调研发现,这种水果在未来40天内的日销售量m(kg)与时间t(天)的关系如表:时间t(天)1351036…9490867624…日销售量m(kg)未来40天内,前20天每天的价格y1(元/kg)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/kg)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).(1)直接写出m(kg)与时间t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,个体户小陈决定每销售1kg水果就捐赠a元利润(a<4且a为整数)给贫困户,通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求前20天中个体户小陈共捐赠给贫困户多少钱?23.【问题背景】如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF、BE、DF之间的数量关系是EF=BE+DF,【迁移应用】如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,且∠B+∠D=180°,求证:EF=BE+DF.【联系拓展】如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系是.24.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(A在B的左边),与y轴交于C,且OB=4OA.(1)求抛物线的解析式;(2)如图1,直线y=x交抛物线于D、E两点,点F在抛物线上,且在直线DE下方,若以F为圆心作⊙F,当⊙F与直线DE相切时,求⊙F最大半径r及此时F坐标;(3)如图2,M是抛物线上一点,连接AM交y轴于G,作AM关于x轴对称的直线交抛物线于N,连接AN、MN,点K是MN的中点,若G、K的纵坐标分别是t、n.求t,n的数量关系.参考答案一、选择题(共10小题,每小题3分,共30分)1.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.0【分析】根据一元二次方程的定义即可求出答案.解:一次项系数为﹣1,故选:A.2.把“武汉加油”的首字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.军运会射击运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是()A.某运动员两次射击总环数大于1B.某运动员两次射击总环数等于1C.某运动员两次射击总环数大于20D.某运动员两次射击总环数等于20【分析】直接利用随机事件以及必然事件的定义分别分析得出答案.解:A、某运动员两次射击总环数大于1,是必然事件,不合题意;B、某运动员两次射击总环数等于1,是不可能事件,不合题意;C、某运动员两次射击总环数大于20,是不可能事件,不合题意;D、某运动员两次射击总环数等于20,是随机事件.故选:D.4.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定【分析】根据直线和圆的位置关系与数量之间的联系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=rcm=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.5.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【分析】根据配方法,可得方程的解.解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.6.二次函数y=﹣2x2+4x+1的图象如何移动就得到y=﹣2x2的图象()A.向左移动1个单位,向上移动3个单位B.向右移动1个单位,向上移动3个单位C.向左移动1个单位,向下移动3个单位D.向右移动1个单位,向下移动3个单位【分析】利用二次函数的图象的性质.解:二次函数y=﹣2x2+4x+1的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),∴向左移动1个单位,向下移动3个单位.故选:C.7.如图,在矩形ABCD中,AD=2,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则四边形ABCE的面积为()A.B.C.D.【分析】由旋转的性质得到AD=EF,AB=AE,再由DE=EF,等量代换得到AD=DE,即△AED为等腰直角三角形,利用勾股定理求出AE的长,即为AB的长,再根据矩形和三角形的面积公式求出矩形ABCD的面积和△ADE的面积,即可得到四边形ABCE的面积.解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=90°,由旋转得:BC=EF,AB=AE,∵DE=EF,∴AD=DE=2,即△ADE为等腰直角三角形,根据勾股定理得:AE===2,则AB=AE=2,∴四边形ABCE的面积=矩形ABCD的面积﹣△ADE的面积=AB•AD﹣AD•DE=4﹣2,故选:C.8.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.【分析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到至少有两枚硬币正面向上的概率.解:由题意可得,所有的可能性为:∴至少有两枚硬币正面向上的概率是:=,故选:D.9.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.10.已知二次函数y=x2﹣2x﹣2022的图象上有两点A(a,﹣1)和B(b,﹣1),则a2+2b ﹣3的值等于()A.2020 B.2021 C.2022 D.2023【分析】由题意可得a、b是方程x2﹣2x﹣2022=﹣1的两个根,则有a+b=2,又由a2=2a+2021,将所求式子变形为a2+2b﹣3=2a+2021+2b﹣3,然后再求值即可.解:∵点A(a,﹣1)和B(b,﹣1)在二次函数y=x2﹣2x﹣2022的图象上,∴a、b是方程x2﹣2x﹣2022=﹣1的两个根,∴a+b=2,∵将A(a,﹣1)代入y=x2﹣2x﹣2022,∴a2﹣2a﹣2022=﹣1,∴a2=2a+2021,∴a2+2b﹣3=2a+2021+2b﹣3=2(a+b)+2018=4+2018=2022,故选:C.二、填空题(共6小题,每小题3分,共18分)11.已知点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.解:点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).12.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.【分析】用圆的面积的一半除以正方形的面积得到针尖落在黑色区域内的概率.解:设正方形的边长为2a,则正方形的内切圆的半径为a,所以针尖落在黑色区域内的概率==.故答案为.13.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是10%.【分析】设平均每年下降的百分率是x,降尘量经过两年从50吨下降到40.5吨,所以可以得到方程50(1﹣x)2=40.5,解方程即可求解.解:设平均每年下降的百分率是x,根据题意得50(1﹣x)2=40.5解得x1=0.1,x2=1.9(不合题意,舍去)所以平均每年下降的百分率是10%.14.如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是⊙O上一点(不与G、E重合),∠CDE=18°,则∠GFE的度数是48°或132°.【分析】连接DG,先由BC与⊙A相切于点D,证明∠ADB=∠ADC=90°,再证明△ADG是等边三角形,则∠DAG=60°,由∠ADE=∠AED=90°﹣18°=72°得∠CAE =36°,于是∠GAE=60°+36°=96°,当点F在⊙O上且在△ABC的外部时,则∠GFE=∠GAE=48°;当点F′在⊙O上且在△ABC的内部时,则∠GF′E=180°﹣∠GFE=132°.解:如图,连接DG,∵BC与⊙A相切于点D,∴∠ADB=∠ADC=90°,∵AB=6,AG=AD=3,∴BG=AG=3,∴DG=AB=AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∵AD=AE,∴∠AED=∠ADE,∴∠CDE=18°,∴∠AED=∠ADE=90°﹣18°=72°,∴∠CAE=180°﹣72°﹣72°=36°,∴∠GAE=60°+36°=96°,当点F在⊙O上且在△ABC的外部时,则∠GFE=∠GAE=×96°=48°;当点F′在⊙O上且在△ABC的内部时,则∠GF′E=180°﹣∠GFE=180°﹣48°=132°,故答案为:48°或132°.15.已知一个圆心角为270°的扇形工件,没搬动前如图所示,A、B两点触地放置,滚动至点B再次触地时停止,扇形工件直径为5m,则圆心O所经过的路线长是5πm.【分析】根据图形运动方式可知,点O经过的路线有两次旋转45°的弧,中间是平移.解:∵∠AOB=360°﹣270°=90°,∴∠ABO=45°,∴圆心O旋转的长度为2×=(m),圆心O移动的距离为=(m),∴圆心O所经过的路线长是(m),故答案为:5π.16.如图,二次函数y=ax2+bx+c的图象经过点A(1,0),与y轴的交点为C,对称轴为直线x=﹣1,下列结论:①;②若点P(﹣2﹣t2,y1)和Q(t2+3,y2)是该抛物线上的两点,则y1>y2;③不等式cx2+bx+a<0的解集为;④在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形.其中一定正确的是②④(填序号即可).【分析】由图可得a<0,b=2a<0,c>0;图象与x轴有两个不同的交点,则Δ=b2﹣4ac>0;将(1,0)代入y=ax2+bx+c,可得c=﹣3a,所以y=ax2+2ax﹣3a;再分别对每个选项进行验证即可.解:∵开口向下,∴a<0,∵对称轴为直线x=﹣1,∴b=2a<0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc>0,∵图象与x轴有两个不同的交点,∴Δ=b2﹣4ac>0,∴,故①不正确;∵﹣1﹣(﹣2﹣t2)=1+t2,t2+3+1=t2+4,∴t2+4>1+t2,∴y1>y2,故②正确;∵函数经过(1,0),∴a+b+c=0,即a+2a+c=0,∴c=﹣3a,∴cx2+bx+a<0可化为﹣3ax2+2ax+a<0,∴﹣3x2+2x+1<0,解得x>1或x<﹣,故③不正确;过点C作CM垂直对称轴交于点M,设BN=m,则BM=﹣3a﹣m,当∠ABC=90°时,∠BAN=∠CBM,∴=,∴m2+3am+2=0,∵Δ=9a2﹣8≥0时,m存在,∴当a≤﹣时,∠ABC=90°,∴在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形,故④正确;故答案为:②④.三、解答题(共8小题,共72分)17.若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.【分析】把x=1代入方程计算求出b的值,进而求出另一根即可.解:∵关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,∴1﹣b+2=0,解得:b=3,把b=3代入方程得:x2﹣3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.