食品中锌的测定
- 格式:doc
- 大小:32.00 KB
- 文档页数:3
锌测量反应化学方程式锌测量反应化学方程式及其应用引言:锌(Zinc)是一种常见的金属元素,具有广泛的应用领域。
在生活和工业中,锌的测量是非常重要的,因为它可以帮助我们评估各种物质中锌含量的大小和变化。
本文将介绍锌测量的常用方法和相关的化学方程式,以及其在环境、食品科学和药学等领域中的应用。
一、锌测量的常用方法1.1 火焰原子吸收光谱法(Flame Atomic Absorption Spectroscopy,FAAS)火焰原子吸收光谱法是目前最常用的锌测量方法之一。
其基本原理是当样品中的锌离子通过火焰时,会吸收特定波长的光线。
通过测量被吸收的光线强度,可以确定锌离子的浓度。
下面是火焰原子吸收光谱法中锌测量反应的化学方程式:Zn + hn → Zn*(激发态)Zn* + hn → Zn(基态)+ hν1.2 电子化学方法电子化学方法包括电感耦合等离子体质谱法(ICP-MS)、电化学沉积法等。
这些方法通过在电极上沉积或溶解锌,再测量电流或电位变化来间接测量锌含量。
与火焰原子吸收光谱法相比,电子化学方法具有更高的灵敏度和选择性。
以下是电化学沉积法中锌测量反应的化学方程式:Zn2+ + 2e- → Zn(沉积)二、锌测量化学方程式在环境科学中的应用2.1 水质监测在环境科学中,锌被广泛应用于水质监测。
锌离子在水中的浓度可以通过测量水样中锌测量反应中反应产物的光吸收或电信号变化来确定。
水中锌浓度的测量可以帮助我们评估水体的污染程度以及对生态系统的影响。
2.2 土壤评估锌测量化学方程式在土壤评估中也具有重要意义。
土壤中的锌含量与植物的生长和健康密切相关。
通过锌测量反应的化学方程式,我们可以确定土壤中锌的含量,从而指导农业生产和土壤改良。
三、锌测量化学方程式在食品科学中的应用3.1 食品安全检测食品中的锌含量是评估食品营养价值和安全性的重要指标之一。
锌测量化学方程式的应用可以帮助食品科学家准确测定食品中锌的含量,从而评估人体对锌的摄入情况,指导饮食健康和科学补锌。
溶出伏安法测定食品中营养强化剂锌pH 4.8,锌在HOAc-NaOAc底液中可产生一个灵敏吸附波的最佳条件,应用于测定食品中锌含量,方法简便、快速、灵敏度、回收率较高。
[Abstract] It was reported in this paper that in a buffer solution of HOAc-NaOAc (pH=4.8 ),Zn(Ⅱ) which was usually added as nutritive intensifying agents could be determined successively by stripping voltammetry in food.The proposed method was proved to be accurate,rapid,sensitive and also convenient to operate.[Key words] Zinc;Food ;Stripping voltammetry在一定的电位下,锌能在电极上还原成金属汞齐进行预电解富集,当对电极施加反向扫描电压时,被还原在电极上的锌溶脱,并在-1.05V处产生一电流峰,其峰电流与富集在电极上的金属浓度成正比,由此计算锌的含量。
本法与AAS 法所测锌含量进行比较,结果无明显差异。
