整流滤波电路详细分析共62页
- 格式:ppt
- 大小:7.57 MB
- 文档页数:62
第二节 单相整流滤波电路整流电路是利用二极管的单向导电性将交流电变换为脉动直流电的电路。
根据交流电的相数,整流电路可分为单相整流电路与三相整流电路等,在小功率电路中(1kV A 以下)一般采用单相整流,常见的有单相半波、全波和桥式整流。
本节重点讨论单相半波和桥式整流电路。
一、单相整流电路1.单相半波整流 电路由整流变压器Tr 、整流二极管VD 以及负载电阻R L 组成,如图6-2-1(a )所示。
VD图6-2-1 单相半波整流电路 a )b ) (a )电路图 (b )波形图图6-2-1(a )中,设电源变压器次级电压u 2为t U u ω=sin 222式中,U 2为次级电压的有效值。
当u 2的波形为正半周时,A 端为正,B 端为负,二极管正向导通,忽略二极管的正向导通压降时,负载电压为u o =u 2;当u 2为负半周时,A 端为负,B 端为正,二极管反向截止,电路中电流为零,负载电压u o =0,u 2全部加在二极管两端。
各电压波形如图6-2-1(b )所示,由图可知,负载上得到的是单相脉动直流电压和电流。
由于输出电压u o 仅为电源电压u 2的正半波,所以称为半波整流。
负载上脉动直流电压的大小用平均值Uo 来示,根据数学推导有2U 450U .O ≈ (6-5) 通过负载的电流Io 为L LO O .R U 450R U I 2≈= (6-6) 二极管与负载串联,因此流经二极管的平均电流为L.R U 450I I 2O D == (6-7) 此外,由图6-3(b )可知,二极管反向截止时,管子两端承受的最高反向电压就是u 2的最大值,即2DRM 2U U = (6-8) 在选择二极管时,所选管子的最大整流电流I F 和最高反向工作电压U RM 应大于式(6-7)和式(6-8)的计算值,即L.R U 450I I 2D F =≥ (6-9) 2RM U 2U U =≥DRM (6-10) 实际应用中,应根据I F 和U RM 的计算值查阅半导体器件手册,选择合适的二极管型号。
各种整流滤波电路,电路图及原理讲解!基础电路一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将无法正常工作。
1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在 2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
电源的整流滤波原理图详解(五种滤波整流电路)五种滤波整流电路介绍一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb接于晶体管的基极回路,兼作偏置电阻,由于流过Rb的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十kΩ),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie=(1+β)ib之故)。
3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC 无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2可视为开路,RL 上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
第一节整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。
整流,就是把交流电变为直流电的过程。
利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各种整流电路。
一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻R fz,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~π时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,R fz,上无电压。
在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压U sc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2)因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a、e2b,构成e2a、D1、R fz与e2b、D2、R fz,两个通电回路。
关于整流滤波电路的总结和理解(配图)
220V交流电进过整流前后的对比图:,
图1
加滤波电容之后的波形图(输出短路、负载电阻无穷大、电容为100uF):
图中绿色线为滤波之后的电压输出,基本为直流,波纹很小!(输入电压为220V,输出的直流电压为311V左右,为输入电压的1.414倍)
当负载电阻为400、滤波电容为100uF时的输出波形图:
明显可以看的到波纹很明显(输入电压为220V,此时的输出电压为277V左右,为输入电
压的1.2倍左右)
当负载电阻为100,电容仍为100uF时:
可以看出波纹更加明显(输出的电压为200左右)注:具体的电压和波纹计算公式见笔记和参考模电书
所选的测试电路:。