【分析】由旋转的性质可得AO=CO,可得∠A=∠ACO,由平行线的性质和邻补角的性质可得结论.【解答】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB∥DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.19.一个不透明的袋子中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸出一个小球然后放回,再随机摸出一个小球.求第二次摸出的小球标号能整除第一次摸出的小球标号的概率.(2)随机摸出一个小球然后不放回,则两次摸出的小球标号之和为5的概率最大,这个最大概率是.【分析】(1)列表得出所有等可能结果,从中找到第二次摸出的小球标号能整除第一次摸出的小球标号的结果数,再根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到标号之和出现次数最多的数,再根据概率公式求解即可.解:(1)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表可知,共有16种等可能结果,其中第二次摸出的小球标号能整除第一次摸出的小球标号的有8种结果,∴第二次摸出的小球标号能整除第一次摸出的小球标号的概率为=;(2)列表如下:12341345235634574567由表知,共有12种等可能结果,其中两次摸出的小球标号之和为5的次数最多,有4次,所以两次摸出的小球标号之和为5的概率最大,最大概率为=,故答案为:5、.20.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果).(1)如图1,点E是▱ABCD边CD上一点,在AB边上取一点F,使得DE=BF;(2)如图2,在3×3正方形网格中,点A、B、C在格点上,过点C作CH⊥AB于H;(3)如图3,AB是⊙O的直径,弦DE⊥AB,点C在⊙O外,过点C作CG∥DE交AB 于G;(4)如图4,点E是正方形ABCD边BC上一点,连接AE,将△ABE绕A点逆时针旋转90°得到△ADG,画出△ADG.【分析】(1)连接AC,BD交于点O,连接EO,延长EO交AB于点F,点F即为所求;(2)取格点E,F,连接EF交AB于点H,连接CH,线段CH即为所求;(3)连接CE交AB于点R,交⊙O于点T,连接DT,CB交于点J,连接DR,延长DR 交⊙O于W,连接JW交AB于点K,连接TK,延长TK交⊙O于点L,连接BL,延长BL,DW交于点C′,连接CC′交AB于点G,直线CG即为所求.(4)连接AC,BD交于点O,连接EO,延长EO交AD于点F,连接BF交AC于点J,连接DJ,延长DJ交AB于点K,连接KF,延长KF交CD的延长线于点G,连接AG,△ADG即为所求.解:(1)如图1中,点F即为所求;(2)如图2中,线段CH即为所求;(3)如图3中,直线CG即为所求;(4)如图4中,△ADG即为所求.21.如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连接DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求的值.【分析】(1)根据SSS证得△ODP≌△ODC,从而证得∠OPD=∠OCD=90°,即可证得结论;(2)根据切线定理和勾股定理得到AB=3EB,即可证得AE=3EB,从而求得=3.【解答】(1)证明:连接OP,OD,∵BC是⊙O的直径,∴OP=OC,∵以点D为圆心、DA为半径做圆弧,∴PD=CD,在△ODP和△ODC中,,∴△ODP≌△ODC(SSS),∴∠OPD=∠OCD=90°,∵P点在⊙O上,∴DE为半圆O的切线;(2)解:∵以点O为圆心、OB为半径做圆弧,四边形ABCD是正方形,∴EB是⊙D的切线,∵DE为半圆O的切线,∴EB=EP,设正方形的边长为a,EB=EP=x,∴AE=a﹣x,DE=a+x,∵AD2+AE2=DE2,∴a2+(a﹣x)2=(a+x)2,解得x=,∴BE=,∴AE=3EB,∴=3.22.个体户小陈新进一种时令水果,成本为20元/kg,经过市场调研发现,这种水果在未来40天内的日销售量m(kg)与时间t(天)的关系如表:时间t(天)1351036…日销售量m9490867624…(kg)未来40天内,前20天每天的价格y1(元/kg)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/kg)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).(1)直接写出m(kg)与时间t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,个体户小陈决定每销售1kg水果就捐赠a元利润(a<4且a为整数)给贫困户,通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求前20天中个体户小陈共捐赠给贫困户多少钱?【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围,确定a的值,算出总的销量可得答案.解:(1)设一次函数为m=kt+b,将和代入一次函数m=kt+b中,有,∴.∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p1元,后20天日销售利润为p2元.由p1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t2+14t+480=﹣(t﹣14)2+578,∵1≤t≤20,∴当t=14时,p1有最大值578(元).由p2=(﹣2t+96)(﹣t+40﹣20)=(﹣2t+96)(﹣t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数p2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)p1=(﹣2t+96)(t+25﹣20﹣a)=﹣t2+(14+2a)t+480﹣96a对称轴为t=14+2a.∵1≤t≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴19.5<2a+14,∴2.75<a<4.又∵a为整数,∴a=3,40天的总销量=(﹣2×1+96)+(﹣2×2+96)+...+(﹣2×20+96)=﹣2×(1+2+ (20)+96×20=﹣2×+1920=﹣420+1920=1500,∴小陈共捐赠给贫困户=1500×3=4500元.答:前20天中个体户小陈共捐赠给贫困户4500元.23.【问题背景】如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF、BE、DF之间的数量关系是EF=BE+DF,【迁移应用】如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,且∠B+∠D=180°,求证:EF=BE+DF.【联系拓展】如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系是DE2=BD2+EC2.【分析】【问题背景】把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,证明△AFG≌△AFE(SAS),由全等三角形的性质可得出结论;【迁移应用】把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,∠ADG=∠B,AG=AE,证明△AFG≌△AFE(SAS),由全等三角形的性质可得出结论;【联系拓展】仍然用(1)中的方法,将BD、DE、EC转化为同一直角三角形的三条边,即可得到所猜想的结论.【解答】【问题背景】证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠BAD=∠ADC=90°,把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,AG=AE,∵∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,∴点F、D、G在同一条直线上;∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=90°﹣45°=45°,∴∠GAF=∠EAF,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF=DG+DF=BE+DF,【迁移应用】证明:如图2,由题意得,AB=AD,∠BAD=90°,把△ABE绕点A逆时针旋转90°到△ADG,则∠DAG=∠BAE,∠ADG=∠B,AG=AE,∵∠B+∠ADC=180°,∴∠ADG+∠ADC=180°,∴点F、D、G在同一条直线上;∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=90°﹣45°=45°,∴∠GAF=∠EAF,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF=DG+DF=BE+DF,【联系拓展】DE2=BD2+EC2,证明:如图3,由题意得,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°;把△ABD绕点A逆时针旋转90°到△ACG,则∠CAG=∠BAD,∠ACG=∠B=45°,AG=AD,CG=BD,∴∠ECG=∠ACB+∠ACG=90°;∵∠DAE=45°,∵∠GAE=∠CAG+∠CAE=∠BAD+∠CAE=90°﹣45°=45°,∴∠GAE=∠DAE,∵AE=AE,∴△AEG≌△AED(SAS),∴GE=DE,∵GE2=CG2+EC2,∴DE2=BD2+EC2.故答案为:DE2=BD2+EC2.24.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(A在B的左边),与y轴交于C,且OB=4OA.(1)求抛物线的解析式;(2)如图1,直线y=x交抛物线于D、E两点,点F在抛物线上,且在直线DE下方,若以F为圆心作⊙F,当⊙F与直线DE相切时,求⊙F最大半径r及此时F坐标;(3)如图2,M是抛物线上一点,连接AM交y轴于G,作AM关于x轴对称的直线交抛物线于N,连接AN、MN,点K是MN的中点,若G、K的纵坐标分别是t、n.求t,n的数量关系.【分析】(1)根据题意,即可求出点B和点C的坐标,然后将A、C两点的坐标代入解析式中即可求出结论;(2)联立方程即可求出D、E坐标,从而求出DE,设⊙F与DE相切于H,连接FH,FD,FE,过点F作FG⊥x轴交DE于G,设点F的坐标为(x,x2﹣3x﹣4),由DE为定值,S△DEF=DE•FH可知:当△DEF的面积最大时,FH最大,即r最大,利用“铅垂高,水平宽”求出△DEF的面积的最大值,即可求出r的最大值和此时点F的坐标;(3)设AN与y轴交于点P,利用待定系数法求出直线AM和AN的解析式,联立方程即可求出点M和点N的坐标,再根据中点公式即可求出结论.解:(1)∵A(﹣1,0),∴OA=1,∴OB=OC=4OA=4,∴B(4,0),C(0,﹣4),将点A、点C的坐标代入y=x2+bx+c,∴,解得,∴抛物线的解析式为:y=x2﹣3x﹣4;(2)联立,解得或,∴D(2﹣2,2﹣2),E(2+2,2+2),∴DE=8,设⊙F与DE相切于H,连接FH,FD,FE,过点F作FG⊥x轴交DE于G,设点F的坐标为(x,x2﹣3x﹣4),∴FH⊥DE,G(x,x),∴FG=x﹣(x2﹣3x﹣4)=﹣x2+4x+4,∵DE为定值,S△DEF=DE•FH=4FH,∴当△DEF的面积最大时,FH最大,即r最大,而S△DEF=FG(x E﹣x D)=(﹣x2+4x+4)[(2+2)﹣(2﹣2)]=﹣2(x﹣2)2+16,∵﹣2<0,∴当x=2时,S△DEF最大,其最大值为16,此时FH=4,点F的坐标为(2,﹣6);(3)设AN与y轴交于点P,由题意可知,点G的坐标为(0,t),由对称的性质可知,点P的坐标为(0,﹣t),设直线AM的解析式为:y=kx+a,将A、G的坐标代入,得,解得,∴直线AM的解析为:y=tx+t,同理可求得,直线AN的解析式为:y=﹣tx﹣t,联立,解得或,∴点M的坐标为(4+t,t2+5t),同理可得点N的坐标为(4﹣t,t2﹣5t),∴点K的纵坐标为n==t2,即n=t2.。