1 材料与方法1.1仪器与试剂AD-3型极谱仪(江苏金坛市环宇科技仪器厂);电解池:25 ml石英或聚四氟乙烯杯。
乙酸钠溶液(0.4 mol/l):称取13.6 g乙酸钠(CH3COONa·3H2O),加水溶解后稀释至250 ml。
乙酸(0.4 mol/L):量取2.0 ml冰乙酸,加水稀释至85 ml。
HOAc-NaOAc底液(0.2 mol/L,pH4.8):乙酸钠溶液(0.4 mol/L)与乙酸(0.4 mol/L)等量混合,用二硫腙-四氯化碳溶液(0.1 g/L)10 ml提取数次至四氯化碳无色,弃去四氯化碳层。
锌的分析实验报告范文篇一:EDTA滴定法测定锌一、方法原理样品经王水分解后,在FeCl3存在条件下,使得猛以二氧化锰形式沉淀,用NH3·H2O、(NH4)2SO4、(NH4)2S2O8沉淀分离铁、铝、铅等元素,在pH=5.4~5.9的乙酸-乙酸钠缓冲溶液条件下以Na2S2O3、KF掩蔽Cu、,以二甲酚橙作指示剂进行EDTA络合滴定。
反应式如下:H2Y2-+Zn2+Zn2-+2H+铜、镍、钴、镉对测定有影响,但铜可用Na2S2O3掩蔽。
本法适用于含1%以上锌矿样的分析。
二、试剂1、5%FeCl3溶液2、0.2%二甲酚橙水溶液3、HAc-NaAc缓冲溶液:200g NaAc溶于1000mL水中,加冰醋酸10mL,混匀4、NH3·H2O-(NH4)2SO4-NH4Cl洗液:20g (NH4)2SO4溶于1000mL热水中,加20g NH4Cl、20mL NH3·H2O5、EDTA标准溶液(CEDTA=0.015mol/L):称取5.7g乙二胺四乙酸二钠于250ml烧杯中,加水加热溶解,冷却后定容至1000ml。
6、锌标准溶液:称取1.000g金属锌(99.99%)于250ml烧杯中,加20ml盐酸(1+1),加热溶解后定容至1000ml。
7、EDTA溶液的标定:移取20.00ml锌标准溶液于250ml三角瓶中,加1滴甲基橙作指示剂,用氨水中和至溶液由红变为黄色,用少许水冲洗瓶壁,加20mlNaAc-HAc缓冲溶液,加1滴二甲酚橙作指示剂,用EDTA滴定至溶液由酒红色变至亮黄色即为终点,做空白试验。
CEDTA=CZnVZn/VEDTA三、分析手续称样0.2g于150mL烧杯中,以少量水润湿,加入15mL HCl,低温加热分解5-6min,逐去H2S,再加入5mL HNO3,继续加热分解,蒸至小体积后,加入1mL FeCl3溶液,继续蒸发至湿盐状,取下,加入5g (NH4)2SO4(使Pb沉淀)、1g (NH4)Fe、Mn、Al)、1g NH4Cl,拌成砂粒状。
科技文苑Jun 2021 CHINA FOOD SAFETY35表2 特异性测定药物腐霉利克百威灭蝇胺检测结果---[9] 吴飞,邵爱梅,徐晓培.高效液相色谱法测定饮用水中莠去津、三氯杀螨醇、氰戊菊酯、甲氰菊酯和二氯苯醚菊酯[J ].现代预防医学,2020,47(19):3619-3622.[10] 王博文,唐爱星,韦滢军,陈振.双水相萃取-高效液相色谱法检测高效氯氰菊酯及其降解产物[J ].江苏农业科学,2015,43(03):268-271.[11] 赫彩霞,王姣姣,高文惠.高效液相色谱-D A D 法检测粮谷作物中多种菊酯类农药残留[J ].粮食与油脂,2015,28(04):58-60.[12] 吴春英,谷风,白鹭,陆文龙.固相萃取-超高效液相色谱-三重四极杆质谱联用同时测定水中菊酯类农药多残留[J ].分析科学学报,2017,33(01):57-62.