结构力学第九章薄壁杆件扭转
- 格式:ppt
- 大小:380.50 KB
- 文档页数:27
薄壁杆件的弯曲扭转作用摘要薄壁杆件在竖向荷载作用下将受弯和受扭,产生自由扭转应力和约束扭转应力,截面上的总应力等于平面弯曲正应力加约束扭转正应力。
运用实验力学的应变片理论测量出结构在荷载作用下的应变,进而求出应力大小与方向。
并且运用理论计算进行核对。
之后进行误差理论的分析,进而了解薄壁杆件的受力情况。
关键词薄壁杆件自由扭转约束扭转应力Abstract:Under the vertical load ,the torsion stress and restraining twist rotation stress will be made in thin-wall element,the bend and torsion will occur.Plane bending stress plus restraining twist rotation stress are equal to total stress on the whole section. And measure the stress by Electrical method, get the accurate strain and stress, the exact direction of them. Meanwhile, checking in by analyzing of theory.Besides,through the error analyses, have a profound understanding about the thin-wall element.Key words:thin-wall element; torsion; restraining twist rotation; stress一.引言:钢结构薄壁杆件在实际工程中的应用,引起了工程设计的重视,如型钢或由几个狭长矩形钢板组合的截面等都是薄壁杆件。
薄壁杆件力学一、引言薄壁杆件力学是结构力学的一个重要分支,主要研究薄壁杆件的受力和变形规律。
薄壁杆件广泛应用于航空、航天、汽车、机械等领域,因此对其力学性能的研究具有重要意义。
二、薄壁杆件的基本概念1. 薄壁杆件的定义薄壁杆件是指截面尺寸相对较小,且轴向载荷较大的结构元件。
在实际工程中常见的薄壁杆件有圆管、方管、角钢等。
2. 薄壁杆件的特点(1)强度高:由于其截面尺寸相对较小,因此强度相对较高。
(2)重量轻:由于其截面尺寸相对较小,因此重量相对较轻。
(3)易于加工:由于其截面尺寸相对较小,因此易于加工成各种形状。
三、薄壁杆件受力分析1. 轴向载荷作用下的受力分析当薄壁杆件受到轴向载荷作用时,其受力分析可以采用杆件理论进行计算。
根据杆件理论,薄壁杆件的应力为:σ= F/A其中,σ为应力,F为轴向载荷,A为截面积。
2. 弯曲载荷作用下的受力分析当薄壁杆件受到弯曲载荷作用时,其受力分析可以采用梁理论进行计算。
根据梁理论,薄壁杆件的弯矩为:M= EI/ρ其中,M为弯矩,E为弹性模量,I为截面惯性矩,ρ为曲率半径。
3. 剪切载荷作用下的受力分析当薄壁杆件受到剪切载荷作用时,其受力分析可以采用剪切变形理论进行计算。
根据剪切变形理论,薄壁杆件的剪应力为:τ= F/As其中,τ为剪应力,F为剪切载荷,As为截面面积。
四、薄壁杆件的变形规律1. 轴向变形规律当薄壁杆件受到轴向载荷作用时,其轴向变形规律可以采用杆件理论进行计算。
根据杆件理论,薄壁杆件的轴向变形为:δ= FL/EA其中,δ为轴向变形,F为轴向载荷,L为杆件长度,E为弹性模量,A为截面积。
2. 弯曲变形规律当薄壁杆件受到弯曲载荷作用时,其弯曲变形规律可以采用梁理论进行计算。
根据梁理论,薄壁杆件的弯曲变形为:δ= M L/ EI其中,δ为弯曲变形,M为弯矩,L为跨度长度,E为弹性模量,I为截面惯性矩。
3. 剪切变形规律当薄壁杆件受到剪切载荷作用时,其剪切变形规律可以采用剪切变形理论进行计算。