最新武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2+1=6x 的二次项系数和一次项系数分别为( )A .3和6B .3和-6C .3和-1D .3和12.下列事件中,必然发生的事件是( )A .随意翻到一本书的某页,这页的页码是奇数B .通常温度降到0℃以下,纯净的水结冰C .地面发射一枚导弹,未击中空中目标D .测量某天的最低气温,结果为-150℃3.将抛物线y =-x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线解析式为( )A .y =-(x +2)2+3B .y =-(x -2)2+3C .y =-(x +2)2-3D .y =-(x -2)2-34.方程09242=+-x x 的根的情况是( )A .有两个不相等实根B .有两个相等实根C .无实根D .以上三种情况都有可能5.下列说法正确的是( ) A .掷两枚骰子,面朝上的点数和是偶数的概率为21 B .连续摸了两次彩票都中奖的概率为21 C .投两次硬币,朝上的面都为正面的概率为21 D .任何人连续投篮两次,投中的概率为21 6.如图,A 、B 、C 三点都在⊙O 上,∠ABO =50°,则∠ACB =( )A .50°B .40°C .30°D .25°7.如图,在下面的网格中,每个小正方形的边长均为1,△ABC 的三个顶点都是网格线的交点.已知A (-2,2)、C (-1,-2),将△ABC 绕着点C 顺时针旋转90°,则点A 对应点的坐标为( )A .(2,-2)B .(-5,-3)C .(2,2)D .(3,-1)8.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共73.若设主干长出x 个支干,则可列方程是( )A .(1+x )2=73B .1+x +x 2=73C .(1+x )x =73D .1+x +2x =739.二次函数y =x 2+mx +1的图象的顶点在坐标轴上,则m 的值( )A .0B .2C .±2D .0或±210.若二次函数y =ax 2+bx +c 的图象的顶点在第一象限,且过点(0,1)和(-1,0),则s =a +b +c的值的变化范围是( )A .0<s <1B .0<s <2C .1<s <2D .-1<s <2二、填空题(本大题共6个小题,每小题3分,共18分)11.点A (-2,5)关于原点的对称点B 的坐标是___________;12.抛物线y =x 2-2x -2的顶点坐标是___________.13.方程3x 2-1=2x +5的两根之和为___________.14.如图,有一块长30m 、宽20m 的矩形田地,准备修筑同样宽的三条直路,把田地分成六块,种植不同品种的蔬菜,并且种植蔬菜面积为矩形田地面积的5039,则道路的宽为___________.15.如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆.若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点的圆外,则r 的取值范围是 .16.如图,正方形ABCD 的边长为2,P 为BC 上一动点,将DP 绕P 逆时针旋转90°,得到PE ,连接EA ,则△PAE 面积的最小值为__________.三、解答题(共8题,共72分)17.(本题8分)已知关于x 的方程x 2+2x +a -2=0(1) 若该方程有两个不相等的实数根,求实数a 的取值范围;(2) 当该方程的一个根为1时,求a 的值及方程的另一根.18.(本题8分)如图,菱形ABCD 和Rt △ABE ,∠AEB =90°,将△ABE 绕点O 旋转180°得到△CDF .(1)在图中画出点O 和△CDF ;(2)若∠ABC =130°,直接写出∠AEF 的度数.A B CDE19.(本题8分)如图,⊙O 中,直径CD ⊥弦AB 于M ,AE ⊥BD 于E ,交CD 于N ,连AC(1)求证:AC =AN ;(2)若OM ∶OC =3∶5,AB =5,求⊙O 的半径;20.(本题8分)老师和小明玩游戏,老师取出一个不透明口袋,口袋中装有三张分别标有数字1、2、3的卡片,卡片除数字外其余都相同.老师要求小明两次随机摸取一张卡片(第一次取出后放回),并计算两次抽到卡片上的数字之积是奇数的概率.求小明两次抽到卡片上的数字之积是奇数的概率21.(本题8分)一个涵洞成抛物线形,它的截面如图,现测得:当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m,离开水面1.5 m处是涵洞宽ED;(1)求抛物线的解析式;(2)求ED的长;22.(本题10分)如图所示,为了改造小区环境,某小区决定要在一块一边靠墙(墙的最大可使用长度13 m)的空地上建造一个矩形绿化带.除靠墙一边(AD)外,用长为36 m的栅栏围成矩形ABCD,中间隔有一道栅栏(EF).设绿化带宽AB为x m,面积为S m2(1)求S与x的函数关系式,并求出x的取值范围(2)绿化带的面积能达到108 m2吗?若能,请求出AB的长度;若不能,请说明理由(3)当x为何值时,满足条件的绿化带面积最大E D C B A N M D C B A23.(本题10分)已知等边△ABC ,点D 和点B 关于直线AC 轴对称.点M (不同于点A 和点C )在射线CA 上,线段DM 的垂直平分线交直线BC 的于N ,(1)如图1,过点D 作DE ⊥BC ,交BC 的延长线于E ,若CE =5,求BC 的长;(2)如图2,若点M 在线段AC 上,求证:△DMN 为等边三角形;(3)连接CD ,BM ,若3S ABM DMC S △△,直接写出MBNMCN S △△S .图1 图224.(本题12分)已知抛物线y =ax 2-2amx +am 2+2m +4的顶点P 在一条定直线l 上.(1)直接写出直线l 的解析式;(2)若存在唯一的实数m ,使抛物线经过原点.①求此时的a 和m 的值;②抛物线的对称轴与x 轴交于点A ,B 为抛物线上一动点,以OA 、OB 为边作□OACB ,若点C 在抛物线上,求B 的坐标.(3)抛物线与直线l 的另一个交点Q ,若a =1,直接写出△OPQ 的面积的值或取值范围.BBACA BDBDB10. 将点(0,1)和(-1,0)分别代入抛物线解析式,得c=1,a=b-1,∴S=a+b+c=2b ,由题设知,对称轴x=-错误!>0且a <0,∴2b >0.又由b=a+1及a <0可知2b=2a+2<2.∴0<S <2.故本题答案为:0<S <2. 11. (2,-5) 12. (1,-3) 13. 错误!14. 2 15. 3<r<5 16. 错误! 16. 过E 作EF ⊥BC 于F ,EG ⊥AD 于G ,设GE=a ,可证AG=2-a ,EFP AGE AGFP AEP S S S S △△梯△--==错误!(a-1)2+错误!,当a=1时,AEP S △=错误!17. (1)a<3 (2)a=-1;-318. 65°,AEBO 共圆19. (1)连AC ,△AMN ≌△AMC ;(2)连OA ,设OM=3x ,OC=5x ,r=错误!20. 错误!21. (1)y=-错误!x 2 (2)562 22. (1)S=-3x 2+36x (错误!≤x<12)(2)不能 (3)错误!23. (1)连CD ,∠DCE=60°,CD=BC=10;(2)∠DCA=60°,连CD ,过N 作NG ⊥CD 于G ,NH ⊥AC 于H ,∠GCN=60°,∴∠NCH=60°,∴NG=NH ,∴Rt △MNH ≌Rt △DNG (HL ),∴∠CMQ=∠NDG ,∴∠MCQ=∠MND=60°,∴△DMN 为等边三角形;(3)连AD ,BD 交AC 于P ,BP=PB ,△ADM ≌△CND ≌△ABM ,∵3S =ABM DMC S △△,∴31=MC AM ,MBN MCN S △△S =51=BN CN ;当M 在CA 延长线上时,MBN MCN S △△S =1;答案:51或1. 24.(1) y=a (x-m )2+2m+4,P (m ,2m+4),∴y=2x+4;(2) ①将x=0,y=0代入,∴am 2+2m+4=0∴△=0,a=错误!,m=-4;②B 、C 关于对称轴对称,∴B 的横坐标为-2,y=错误!(x+4)2-4,∴B (-2,-3);(3) y=2x+4与x 轴交于点B (-2,0),交y 轴于点A (0,4),作OM ⊥AB 于M.∴AB=2,5 ,∴OM=554,y=2x+4代入抛物线解析式y= 2-2mx +m 2+2m +4,解得x=m 或x=m+2,∴P(m ,m+2),Q (m+2,2m+8),PQ=2,17 ,OPQ S △=错误!·PQ ·OM=8554.。
2019年湖北省武汉市九年级元月调考数学试卷(二)一、选择题(本大题共10小题,共30.0分)1.一元二次方程2x2-5x+4=0的一次项系数是()A. 2B.C. 4D. 02.抛物线y=x2+1的对称轴是()A. 直线B. 直线C. 直线D. 直线3.对“某市明天下雨的概率是75%”这句话,理解正确的是()A. 某市明天将有的时间下雨B. 某市明天将有的地区下雨C. 某市明天一定下雨D. 某市明天下雨的可能性较大4.下列图形中,不是中心对称图形的是()A.B.C.D.5.已知事件A:小明刚到教室,上课铃声就响了:事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是()A. 只有事件A是随机事件B. 只有事件B是随机事件C. 都是随机事件D. 都是确定性事件6.若关于x的一元二次方程(k+2)x2-3x+1=0有实数根,则k的取值范围是()A. 且B.C. 且D.7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A. 相离B. 相切C. 相交D. 相切、相交均有可能8.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为()A. B. C. D.9.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A. 8B. 10C. 13D. 1410.已知抛物线y=x2-4x+3,当0≤x≤m时,y的最小值为-1,最大值为3,则m的取值范围为()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.已知x=-1是一元二次方程ax2-bx+6=0的一个根,则a+b的值为______12.将抛物线y=x2+2右平移2个单位长度,再向下平移5个单位长度,得到的抛物线的解析式为______.13.从1、2、3中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是4的倍数的概率是______14.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.15.