[13] 李春民,章承林,陈怀侠.固相萃取-液相色谱法分析环境水样中有机磷农药残留[J ].湖北大学学报(自然科学版),2012,34(02):164-167+211.[14] 吴小胜,贾芳芳,崔海峰,等.一种苯醚氰菊酯胶体金免疫快速检测试纸条的研制[J ].湖北农业科学,2020,59(7):196-198,203.[15] 朱亮亮,王琳琛,王兆芹,崔海峰,张坤,冯才伟,万宇平.检测4种有机磷农药胶体金免疫层析试纸条的研制[J].山东畜牧兽医,2019,40(08):10-12.基金项目:典型性农残多靶标高效快速检测技术研究与应用(Z 181100009318006)项目。
作者简介:王兆芹(1976-),女,籍贯黑龙江,中级工程师,研究方向为食品安全检测技术研究。
(接上页)火焰原子吸收光谱法测定食品中锌的方法验证□ 刘晓娟 马瑞雪 张繁繁 王巧娟 西安力邦临床营养股份有限公司摘 要:在使用标准方法进行检测之前,实验室需证实能够正确运用标准方法以验证其技术能力是否达到了标准的规定要求[1-2]。
食品安全国家标准婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定范围本标准规定了婴幼儿食品和乳品中钾、钠、钙、镁、锌、铁、铜和锰的测定方法。
本标准适用于婴幼儿食品和乳品中钾、钠、钙、镁、锌、铁、铜和锰的测定。
2规范性引用文件本标准中引用的文件对于本标准的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本标准。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
第一法火焰原子吸收分光光度法3原理试样经干法灰化,分解有机质后,加酸使灰分中的无机离了全部溶解,直接吸入空气一乙炔火焰中原了化,并在光路中分别测定钙、铁、锌、钠、钾、镁、铜和锰原了对特定波长谱线的吸收。
测定钙、镁时,需用斓作释放剂,以消除磷酸干扰。
4试剂和材料除非另有规定,本方法所用试剂均为优级纯,水为GB/T 6682规定的二级水。
4. 1盐酸。
4. 2硝酸(X03)。
4. 3氧化斓(L1z03。
4. 4氯化钾:分了量74.55,光谱纯。
4. 5氯化钠:分了量58.44,光谱纯。
4. 6碳酸钙:分了量100.05,光谱纯。
4. 7纯镁:光谱纯。
4. 8纯锌:光谱纯。
4. 9铁粉:光谱纯。
4. 10金属铜:光谱纯。
4. 11金属锰:光谱纯。
4.12盐酸A C2 %}:取2mL盐酸(4.1},用水稀释至100 mL o4. 13盐酸B (20%):取20 mL盐酸(4.1),4. 14硝酸溶液(50%}:取50 mL硝酸(4.2}用水稀释至100 mL o用水稀释至100 mL o4. 15溶液(50 g/L):称取29.32 g氧化] <4.3),用25 mL去离了水湿润后,缓慢添加125 mL盐酸(4.1)使氧化斓溶解后,用去离了水稀释至500 mLo4. 16钾标准溶液(1000 wg/mL}:称取干燥的氯化钾(C4.4} 19067 g,用盐酸A <4.12)溶解,并定容于1000 mL容量瓶中。
Zn离子的检测方法1. Zn离子的分离:加入氨-氯化铵(1:1)调节pH至8~9,加入10滴TAA加热8~10分钟,搅拌。
过滤沉淀,向沉淀中加入浓硝酸,待溶解后加入尿素和甘氨酸,加热,趁热过滤沉淀,弃去沉淀。
向母液加入甘氨酸,调pH为6,加入5滴TAA加热。