弹性固定端:它受梁端力矩M作用后产生一个等于力矩M的转角Ɵ即存在如下关系Q0=A0M。
几何不变体系:是指如果不考虑材料应变所产生的变形,体系在受到任何载荷作用后能够保持其固有的几何形状和位置的体系。
不可动节点简单刚架:在实际结构中,大多数刚架受力变形后节点线位移可以不计,于是计算强度时在节点处可加上固定铰支座,故称为不可动节点刚架。
位移法:以杆系结构节点处的位移作为基本未知量的方法。
翘曲:非圆截面杆件扭转变形后,杆件的截面已不再保持为平面,而是变为曲面,这种现象称为翘曲。
用李兹法求结构问题是,要求所选挠度曲线必须满足位移边界线。
(错,还含有其他)薄壁杆件约束扭转时,杆件各横截面上没有正应力,只有扭转引起的剪应力。
(对,杆件上平行于杆轴的直线在变形后长度不变且仍为直线)简述复杂弯曲梁的叠加原理:当梁上同时受到几个不同的横向荷重及一定的轴向力作用时,分别求出在该轴向力作用下的各个横向荷重单独作用于梁时的弯曲要素,然后进行叠加,即得到在该轴向力作用下几个不同的横向荷重同时作用于梁时的弯曲要素。
矩阵位移法中,为什么要进行坐标转移?对哪些量要进行坐标转换?答:建立节点静力平衡方程是在总坐标系中进行的,因此,一般来说在矩阵位移法中有一个坐标转换问题。
要把各杆元在其局部坐标系中的节点位移向量,杆端力向量以及刚度矩阵,转换成坐标系中的节点位移向量,杆端力向量以及刚度矩阵。
杆元固端力向量也要换成坐标系中的杆元固端力向量。
简述薄板弯曲理论中的三条基本假定。
1板变形前垂直于中面的法线在板变形后仍为直线,且是变形后中面的法线,这一假定称为直法线假定。
2垂直于板面的应力分量与其他应力分量相比可以忽略不计,即假定其=0。
3薄板中面内的各点都没有平行于中面的位移,即假定不计因板发生弯曲而产生的中面的变形,从而不计板弯曲产生的中面力。
简述欧拉力计算公式的的适用范围,为什么要研究非弹性稳定性问题?只有当压杆的柔度大于极限值时才能使用欧拉公式若压杆的柔度X<Xp,则欧拉应力大于材料比例,这属于超比例极限的压杆稳定性问题,即非弹性稳定性问题,这时欧拉公式不能使用。
圆截面杆的扭转外力与内力 || 圆杆扭转切应力与强度条件 || 圆杆扭转变形与刚度条件 || 圆杆的非弹性扭转1.外力与内力杆件扭转的受力特点是在垂直于其轴线的平面内作用有力偶(图2·2-1a),其变形特点是在任意两个截面绕轴线发生相对转动。
轴类构件常有扭转变形发生。
作用在传动轴上的外力偶矩m通常是根据轴所传递的功率N和转速n(r/min)来计算。
当N的单位为千瓦(kW)时当N的单位为马力(HP)时扭转时的内力为扭矩T,用截面法求得。
画出的内力图称为扭矩图(或T图),如图2·2-1b所示图2·2-1 圆杆的扭转2.圆杆扭转切应力与强度条件当应力不超过材料的剪切比例极限r p时,某横截面上任意C点(图2·2-2)的切应力公式为式中T——C 点所在横截面上的扭矩p——C点至圆心的距离L p——横截面对圆心的极惯性矩,见表2-2-1 等直杆扭转时的截面几何性质。
图2·2-2 切应力分布圆杆横截面上的切应力r沿半径呈线性分布,其方向垂直于半径(图2·3-2)。
模截面上的最大切应力在圆周各点上,其计算公式为等截面杆的最大切应力发生在T max截面(危险截面)的圆周各点(危险点)上。
其强度条件为式中,[τ]为许用扭转切应力,与许用拉应力[σ]的关系为:[τ]=(0.5~0.6)[σ] (塑性材料)或[τ]=(0.5~0.6)[σ](脆性材料)3.圆杆扭转变形与刚度条件在比弹性范围内,圆杆在扭矩T作用下,相中为L的两截面间相对扭转角为或式中G——材料的切变模量单位扭转角公式为或式中GL p——抗扭刚度圆杆上与杆轴距离为p外(图2·2-2)的切应变r为圆杆表面处的最大切应变为式中,r——圆杆的半径等截面圆杆的最大单位扭转角,发生在T max一段内,其刚度条件为式中,[θ]为圆杆的许用单位扭转角(°)/m4.圆杆的非弹性扭转讨论圆杆扭转时切应力超过材料的比例极限并进入塑性状态的情况。