如图,边长为4的正六边形ABCDEF的顶点B、C分别在正方形AMNP的边AM、MN上,CD与PN交于点H,则HN的长为______16.如图,AB为⊙O的直径,点C、D分别是半圆AB的三等分点,AB=4,点P自A点出发,沿弧ABC向C点运动,T为△PAC的内心.当点P运动到使BT最短时就停止运动,点T运动的路径长为______三、解答题(本大题共8小题,共72.0分)17.解方程:x2-4x-1=0.18.如图,CD为⊙O的弦,P为⊙O上一点,OP∥CD,∠PCD=15°(1)求∠POC的度数;(2)若=,AB⊥CD,点A在CD的上方,直接写出∠BPA的度数.19.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.20.一个不透明袋子中有1个红球、1个绿球和n个白球,这些球除颜色外其余都相同.从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25(1)填空:n的值是______;(2)小童与小郑进行摸球游戏,一次性摸出3个球.若有两个球颜色相同,则小童获胜,否则为小郑获胜,试通过计算说明这个游戏是否公平.21.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.22.甲、乙两人进行羽毛球比赛,把球看成点,其飞行的路线为抛物线的一部分.如图建立平面直角坐标系,甲在O点正上方1m的P处发球,羽毛球飞行的高度y(m)与羽毛球距离甲站立位置(点O)的水平距离x(m)之间满足函数关系式y=a(x-4)2+h.已知点O与球网的水平距离为5m,球网的高度为1.55m,球场边界距点O的水平距离为10m(1)若甲发球过网后,乙在另一侧距球网水平距离1m处起跳扣球没有成功,球在距球网水平距离1m,离地面高度2.2m处飞过,通过计算判断此球会不会出界?(2)若甲某次发球时,x与运行时间t(秒)之间关系式为x=-t2,规定球在落地前一秒的水平距离不小于0.2米,则该次发球为暴力发球.试问在无拦截的情况下,该次发球是否为暴力发球?说明理由23.将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.24.如图1,A(-1,0)、B(4,0),过A、B两点且开口向下的抛物线与y轴正半轴交于点C(0,2)(1)求抛物线的解析式;(2)P为x轴上方的抛物线对称轴上一点,若∠CAB=∠CPB,则点P的坐标为______;(3)如图2,直线y=-(2m-3)x+2m2-3m+2与抛物线交于点M、N两点,MF∥y轴交直线BC于点F,NE∥y轴交直线BC于点E,求△OEF的面积.答案和解析1.【答案】B【解析】解:一元二次方程2x2-5x+4=0的一次项系数是-5,故选:B.根据一元二次方程的一般形式中一次项系数的定义解答.本题考查的是一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0),这种形式叫一元二次方程的一般形式,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.2.【答案】C【解析】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.由抛物线解析式可直接求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).3.【答案】D【解析】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.根据概率的意义进行解答即可.本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.4.【答案】B【解析】解:A、是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】A【解析】解:事件A:小明刚到教室,上课铃声就响了,属于随机事件;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6,属于必然事件.∴只有事件A是随机事件,故选:A.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6.【答案】C【解析】解:∵关于x的一元二次方程(k+2)x2-3x+1=0有实数根,∴k+2≠0且△=(-3)2-4(k+2)•1≥0,解得:k且k≠-2,故选:C.根据一元二次方程的定义和根的判别式得出k+2≠0且△=(-3)2-4(k+2)•1≥0,求出即可.本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.7.【答案】D【解析】解:∵若OP⊥直线L,则直线L与⊙O相切;若OP不垂直于直线L,则O到直线的距离小于半径4,∴直线L与⊙O相交;∴直线L与⊙O的位置关系为:相交或相切.故选:D.分别从若直线L与⊙O只有一个交点,即为点P与若直线L与⊙O有两个交点,其中一个为点P,去分析求解即可求得答案.此题考查了直线与圆的位置关系.注意掌握设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.8.【答案】B【解析】解:圆锥侧面展开图的弧长是:2πcm,设圆心角的度数是x度.则=2π,解得:x=120.故选:B.圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.【答案】C【解析】解:连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC =BC•PE=×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=S四边形AFPG=,∴=×AG•PG,∴AG=,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选:C.根据三角形的面积公式以及切线长定理即可求出答案.本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.10.【答案】C【解析】解:∵y=x2-4x+3=(x-2)2-1,∴当x=2时,y取得最小值,最小值为-1;当y=3时,有x2-4x+3=3,解得:x1=0,x2=4,∴当x=0或4时,y=3.又∵当0≤x≤m时,y的最小值为-1,最大值为3,∴2≤m≤4.故选:C.利用配方法可找出:当x=2时,y取得最小值,最小值为-1;代入y=3可求出x=0或4,再结合“当0≤x≤m时,y的最小值为-1,最大值为3”,即可找出m的取值范围.本题考查了二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的最值及二次函数图象上点的坐标特征,找出2≤m≤4是解题的关键.11.【答案】-6【解析】解:把x=-1代入方程ax2-bx+6=0得a+b+6=0,所以a+b=-6.故答案为-6.直接把x=-1代入方程ax2-bx+6=0中即可得到a+b的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】y=(x-2)2-3【解析】解:将抛物线y=x2+2向右平移2个单位所得直线解析式为:y=(x-2)2+2;再向下平移5个单位为:y=(x-2)2+2-5,即y=(x-2)2-3.故答案是:y=(x-2)2-3.根据“左加右减、上加下减”的原则进行解答即可.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.13.【答案】【解析】解:画树状图为:共有6种等可能的结果数,其中组成的两位数是4的倍数的结果数为2,所以组成的两位数是4的倍数的概率==.故答案为.画树状图展示所有6种等可能的结果数,再找出组成的两位数是4的倍数的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.【答案】11【解析】解:设参加聚会的有x名学生,根据题意得:x(x-1)=110,解得:x1=11,x2=-10(舍去),即参加聚会的有11名同学,故答案为:11.设参加聚会的有x名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x的一元二次方程,解之即可.本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.15.【答案】2-2【解析】解:在Rt△BCM中,∵AB=BC=4,∠CBM=60°,∠M=90°,∴∠BCM=30°,∴BM=BC=2,CM=BM=2,∴AM=4+2=6,∵四边形AMNP是正方形,∴MN=MA=6,∴CN=MN-CM=6-2,∵∠BCD=120°,∴∠HCN=30°,∵∠M=∠N=90°,∴△BMC∽△HNC,∴=,∴=,∴HN=2-2,故答案为:2-2.在Rt△BCM中,根据条件AB=BC=4,∠CBM=60°,∠M=90°,解直角三角形即可解决问题.本题考查正多边形与圆,解直角三角形,正方形的性质,正六边形的性质等知识,解题的关键是灵活运用所学知识解决问题.16.【答案】π【解析】解:连接OC,OD,AD,CD,BD,TA,TC.∵AB为⊙O的直径,点C、D分别是半圆AB的三等分点,∴∠AOD=∠DOC=60°,∴∠AOC=120°,∠APC=∠AOC=60°,∵T为△PAC的内心,∴∠ATC=120°,∴点T的运动轨迹是图中,设BD 交于T′,此时BT′的长最小,点T运动的路径长为=π,故答案为π.连接OC,OD,AD,CD,BD,TA,TC.证明∠ATC=120°,推出点T的运动轨迹是图中,设BD 交于T′,此时BT′的长最小,利用弧长公式计算即可.本题考查三角形的内切圆与内心,轨迹等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:∵x2-4x-1=0,∴x2-4x=1,∴x2-4x+4=1+4,∴(x-2)2=5,∴x=2±,∴x1=2+,x2=2-.【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【答案】解:(1)∵OP∥CD,∴∠OPC=∠PCD=15°,∵OP=OC,∴∠OPC=∠OCP=15°,∴∠OCD=30°.∴∠POC=180°-30°=150°.(2)①如图1中,当AB在点O的左侧时,连接PA,PB,OD,OA,OB.∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,∵=,∴∠AOB=∠COD=120°,∴∠APB=∠AOB=60°.②如图2中,当AB在点O的右侧时,同法可得∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°,综上所述,∠APB=60°或120°.【解析】(1)利用平行线,等腰三角形的性质即可解决问题;(2)分两种情形画出图形分别求解即可解决问题;本题考查圆周角定理,平行线的性质,圆心角、弧、弦之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.19.【答案】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【解析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.20.【答案】2【解析】解:(1)根据题意得=0.25,解得n=2.故答案为2;(2)共有4种等可能的结果数:红、绿、白;红、绿、白;红、白、白;绿、白、白;小童获胜的概率==;小郑获胜==,因为=,所以这个游戏是否公平.