过滤保留沉淀,加入双氧水和稀醋酸,加热,是沉淀完全溶解。
Zn离子的定性检出:向上述溶液中滴加(NH4)2Hg(SCN)4和CuSO4溶液,若加入戊醇在有机相中有紫色沉淀聚集,即Zn2Hg(SCN)4·Cu2Hg(SCN)4混晶。
则可鉴定含有锌离子。
Zn离子的定量测定:调节pH为弱酸性,EDTA滴定,指示剂用百里酚蓝,终点颜色变为紫色或蓝色?(不可确定)。
2.蛋氨酸螯合锌是由蛋氨酸与硫酸锌经过合成反应形成的蛋氨酸锌螯合物.它的螯合率决定了该物质的生物利用率,影响着动物体的消化和吸收.螯合率的测定在衡量产品质量,改进生产工艺,研究微量元素的作用机理等均有积极意义,但是,目前螯合率的测定均比较复杂,(如:离子交换树脂法,凝胶过滤色谱法,电极法等),这些方法,一般的实验室难以检测,为此,本文针对螯合物产品重点研究出了一套简便,易行的检测方法,经过多次比对结果令人满意.1,实验材料无水甲醇,双硫腙氯仿溶液(5ug/mL),EDTA标准滴定溶液(0.05mol/L),抗坏血酸,硫脲溶液:50g/L,氟化铵溶液:200g/L,盐酸溶液:1+4,乙酸—乙酸钠缓冲溶液,二甲酚橙指示液:2g/L. 2,实验原理氨基酸微量元素螯合物几乎不溶于甲醇等有机溶剂中,而游离金属离子均能溶解于甲醇等有机溶剂中,利用这一特性,我们用无水甲醇来分离提纯氨基酸微量元素螯合物.3,螯合物的鉴别纯的氨基酸微量元素螯合物在有机溶剂中应没有游离的金属离子存在.另外,因为双硫腙易与Cu,Zn,Fe离子形成红色络合物,所以我们用双硫腙试剂来鉴别游离金属离子,只要出现红色,证明螯合物中有游离金属离子存在,因此我们就判定此产品为不合格产品.称取蛋氨酸螯合锌试样1g,用25mL无水甲醇提取,过滤,取滤液0.1mL加入3mL双硫腙氯仿溶液,试样应呈蓝绿色(双硫腙颜色),不得出现红色现象.为了验证此方法的可行性,我们用蛋氨酸与无机金属锌按照蛋氨酸螯合锌的配比,混合成蛋氨酸锌混合物,然后同样用此方法与蛋氨酸螯合锌做比较.检验结果如下表:表1双硫腙试剂检验蛋氨酸螯合锌及蛋酸混合锌样品的甲醇溶液的实验结果样品溶液鉴别现象检验结果空白蓝绿色没有游离锌存在蛋氨酸螯合锌蓝绿色没有游离锌存在蛋氨酸混合锌红色有大量游离锌存在蛋氨酸混合锌样品的甲醇溶液在加入双硫腙试剂后,呈红色,蛋氨酸螯合锌样品的甲醇溶液在加入双硫腙试剂后呈蓝绿色(双硫腙颜色),所以双硫腙确实能与游离的金属离子形成红色络合物,从两者甲醇溶液的颜色变化可知样品是否完全螯合.(百分百螯合)此鉴别方法有效的检测了产品的螯合情况,在鉴别合格的前提下就可以直接测定金属离子的含量.4,锌含量的测定4.1 原理将试样用盐酸溶解,加适量的水,加入氟化铵,硫脲,抗坏血酸作为掩蔽剂,以乙酸—乙酸钠溶液调节PH值为5-6,以二甲酚橙为指示剂,用乙二胺四乙酸二钠标准滴定溶液滴定,至溶液由紫红色为亮黄色即为终点.4.2 分析步骤称取蛋氨酸锌式样0.5~1.0g(准确至0.0002g)置于250mL锥形瓶中,加少量水润湿.加5mL盐酸溶液(1+4)使式样溶解,加50mL水,10mL氟化铵溶液,10mL硫脲溶液,0.2g抗坏血酸,摇匀溶解后加入15mL乙酸—乙酸钠缓冲溶液和3滴二甲酚橙指示液,用乙二胺四乙酸二钠标准滴定溶液由紫红色变为亮黄色即为终点.