(1)利用频率估计概率得到摸到绿球的概率为0.25,则根据概率公式得到=0.25,然后解关于n的方程即可;(2)利用完全列举法展示所有4种等可能的结果数,再找出有两个球颜色相同的结果数,计算出小童获胜的概率,同时得到小郑获胜,然后比较两个概率的大小来判断这个游戏是否公平.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.21.【答案】解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°-(∠DAC+∠ACD)=180°-45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3-x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3-x)2+(3+x)2,∴x=1或-1(舍弃)∴DM=1.【解析】(1)只要证明OC平分∠ACD,即可解决问题;(2)由切线长定理可知:AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,在Rt△BDC 中,根据BC2=BD2+CD2,构建方程即可解决问题;本题考查相似三角形的判定和性质,切线的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.22.【答案】解:(1)点P、球网顶部坐标分别为(0,1)、(1,2.2),将上述两点坐标代入二次函数表达式得:,解得:,故二次函数表达式为:y=-0.1(x-4)2+2.6,令y=0,则x=4+(负值已舍去)<10,故:此球会不会出界;(2)x=-t2,当x=-=6时,x取得最大值,球在落地前1秒的水平距离=第6秒飞行的距离-第5秒飞行的距离=-×36+×6+×25-×5=0.2,即:该次发球为暴力发球.【解析】(1)求出二次函数表达式,令y=0,则x=4+(负值已舍去)<10,即可求解;(2)x=-t 2,当x=-=6时,x取得最大值,球在落地前1秒的水平距离=第6秒飞行的距离-第5秒飞行的距离,即可求解.本题考查的是二次函数综合运用,关键是弄清楚题意,明确变量的代表的实际意义.23.【答案】(1)证明:①如图1中,∵∠BAC=60°,BA=BA1,∴△ABA1是等边三角形,∴∠AA1B=60°,∵∠A1BD1=60°,∴∠AA1B=∠A1BD1,∴AC∥BD1,∵AC=BD1,∴四边形ABD1C是平行四边形.②如图2中,连接BD1.∵四边形ABD1C是平行四边形,∴CD1∥AB,CD1=AB,∠OCD1=∠ABO,∵∠COD1=∠AOB,∴△OCD1≌△OBA(AAS),∴OC=OB,∵CD=BA,∠DCO=∠ABO,∴△DCO≌△ABO(SAS),∴DO=OA.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.在Rt△A1BC中,∵∠CA1B=90°,BC=5.AB=3,∴CA1==4,∵•A1C•A1B=•BC•A1F,∴A1F=,∵∠A1FB=∠A1EB=∠EBF=90°,∴四边形A1EBF是矩形,∴EB=A1F=,A1E=BF=,∴AE=3-=,在Rt△AA1E中,AA1==.【解析】(1)①首先证明△A1B是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.利用勾股定理求出AE,A1E即可解决问题.本题属于四边形综合题,考查了矩形的性质,全等三角形的判断和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.24.【答案】(,2+)【解析】解:(1)设抛物线的解析式为y=ax2+bx+c,根据题意,解得∴抛物线的解析式为y=x2+x+2.(2)∵OA=1,OC=2,∴tan∠CAO=2,∵∠CAB=∠CPB,∴tan∠CPB=2,如图所示,过点B作BD垂直PB交PC的延长线于点D,过点B作y轴的平行线分别交过点P 作x轴的平行线及过点D作x轴的平行线于点G、H.∴=2则△PBG∽△BHD,∴=,∵-=,OB=4,∴PG=,则BH=5,设BG=m,则DH=2m,过点P作y轴的垂线交y轴于点Q,则PQ=设DH交y轴于点J,则OJ=5,∵OC=2,∴CJ=7,∵HJ=4,∴DJ=2m-4,∵AQ=m,OC=2,∴CQ=m-2,△PCQ∽△DJC ∴,∴,解得m1=,m2=,∵>0,∴m=,∴P (,).故答案为P (,2+).(3)S△OEF=S△OBC-S△OCF-S△OBE,∵S△OBC=OC•OB•=4,设点M的横坐标为x M,S△OCF=OC•x M •=x M,设直线BC的解析式为y=kx+b,代入B、C解得∴y=-x+2,设点E的坐标为为y E,点N的横坐标为x N,y E=-x N+2,∴S△OBE=OB•y E•=2y E,∴S△OEF=4-x M-2y E=4-x M-2(-x N+2)=x N-x M,令x2+x+2=-(2m-3)x+2m2-3m+2,解得x M =,x N =,∴x N-x M =∴S△OEF=.(1)待定系数法求函数解析式,将点A、B、C三点代入解析式解方程即可.(2)因为∠CAB=∠CPB,可知∠CPB的正切值等于∠CAB的正切值,所以将∠CPB放入直角三角形中,利用相似可知边之间的比例关系,列方程求解即可.(3)求△OEF的面积利用割补法,推导出面积和点M、N的坐标之间存在的关系,再利用直线解析式和抛物线解析式联立求出点M、N的横坐标.此题考查了待定系数法求二次函数解析式,以及几何图形与二次函数的结合,计算量较大.第11页,共11页。
一.选择题(共10小题)1.将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为()A.2,9B.2,7C.2,﹣9D.2x2,﹣9x2.下列四个图案中,是中心对称图形的是()A.B.C.D.3.将抛物线y=(x﹣1)2+2向左平移1个单位,再向上平移5个单位后所得抛物线的解析式为()A.y=(x﹣2)2+7B.y=(x﹣2)2+3C.y=x2+7D.y=x2+3 4.下列事件中是随机事件的是()A.任意画出一个等边三角形,它是轴对称图形B.367人中至少有2人公历生日相同C.方程x2﹣2x﹣1=0必有实数根D.抛掷一枚硬币四次,有四次正面朝上5.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O的位置关系是()A.相离B.相交C.相切D.不确定6.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15°B.25°C.30°D.75°7.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm28.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.84°C.80°D.86°9.二次函数y=x2+bx的对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣3<x<3的范围内有解,则t的取值范围是()A.﹣1≤t<15B.3≤t<15C.﹣1≤t<8D.3<t<15 10.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为的中点,过E作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π二.填空题(共6小题)11.若方程x2﹣c=0有一个根是1,则另一根是.12.若P(﹣3,2)与P′(3,n+1)关于原点对称,则n =.13.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:400 750 1500 3500 7000 9000 14000 移植总数(n)成活数(m)369 662 1335 3203 6335 8073 12628成活的频率0.923 0.883 0.890 0.915 0.905 0.897 0.902根据表中数据,估计这种幼树移植成活率的概率为(精确到0.1).14.为了美化环境,某市加大绿化投资,2015年用于绿化投资300万元,2017年用于绿化投资363万元,则这两年绿化投资的年均增长率为.15.抛物线y=x2﹣x﹣2与y轴的负半轴交于C点,直线y=kx+1交抛物线于A,B两点(A点在B点的左边).使得△ABC被y轴分成的两部分面积差为2.则K的值为.16.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是.三.解答题(共8小题)17.解方程:x2﹣4x﹣7=0.18.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.19.第一盒中有2个白球、1个黄球,第二盒中有1个白球、3个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,用列表或画树状图的方法求下列事件的概率:(1)取出的2个球都是黄球;(2)取出的2个球中1个白球、1个黄球.20.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(1)画出△ABC向上平移4个单位后的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,则点A所经过的路径长;线段AC扫过的面积;(3)直接写出△ABC的外接圆的半径.21.如图,AB为⊙O的直径,C为⊙O上的一点,AD⊥CD于点D,AC平分∠DAB.(1)求证:CD是⊙O的切线.(2)设AD交⊙O于E,=,△ACD的面积为6,求BD的长.22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90200﹣2x 200﹣2x每天销量(件)已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.23.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.(1)如图1,当B,C,E共线时,求证:BH⊥DE.(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,HN,CM之间的数量关系,并证明你的结论.(3)如图3,∠PDG=45°,DH⊥PG于H,PH=2,HG=4.直接写出DH的长.24.如图1,抛物线y=ax2+bx+c与x轴交于A,B(3,0)两点(A在B左侧),与y轴交于C(0,3).已知对称轴为x=1.(1)求抛物线的解析式.(2)P为抛物线上的点,P点到直线BC的距离为,求点P的坐标.(3)将抛物线向左平移至对称轴为y轴(如图2).交x轴于M,N.D为顶点,E是线段ON上一动点,EF∥y轴交抛物线于F,DE交抛物线于Q,求直线QF与y轴的交点H的坐标.参考答案与试题解析一.选择题(共10小题)1.将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为()A.2,9B.2,7C.2,﹣9D.2x2,﹣9x【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:2x2+7=9x化成一元二次方程一般形式是2x2﹣9x+7=0,则它的二次项系数是2,一次项系数是﹣9.故选:C.2.下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.3.将抛物线y=(x﹣1)2+2向左平移1个单位,再向上平移5个单位后所得抛物线的解析式为()A.y=(x﹣2)2+7B.y=(x﹣2)2+3C.y=x2+7D.y=x2+3 【分析】根据顶点式求出顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出顶点式二次函数解析式即可.【解答】解:∵y=(x﹣1)2+2,∴原抛物线顶点坐标为(1,2),∵向左平移1个单位,再向上平移5个单位,∴平移后的抛物线顶点坐标为(0,7),∴所得抛物线解析式为y=x2+7故选:C.4.下列事件中是随机事件的是()A.任意画出一个等边三角形,它是轴对称图形B.367人中至少有2人公历生日相同C.方程x2﹣2x﹣1=0必有实数根D.抛掷一枚硬币四次,有四次正面朝上【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件.【解答】解:A.任意画出一个等边三角形,它是轴对称图形,属于必然事件;B.367人中至少有2人公历生日相同,属于必然事件;C.方程x2﹣2x﹣1=0必有实数根,属于必然事件;D.抛掷一枚硬币四次,有四次正面朝上,属于随机事件;故选:D.5.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O的位置关系是()A.相离B.相交C.相切D.不确定【分析】根据直线和圆的位置关系判断方法,可得结论.【解答】解:∵d=3<半径=4,∴直线与圆相交,故选:B.6.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15°B.25°C.30°D.75°【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD﹣∠A=75°﹣45°=30°,∴∠B=∠C=30°,故选:C.7.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.8.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.84°C.80°D.86°【分析】根据旋转的性质求出∠BB1A和∠AB1C1的度数即可解决问题.【解答】解:根据旋转的性质可知∠BAB1=100°,且AB=AB1,∠B=∠AB1C1.∵点B1在线段BC的延长线上,∴∠BB1A=∠B=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:C.9.二次函数y=x2+bx的对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣3<x<3的范围内有解,则t的取值范围是()A.﹣1≤t<15B.3≤t<15C.﹣1≤t<8D.3<t<15【分析】先根据对称轴求出b的值,从而二次函数的解析式可得,从而可得当x=﹣3和x=3时的函数值,再根据x2+bx﹣t=0的解为y=x2+bx与直线y=t在﹣3<x<3的内的交点横坐标解答即可.【解答】解:∵对称轴为x=1,∴x=﹣=1,∴b=﹣2,∴二次函数的解析式为:y=x2﹣2x,∴其顶点坐标为(1,﹣1).当x=﹣3时,y=9+6=15,x=3时,y=9﹣6=3.∵x2+bx﹣t=0的解为y=x2+bx与直线y=t在﹣3<x<3的内的交点横坐标,∴当﹣1≤t<15时,一元二次方程x2+bx﹣t=0(t为实数)在﹣3<x<3的范围内有解.故选:A.10.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为的中点,过E作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O 的面积是()A.8πB.10πC.12πD.18π【分析】在BF上截取BM=AC,连接BE,EM,AE,CE,证明△BEM≌△CEA(SAS),得出EM=AE,则AF=FM=1,求出AB=6,过点A作直径AN,连结BN,求出AN,则答案可求出.【解答】解:在BF上截取BM=AC,连接BE,EM,AE,CE,∵E为的中点,∴,∴BE=CE,在△BEM和△CEA中,,∴△BEM≌△CEA(SAS),∴EM=AE,∵EF⊥AB,∴AF=FM=1,∴AB=AF+FM+BM=1+1+4=6,过点A作直径AN,连结BN,∵∠ACB=60°,∴∠ANB=60°,∴=sin60°,∴AN==,∴OA=2,∴⊙O的面积是π=12π.故选:C.二.填空题(共6小题)11.若方程x2﹣c=0有一个根是1,则另一根是﹣1 .【分析】把x=1代入方程计算求出c的值,即可确定出另一根.【解答】解:把x=1代入方程得:1﹣c=0,解得:c=1,方程为x2﹣1=0,即x2=1,开方得:x=1或x=﹣1,则另一根为﹣1.故答案为:﹣1.12.若P(﹣3,2)与P′(3,n+1)关于原点对称,则n=﹣3 .【分析】利用关于原点对称点的性质得出横纵坐标的关系进而得出答案.【解答】解:∵P(﹣3,2)与P′(3,n+1)关于原点对称,∴﹣2=n+1,则n=﹣3.故答案为:﹣3.13.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:400 750 1500 3500 7000 9000 14000 移植总数(n)成活数(m)369 662 1335 3203 6335 8073 12628成活的频率0.923 0.883 0.890 0.915 0.905 0.897 0.902根据表中数据,估计这种幼树移植成活率的概率为0.9 (精确到0.1).【分析】利用表格中数据估算这种幼树移植成活率的概率即可.【解答】解:由表格数据可得,随着样本数量不等增加,这种幼树移植成活率稳定的0.9左右,故这种幼树移植成活率的概率约为0.9.故本题答案为:0.9.14.为了美化环境,某市加大绿化投资,2015年用于绿化投资300万元,2017年用于绿化投资363万元,则这两年绿化投资的年均增长率为10% .【分析】设这两年绿化投资的年均增长率为x,根据2015年及2017年用于绿化投资金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设这两年绿化投资的年均增长率为x,依题意,得:300(1+x)2=363,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).故答案为:10%.15.抛物线y=x2﹣x﹣2与y轴的负半轴交于C点,直线y=kx+1交抛物线于A,B两点(A点在B点的左边).使得△ABC被y轴分成的两部分面积差为2.则K的值为或﹣.【分析】求出A、B的坐标,再根据△ABC被y轴分成的两部分面积差为2,列出k的方程求出k的值便可.【解答】解:设直线直线y=kx+1与y轴的交点为点D,则D(0,1),∵抛物线y=x2﹣x﹣2与y轴的负半轴交于C点,∴C(0,﹣2),∴CD=3,联立方程组,解得,,或,∴A(),B (),∵△ABC被y轴分成的两部分面积差为2.∴﹣=2,或﹣=2,解得,k=,或k=﹣,16.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是2+.【分析】五边形ABCDP的面积=四边形ABCD的面积﹣△CPD的面积只要求出△CDP面积的最小值,作EF∥CD,且与⊙O相切于点P,连接OP延长OP交AD于H,易知此时点P到CD的距离最小,此时△CDP的面积最小.【解答】解:∵五边形ABCDP的面积=四边形ABCD的面积﹣△CPD的面积,∴只要求出△CDP面积的最小值,作EF∥CD,且与⊙O相切于点P,连接OP延长OP交AD于H,易知此时点P到CD的距离最小,此时△CDP的面积最小,易知AD=2,∵四边形ABCD的面积=(1+3)×2=4=×1×1+•AD•OH+•1•3,∴OH=,∴PH=﹣11,∴△CAD的面积最小值为2﹣,∴ABCDP面积的最大值是4﹣(2﹣)=2+.故答案为2+.三.解答题(共8小题)17.解方程:x2﹣4x﹣7=0.【分析】移项后配方得出x2﹣4x+4=7+4,推出(x﹣2)2=11,开方后得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=7,配方得:x2﹣4x+4=7+4,即(x﹣2)2=11,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.18.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)过O作OD⊥BC于D,连接OB,根据直角三角形的性质即可得到结论.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.19.第一盒中有2个白球、1个黄球,第二盒中有1个白球、3个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,用列表或画树状图的方法求下列事件的概率:(1)取出的2个球都是黄球;(2)取出的2个球中1个白球、1个黄球.【分析】(1)画树状图展示所有12种等可能的结果数,找出2个球都是黄球的结果数,然后根据概率公式求解;(2)找出2个球中1个白球、1个黄球的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中取出的2个球都是黄球的结果数为3,所以取出的2个球都是黄球的概率==;(2)取出的2个球中1个白球、1个黄球的结果数为7,所以取出的2个球中1个白球、1个黄球的概率=.20.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(1)画出△ABC向上平移4个单位后的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,则点A所经过的路径长;线段AC扫过的面积;(3)直接写出△ABC的外接圆的半径.【分析】(1)根据网格即可画出△ABC向上平移4个单位后的△A1B1C1;(2)根据网格将△ABC绕点O顺时针旋转90°,即可求出点A所经过的路径长;线段AC扫过的面积;(3)根据网格即可求出△ABC的外接圆的半径.【解答】解:如图,(1)△A1B1C1即为所求;(2)将△ABC绕点O顺时针旋转90°,则点A所经过的路径长为:=;线段AC扫过的面积为:=;故答案为:,.(3)△ABC的外接圆的半径为:OC==.故答案为:.21.如图,AB为⊙O的直径,C为⊙O上的一点,AD⊥CD于点D,AC平分∠DAB.(1)求证:CD是⊙O的切线.(2)设AD交⊙O于E,=,△ACD的面积为6,求BD的长.【分析】(1)连接OC,根据等腰三角形的性质,角平分线的定义得到∠DAC=∠OCA,证明OC∥AD,根据平行线的性质得到∠OCE =∠ADC=90°,根据切线的判定定理证明;(2)设AC=5x,CD=3x,根据勾股定理得到AD=4x,根据三角形的面积得到AD=4,CD=3,AC=5,连接BC,根据相似三角形的性质得到AB=,连接BE交OC于F,由垂径定理得到OC⊥BE,BF=EF,得到EF=CD=3,根据勾股定理即可得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∴∠OCE=∠ADC=90°,∴CD是⊙O的切线;(2)解:∵=,∴设AC=5x,CD=3x,∴AD=4x,∵△ACD的面积为6,∴AD•CD==6,∴x=1(负值舍去),∴AD=4,CD=3,AC=5,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴=,∴AB=,∵∠DAC=∠CAB,∴=,连接BE交OC于F,∴OC⊥BE,BF=EF,∵AB为⊙O的直径,∴∠AEB=∠DEB=90°,∴四边形CDEF是矩形,∴EF=CD=3,∴BE=6,∴AE ==,∴DE=4﹣=,∴BD==.22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90200﹣2x 200﹣2x每天销量(件)已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∴a=﹣2<0,∴二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)①当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得:20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;②当50≤x≤90时,y=﹣120x+12000≥4800,解得:x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在整个销售过程中,共41天每天销售利润不低于4800元.23.