同时做空白实验.4.3 结果计算式样中锌含量X以质量百分数(%)表示,按下式计算:X=(V1-V0)C×0.06539×100m式中:V1——滴定试样溶液所消耗乙二胺四乙酸二钠标准滴定溶液的体积,mL;V0——滴定空白溶液所消耗乙二胺四乙酸二钠标准滴定溶液的体积,mL;C——乙二胺四乙酸二钠标准滴定溶液的实际浓度,mol/L;0.06539——与 1.00mL乙二胺四乙酸二钠标准滴定溶液C(EDTA=1.000mol/L)相当的以克表示的锌的质量; m——试样的质量.5,测定螯合率5.1 原理由于氨基酸微量元素螯合物在甲醇等有机溶剂中的溶解度极小,而游离金属离子均能溶解于甲醇等有机溶剂中,利用二者在甲醇中溶解度的差异,我们用无水甲醇来分离提纯氨基酸螯合物,然后用EDTA配位滴定法滴定游离态中的锌离子,计算出螯合率.5.2测定方法称取0.5~1.0g蛋氨酸螯合锌样品,然后按4.2中的分析步骤进行,计算出锌离子的含量(为总含量).另称相同量的蛋氨酸锌螯合物样品,加50ml无水甲醇,充分搅拌,过滤,沉淀用甲醇反复洗涤3次,按4.2的分析方法测定滤液(游离态)中锌离子的含量.6,讨论6.1 由于蛋氨酸螯合锌微溶于水,为了避免甲醇中含有少量的水分会将锌离子游离出来,所以所用的甲醇必须经过蒸馏除水后方可用来提纯蛋氨酸螯合锌.6.2 双硫腙试剂与锌离子的络合反应非常灵敏,只要有痕量的锌离子存在,就会与双硫腙生成红色络合物,并且颜色会随着锌离子的增多而加深,因此我们可以从颜色的深浅来判断游离锌的多少,双硫腙氯仿溶液极易挥发,故应现用现配. 6.3方法的适用性测定多个产品,并用同配比的无机盐产品做对比,考察方法的适用性(表3,表4).表3 蛋氨酸锌螯合物与蛋氨酸锌混合物的鉴别比较试样名称试样编号鉴别现象检验结果空白蓝绿色无锌离子存在蛋氨酸螯合锌1#蓝绿色无锌离子存在蛋氨酸螯合锌2#蓝绿色无锌离子存在蛋氨酸螯合锌3#蓝绿色无锌离子存在蛋氨酸螯合锌4#蓝绿色无锌离子存在蛋氨酸螯合锌5#蓝绿色无锌离子存在蛋氨酸螯合锌6#蓝绿色无锌离子存在蛋氨酸混合锌红色大量锌离子存在7,结论本次实验重复性好,鉴别方法反应灵敏,操作简便,能够快速而有效的对氨基酸微量元素螯合物是否完全螯合进行定性鉴定.螯合率检测方法简单易行,以上数据均有利说明了此方法的准确性和再现性.3.食品中锌的测定--二硫腙比色法1 主题内容与适用范围本标准规定了食品中锌的测定方法。
食品中锌的测定
GB/T5009.14-2003
前言
本标准代替GB/T 5009.14—1996《食品中锌的测定方法》。
本标准与GB/T 5009.14—1996相比主要修改如下:
——修改了标准的中文名称、标准中文名称改为《食品中锌的测定》;
——按照GB/T 20001.4—2001《标准编写规则第4部分:化学分析方法》对原标准的结构进行了修改。
本标准由中华人民共和国卫生部提出并归口。
本标准第一法由贵州省卫生防疫站、广西壮族自治区卫生防疫站负责起草。
本标准第二法由湖南省卫生防疫站、天津市卫生防疫站负责起草。
本标准第三法由广西壮族自治区卫生防疫站负责起草。
本标准于1985年首次发布,于1996年第一次修订,本次为第二次修订。
1 范围
本标准规定了食品中锌的测定方法。
本标准适用于食品中锌的测定
本方法检出限:原子吸收法为0.4mg/kg;二硫腙比色法为2.5mg/kg。
2 规范性引用文件
下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版不适用于本标准。
然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
第一法原子吸收光谱法
3 原理
试样经处理后,导入原子吸收分光光度计中,原子化后,吸收213.8nm共振线,在一定浓度范围,其吸光值与镉含量成正比,与标准系列比较定量。
4 试剂
4.1 4-甲基戊酮-2(MIBK,又名甲基异丁酮)
4.2 磷酸(1+10)
4.3 盐酸(1+11):量取10mL盐酸加到适量水中再稀释至120mL。
4.4 混合酸:硝酸+高氯酸(4+1)。
4.5 锌标准储备液:准确称取0.500g金属锌(99.99%)溶于10mL盐酸中,然后在水浴上蒸发至近干,用少量水溶解后移入1000mL容量瓶中,以水稀释至刻度,贮于聚乙烯瓶中,此溶液每毫升相当0.5mg锌。
4.6 锌标准使用液:吸取10.0mL锌标准储备液于50mL容量瓶中,以盐酸(0.1mol/L)稀释至刻度,此溶液每毫升相当于100.0µg镉。
5 仪器
原子吸收分光光度计。
6 分析步骤
6.1 试样处理
6.1.1 谷类:去除其中杂物及尘土,必要时除去外壳,磨碎,过40目筛,混匀。
称取约5.00g~10.00g置于50mL瓷坩埚中,小火炭化至无烟后移入马弗炉中,500℃±25℃灰化约8h后,取出坩埚,放冷后再加入少量混合酸,小火加热,不使干涸,必要时加少许混合酸,如此反复处理,直至残渣中无炭粒,待坩埚稍冷,加10mL盐酸(1+11),溶解残渣并移入50mL容量瓶中,再用盐酸(1+11)反复洗涤坩埚,洗液并入容量瓶,并稀释至刻度,混匀备用。
取与试样处理相同量的混合酸和盐酸(1+11),按同一操作方法做试剂空白试验。
6.1.2 蔬菜、瓜果及豆类:取可食部分洗净晾干,充分切碎或打碎混匀。
称取10.00g~20.00g置于瓷坩埚中,加1mL磷酸(1+10),小火炭化,以下按6.1.1自“移入马弗炉中……”起依法操作。
6.1.3 禽、蛋、水产及乳制品:取可食部分充分混匀。
称取5.00g~10.00g置于瓷坩埚中,小火炭化,以下按6.1.1自“移入马弗炉中……”起依法操作。
乳类经混匀后,取量50mL,置于瓷坩埚中,加1mL磷酸(1+10),在水浴上蒸干,再小火炭化,以下按6.1.1自“移入马弗炉中……”起依法操作。
6.2 测定
吸取0.10、0.20、0.40、0.80、1.00mL锌标准使用液,分别置于50mL容量瓶中,以盐酸(1mol/L)稀释至刻度,混匀(各容量瓶中每毫升分别相当于0、0.2、0.4、0.8、1.6、2.0µg锌)。
将处理后的样液、试剂空白液和各容量瓶中新标准溶液分别导入调至最佳条件的火焰原子化器进行测定。
参考测定条件:灯电流6mA,波长213.8nm,狭缝
0.38nm ,空气流量10mL/min ,乙炔流量2.3mL/min ,灯头高度3mm ,氘灯背景校正,以锌含量对应吸光值,挥之标准曲线或计算直线回归方程,试样吸光值与曲线比较或代入方程求出含量。
7 结果计算
试样中锌含量按式(1)进行计算。
X=
式中:
X ——试样中锌含量,单位为毫克每千克或毫克每升(mg/kg 或mg/L ); A 1——测定试样消化液中锌含量,单位为微克每毫升(µg/mL );
A 2——试剂空白液中锌含量,单位为微克每毫升(µg/mL );
V ——试样消化液总体积,单位为毫升(mL );
m ——试样质量或体积,单位为克或毫升(g 或mL )。
计算结果保留两位有效数字。
7 精密度
在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的10%。
(A 1-A 2)×V ×1000 m ×1000。