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.(1)如图1,当B,C,E共线时,求证:BH⊥DE.(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,HN,CM之间的数量关系,并证明你的结论.(3)如图3,∠PDG=45°,DH⊥PG于H,PH=2,HG=4.直接写出DH的长.【分析】(1)根据正方形的性质得到BC=CD,CG=CE,∠BCG =∠DCE=90°,根据全等三角形的性质得到∠CBG=∠CDE,根据余角的性质即可得到结论;(2)根据正方形的性质得到BC=CD,CG=CE,∠BCD=∠GCE =90°,由全等三角形的性质得到∠CBG=∠CDE,BG=DE,求得∠MHN=90°,得到BM=DN,根据全等三角形的性质得到CM=CN,∠BCM=∠DCN,根据勾股定理即可得到结论;(3)根据折叠的性质得到AD=DH=CD,∠A=∠C=∠DHP=90°,∠ADP=∠HDP,∠GDH=∠GDC,AP=PH=2,CG=HG =4,根据正方形的性质得到∠B=90°,设DH=AD=AB=BC=x,根据勾股定理列方程即可得到结论.【解答】(1)证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BH⊥DE;(2)解:MH2+HN2=2CM2,理由:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,BG=DE,∵∠DPH=∠CPM,∴∠DHP=∠BCP=90°,∴∠MHN=90°,∵M,N分别为BG,DE的中点,∴BM=BG,DN=DE,∴BM=DN,∵BC=CD,∴△BCM≌△DCN(SAS),∴CM=CN,∠BCM=∠DCN,∴∠MCN=∠BCP=90°,∴MH2+HN2=CM2+CN2=2CM2;(3)解:∵DH⊥PG,∴∠DHP=∠DHG=90°,把△PDH沿着PD翻折得到△APD,把△GDH沿着DG翻折得到△DGC,∴AD=DH=CD,∠A=∠C=∠DHP=90°,∠ADP=∠HDP,∠GDH =∠GDC,AP=PH=2,CG=HG=4,∵∠PDG=45°,∴∠ADC=90°,延长AP,CG交于B,则四边形ABCD是正方形,∴∠B=90°,设DH=AD=AB=BC=x,∴PB=x﹣2,BG=x﹣4,∵PG2=PB2+BG2,∴62=(x﹣2)2+(x﹣4)2,解得:x=3+(负值舍去),∴DH=3+.24.如图1,抛物线y=ax2+bx+c与x轴交于A,B(3,0)两点(A在B左侧),与y轴交于C(0,3).已知对称轴为x=1.(1)求抛物线的解析式.(2)P为抛物线上的点,P点到直线BC的距离为,求点P的坐标.(3)将抛物线向左平移至对称轴为y轴(如图2).交x轴于M,N.D为顶点,E是线段ON上一动点,EF∥y轴交抛物线于F,DE交抛物线于Q,求直线QF与y轴的交点H的坐标.【分析】(1)由待定系数法求得即可;(2)分P在直线BC上方、P在直线BC下方两种情况,分别求解即可;(3)通过设定点的坐标,用求函数表达式的方式即可求解.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A,B(3,0)两点(A在B左侧),对称轴为x=1.∴A(﹣1,0),设抛物线为y=a(x+1)(x﹣3),把C(0,3)代入得3=﹣3a,解得a=﹣1,∴y=﹣(x+1)(x﹣3),∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,作PN⊥x轴,交直BC于M,连接PC、PB,∵B(3,0),C(0,3),∴直线BC为y=﹣x+3,BC=3,∴S△PBC=×=3,设N(t,0),则M(t,﹣t+3),P(t,﹣t2+2t+3),∴S△PBC=S△PCM+S△PBM=|﹣t2+2t+3﹣(﹣t+3)|×3=3,当P在直线BC上方时,[﹣t2+2t+3﹣(﹣t+3)]×3=3,整理得,t2﹣3t+2=0,解得t=1或2,∴此时P(1,4)或(2,3);当P在直线BC下方时,[(﹣t+3)﹣(﹣t2+2t+3)]×3=3,整理得,t2﹣3t﹣2=0,解得t=或,∴此时P(,)或(,);综上,点P的坐标为(1,4)或(2,3)或(,)或(,);(3)由题意得:平移后抛物线的表达式为:y=﹣x2+4①,则点D(0,4),设点E(m,0),则点F(m,4﹣m2),设直线DE的表达式为:y=tx+s,则,解得:,故直线DE的表达式为:y=+4②,联立①②并解得:x=或0(舍去0),故点Q(,4﹣);同理可得,直线FQ的表达式为:y=﹣(m+)x+8,令x=0,则y=8,故点H(0,8).。
2022-2023学年度武汉市部分学校二月九年级调研考试数学试卷2023.2.21亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第1卷(非选择题)两部分组成.全卷共6页,三大题,满分120 分,考试用时 120 分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答在“试....卷”上无效......4.答第1卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效...........5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共 30 分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.“守株待兔”这个事件是A.随机事件B.确定性事件C.必然事件D.不可能事件2.下列图形是中心对称图形的是3.解一元二次方程x2-2x-4=0,配方后正确的是A.(x-1)2=3B.(x-1)2=4C.(x-1)2=5D.(x-2)2=84.已知一元二次方程x2+4x-1=0 的两根分别为m,n,则 mn-m-n 的值是A.5B.3C.-3D.-55.如图,已知⊙O的半径为5,直线AB经过⊙O上一点P,下列条件不能判定直线AB与⊙O相切的是A.OP=5B.∠APO=∠BPOC.点O到直线 AB 的距离是 5D.OP⟂AB6.某品牌手机原来每部售价为1999元,经过连续两次降价后,该手机每部售价为1 360元,设平均每次降价的百分率为x,根据题意,所列方程正确的是A.1999x2=1360B.1999(1-x2)=1360C.1999(1-x)2=1360D.1999(1-2x)=13607.如图,在平面直角坐标系中,矩形ABCO的两边与坐标轴重合,OA=2,OC=1,将矩形ABCO绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点B 的坐标是A.(-2,-1)B.(-1,2)C.(-2,1)D.(1,-2)8.在二次函数y=-x2+2x中,若函数值大于0,则结合函数图象判断x的取值范围是A.x<0 或x>2B.x>0 或x<-2C.-2 <x<0D.0<x<29. 如图,在圆内接四边形ABCD 中,AB=AD ,∠BAD=90°.若四边形ABCD 的而积是S ,AC 的长是x ,则S与x 之间函数关系式是A.S=x 2 B.S=12x 2 C.S=√2 x 2 D.23x 210.根据频率估计概率原理,可以用随机模拟的方法对圆周率进行估计.用计算机随机产生m 个有序数对(x ,y )(0≤x ≤1,0≤y ≤1),它们对应的点全部在平面直角坐标系中某一个正方形的边界及其内部、若统计出这些点中到原点的距离小于或等于1的点有n 个,则可估计 π 的值是A.m nB.n mC.2n mD.4nm 第Ⅱ卷(非选择题 共 90 分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.在平而直角坐标系中,点P (-3,4)关于原点对称的点的坐标是12.若一个长方形的长比宽多2,且面积为80,则宽是13.如图,⊙O 是△ABC 的内切圆,∠C=40°,则∠AOB 的大小是14.甲、乙、丙三位同学把自己的数学课本放在一起,每人从中随机抽取一本(不放回),三位同学抽到的课本都是自己课本的概率是 .15.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(-1,0),下列结论:①b>0;②关于 x 的一元二次方程 ax2+bx+c=0有两个不相等的实数根;③当x<-1 时,y 随 x 的增大而减小;④m 为任意实数,若c=3a,则代数式am2+bm+c 的最小值是-a.其中正确的是(填写序号).16.如图,D是△ABC内一点,∠BDC=90°,BD=CD,AB=20,AC=21,AD=13,AD=13√2则 BC的长是2三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8 分)关于x的一元二次方程x2+bx+8=0 有一个根是x=2,求b 的值及方程的另一个根.18.(本小题满分8分)如图,在△ABC中,AC=BC,将△ABC绕点 A逆时针旋转60°,得到△ADE,连接 BD,BE.(1)判断△ABD的形状;(2)求证:BE平分∠ABD.19.(木小题满分 8 分)一个不透明的布袋中装有1个红球,1个黑球和若干个白球,它们除颜色外其余都相同.从中任意摸出1个球,是白球的概率为12(1)直接写出布袋中白球的个数;(2)从布袋中先摸出一个球后放回,再摸出一个球,请用列表或画树状图法求两次摸到的球都是白球的概率.20.(本小题满分8 分)如图,AB,CD是⊙O的两条弦,∠AOB + ∠COD=180°(1)在图(1)中,∠AOB=120°,CD=6,直接写出图中阴影部分的面积;(2)在图(2)中,E 是AB 的中点,判断OE 与CD 的数量关系,并证明你的结论.21.(本小题满分8分)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点 D,使;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N 两点,再画弦 MN 的中点 G.22.(本小题满分10 分)燃放烟花是一种常见的喜庆活动.如图,小杰燃放一种手持烟花,这种烟花每隔2 s 发射一枚花弹,每枚花弹的飞行路径视为同一条抛物线,飞行相同时间后发生爆炸.小杰发射出的第一枚花弹的飞行高度h(单位:m)随飞行时间t(单位:s)变化的规律如下表:(1)求第一枚花弹的飞行高度h与飞行时间1的函数解析式(不要求写出自变量的取值范围);(2)当第一枚花弹到达最高点时,求第二枚花弹到达的高度;(3)为了安全,要求花弹爆炸时的高度不低于30m.小杰发现在第一枚花弹煤炸的同时,第二枚花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求.23.(本小题满分 10 分)操作与思考如图(1),在△ABC 中,AB=AC,∠BAC=α,D 是异于A,B的一点,且∠ADB=90°,将线段AD绕点A逆时针旋转α,画出对应线段AE,连接DE交BC于点F,猜想BF 与CF的数量关系,并证明你的猜想;迁移与运用如图(2),在△ABC和△CDE中,AC=BC,CD=CE,∠ACB=∠DCE=90°,AC=√10,CD=√2,ED 的延长线交 AB 于点 F,且∠BDC=90°,直接写出 EF 的长.24.(本题满分12分)如图,抛物线y=x2-2x-6与x轴分别相交于A,B两点(点A在点B的左侧),C是AB的中点,平行四边形CDEF的顶点 D,E 均在抛物线上.(1)直接写出点C的坐标;(2)如图(1),若点D的横坐标是-2,点E在第三象限,平行四边形CDEF的面积是 13,求点 F 的坐标;(3)如图(2),若点F在抛物线上,连接 DF,求证:直线 DF 过一定点.。
2021~2021学年元月调考模拟考试九年级数学试卷2----3dc95230-6ea1-11ec-9dbe-7cb59b590d7d2021~2021学年九年级数学元月调考模拟考试试卷2一、多项选择题(共10个子题,每个子题3分,共30分)1。
如果一元线性方程x2-3x=0中的两个为()A.-3,0b.3,0c、 3,1d.1,32.袋子里有三个红色的球和两个白色的球。
除了颜色,它们没有其他区别。
它是一个白色的球从袋子中随机碰到一个球的概率为()a.23b、 35c.25d、 323.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如图所示,在正方形ABCD中,e是直流侧的点,连接be,旋转△ BCE围绕C点顺时针旋转90°以获得△ DCF,接通接ef.若∠bec=60°,则∠efd的度数为()a.10°b、15°c.20°d、25°第4题图第6题图第10题图5.事件a:有人坐公交车上班,一到车站就到;事件B:掷骰子,向上的点数不超过6。
那么正确的说法是()a.只有事件a是随机事件b.只有事件b是随机事件c.都是随机事件d、六,。
如图所示,a、B、C和D都处于开启状态⊙ 哦,∠ AOD=70°,Ao‖DC,然后是∠ B是()a.40°b、45°c.50°d.55°7.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()a.5cm或11cmb、 2.5厘米c.5.5cmd、 2.5厘米或5.5厘米8.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是()a.x(x+1)=81b、 1+x+x2=81c.1+x+x(x+1)=81d.1+(x+1)2=819.在同一平面直角坐标系中,函数y=MX+m和函数y=-MX2+2x+2(m为常数,m为≠ 0)可能是()a.b.c.d.10.如图所示,ABCD是⊙ o内接矩形,半径r=2,ab=2,e和F分别是AC和CD上的移动点,AE=CF,则be+BF的最小值为()a.7b.27c、 33d.43二、填空(这个大问题有6个小问题,每个小问题3分,共18分)11.点a(a,1)与点b(5,b)关于原点对称,则a-b的值为__________.12.已知关于X的一元二次方程ax2-5x+1=0有两个不等的实根,那么a的取值范围是_13。
九年级元月调考数学模拟试卷(二)
编辑人:袁几 考试时间:120分钟
一、选择题(每小题3分,共36分)
1.函数y=2+x 中,自变量x 的取值范围是( )
A.x>-2 B .x ≥-2 C.x≠-2 D.x≤-2
2.下列运算正确的是( )
A .3+2 =5
B .3³2=6
C . 2)13(-=3-1 D.2
235- =5-3
3.已知关于x 的方程2x -kx-6=0的一个根为3,则实数k 的值为( ) A 。
1 B.-1 C.2 D .—2
4.两圆的圆心距为3,两圆半径分别是方程2x -4x+3=0的两个根,则两圆的位置关系
是( ) A 。
相交 B.外离C.内含 D ,外切
5.下列事件中,必然事件是( )、
A .打开电视,它正在播广告
B .掷两枚质地均匀I
C.早晨的太阳从东方升起
D.没有水分,种子发芽
6.下列五幅图是世博会吉祥物照片,质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则抽到2010年上海世博会吉祥物照片的概率是( ) A.
2
1 B.
3
1 C.
4
1 D.
5
1
2010年 中国 2005年日本 2000年德国 1992年西班牙 1998 葡萄牙
上海世博会
爱知世博会 汉诺威世博会 塞维利亚世博会 里斯本世博会
7.下列图形中.既是轴对称图形又是中心对称图形的是( )
8.⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB=( )
A.30°
B.45°
C.55°
D.60°
A
E
9.武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的 影响,预计今年比2010年增长7%,若这两年GDP 年平均增长率为x ﹪,则x%满足的关系是( )
A.12%+7﹪=x%
B.(1+12%)(1+7%)=2(1+x%)
C.12%+7%=2²x%
D.(1+12%)(1+7%)=(1+x%)
2
10.如图,在△ABC 中,AB=AC,AB=8,BC=12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )
A.64π -127
B.16π-32 ,
C.16π-247
D.16π -127 11.下列命题: ①若b=2a+
2
1c,则一元二次方程a 2x +bx+c=O 必有一根为-2;
②若ac<0, 则方程 c 2x +bx+a=O 有两个不等实数根; ③若2b -4ac=0, 则方程 c 2x +bx+a=O 有两个相等实数根; 其中正确的个数是( )
A.O 个
B.l 个
C.2个 D 。
3 个
12.如图,△ABC 内接于⊙O ,其外角平分线AD 交⊙O 于DM ⊥AC 于M ,下列结论:
①DB=DC ;②AC-AB=2AM ;③AC+AB=2CM ;④S ABD ∆=2S CDB ∆其中正确的有( ) A .只有④② B.只有①②③ C.只有③④ D.①②③④ 二、填空题(每小题3分,共1 2分)
13.已知圆锥的底面半径是3cm ,母线长为6cm ,则侧面积为_______cm.(结果保留订) 14.如图,在平面直角坐标系中,∠AB0=90°,将直角△A OB 绕D 点顺时针旋转,使点B 落在x 轴上的点B 1处,点A 落在A 1处,若B 点的坐标为(5
16,5
12),则点A 1的坐标是___
15.已知a n =
2
)
1(1
+n (n=1,2,3,…),记b 1=2(1-1a ),b 2=2(1-1a )(1-2a ),…,n b =
2(1-1a )(1-2a )…(1-n a ),则通过计算推测出n b 的表达式n b =___________(用含n 的式子表示)
16.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有___________队参加比赛.
三.解答题(共72分)
17.(6分)解方程:2x -2x-l=0.
18.(6分)化简:3
2x 9+6
4
x -2x
x
1,并将自己所喜欢的z 值代入化简结果进行计算.
19.(6分)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,以直线BC 为对称轴作△ABC 的轴对称图形,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1 ,请依此画出△A 1BC ,、△A 2BC 1 .
20.(7分)小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去。
(1)请用树状图或列表的方法求小莉去上海看世博会的概率;
(2)哥哥设计的游戏规则公平吗?若公平,请你设计一种公平的游戏规则。
21.(7分)有一块长30m 、宽20m 的矩形田地,准备修筑同样宽的三条直路(如下左图),把田地分成四块,种植不同品种的蔬菜,并且种植蔬菜的面积为基地面积的3
1.求道路的宽
度.
E
B
D
B
D
B
D
B
22.(8分)如上右图,在Rt△ABC中,∠ B=90°,E为AB上一点,∠ C=∠BEO,O是BC上一点,以D为圆心,OB长为半径作⊙O,,AC是⊙O,的切线.
(1)求证:OE=OC;(2)若BE=4,BC=8,求OE的长.
23.(10分)端午节吃粽子是中华民族的传统习俗,
高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.
(1)写出所有选购方案(利用树状图或列表方法求选购方案);
(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?
(3)现某中学准备购买两个品种的粽子共32盒(价格如下表所示),发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1200元,请问购买了甲厂家的高档粽子多少盒?
24.(10分)如图,等边三角形ABC和等边三角形DEC,CE和AC重合,
(1)求证:AD=BE;
(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG,求证:BE=2FG;
(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)
25.(12分)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.,B(-33,O),C(3,O).
(1)求⊙M的半径;.
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
九年级元月调考数学模拟试卷二答案
一、选择题
1.B
2.B
3.A
4.A
5.C
6.D
7.D
8.B 9.D 10.D 11.C 12.B 二、填空题
13. 18π 14. (4, -3) 15.1
2++n n 16. 10
三、解答题 17. x=l±2 18.3x 19.略
20.
(1)共16种可能,每种结果可能性相等和为偶数P=16
6=8
3
(2)小莉去的概率是
8
3,哥哥去的概率是
8
5,∴不公平,
改为若和为偶数小莉得5分,若和为奇数哥哥得3分则游戏公平. 21.设道路宽为x m ,(30-x) (20-x)=3
1³20³30解得:1x =40(错) 2x =10
22.(1)设AC 切OO 于Q ,连OQ ,△OQC≌△OBE,∴OC=OE. (2)设OE=OC=x ,则BO==8-x ,∴42+(8-x) 2
=2x ,∴x=5 23.(1)树状图略,共6种可能.(2)选高档有2种,P=6
2=
3
1
(3)由(2)知选(高精),设高档x 盒,精装y 盒,
1200
506032=+=+y
x y x ∴
72
40=
-=y x (错)
选(高简)设高档x 盒,简装y 盒, x+y=32 . x=14 60x+20y =1200 .y=18
故该中学购买了14盒高档粽子.
24.(1)△CBF≌△CAD,.∴BE=AD.
(2)过B 作BT ⊥AC 于T ,易证△BTG≌△DCG,,∴BG=DG.
连AD ,则FG// AD ,FG=AD ,又△BCE ≌△ACD .∴BE=AD=2FG
(3)AG=
2
3
25.(1)过M 作MT ⊥BC 于T 连BM ,∴BT=TC=2
1 BC=23
∴BM=412 =4.
(2)连AE ,则∠E= ∠ABC=∠AFE ,∴AE=AF ,AH ⊥EF, ∴EH=FH .
(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG ,连CG , ∠BGC=∠BAC=60°,∴CG=4. .
连AG ,易证四边形AFCG 为口,∴ AF=CG=4.。