燃气-蒸汽联合循环系统的能量分析及[火用]分析
- 格式:pdf
- 大小:185.50 KB
- 文档页数:3
燃气-蒸汽联合循环发电效率分析摘要:目前,世界范围内的能源危机与环境危机不断加重,且尚无较好的解决对策,而社会发展与经济发展对于能源资源的需求量却在不断增加,这也会导致能源问题将在未来较长一段时间成为社会发展的主要问题之一。
在此背景下,清洁能源发电技术得到了人们的重视,且已经在多个行业中得到了较好应用,在清洁能源发电技术当中,燃气-蒸汽联合循环发电是主要构成,若想确保该技术的合理应用,就需要不断提高其发电效率,本文将对燃气-蒸汽联合循环发电技术进行概述,并探讨提高发电效率的主要措施。
关键词:循环发电;蒸汽;燃气;效率;措施;联合伴随我国社会经济的不断发展,我国能源危机与环境污染问题则较为严峻,目前,我国政府已经针对能源与环境问题提出了环境保护以及节能减排的相关要求,相关行业与企业需要切实响应这一号召,对于传统的燃煤发电系统进行革新、更换等。
在工业生产等领域,联合循环发电技术是一项高效运营技术,燃气-蒸汽联合循环发电是一种清洁能源发电技术,对于环境有较好的保护,且这一技术在国际领域的发电量占比也较高。
因此,对这一发电技术的效率进行有效提高十分必要,这也是该项技术未来深入发展的关键所在。
一、联合循环发电的意义联合循环发电技术需要使用燃气轮机与蒸汽轮机,与常规类型的燃气炉相比,清洁程度更高。
联合循环发电的效率较高,污染较少,所以在国外受到较高认可,国际领域很多生产发电的企业,应用联合循环发电技术的占比超过50%。
对于我国而言,可以将多余的热量用于水资源的加热,以满足工业生产与用户的取暖需求,能源得到循环利用之后,效率可超过八成。
绝大多数火力发电在燃煤过程当中仅能产生电能,大量热量都被浪费,所以火电厂的能源利用率相对较低,很多火电厂仅能达到1/3。
热电厂主要是利用燃煤将水加热,让其通往不同用户处供暖,所以,将两者进行联合,就可以在火力发电的同时,将冷凝水用于供暖,以实现能源节约。
二、我国燃气-蒸汽联合循环发电目标效率图1 燃气-蒸汽联合循环发电系统热循环示意图对于我国燃气-蒸汽联合循环发电的目标效率而言,我国目前最为先进的燃气轮机多为F型,这类燃气轮机的制造技术较为优秀,进气与排气温度都较高,上限温度分别为1288℃与589℃,且排放的废气很少,GE公司也生产出212MW,效率达到35%的9F燃气轮机。
燃气—蒸汽联合循环发电系统的现状分析及展望作者:王政允来源:《中国高新技术企业》2017年第09期摘要:随着社会的发展和科技的进步,我国蒸汽联合循环发电系统在不断发展,成为国民经济的重要组成部分,有效提高了人们的生活质量。
文章围绕蒸汽联合循环发电系统的现状和展望进行了阐述,值得同行相关技术人员借鉴。
关键词:燃气-蒸汽联合循环发电系统;清洁能源;发电技术;天然气发电;余热锅炉文献标识码:A中图分类号:TK47 文章编号:1009-2374(2017)08-0194-02 DOI:10.13535/ki.11-4406/n.2017.08.095在当代社会中,能源、环境危机的不断加剧,促使清洁能源发电技术快速发展起来,而燃气-蒸汽联合循环发电系统作为清洁能源发电技术的一种,也得到了快速的發展。
基于此,本文以《基于现状分析燃气-蒸汽联合循环发电系统及展望》为题,进行了以下几方面的分析与探讨。
1 系统介绍联合循环是将两个独立的动力循环进行联合,在这样的情况下,两者会产生能量,这时能量会出现相互交换的情况,从而形成一个新的循环。
根据热力学原理,理想的热力循环又称卡诺循环,该公式显示,当热源的温度不断升高时,冷源的温度不断降低,循环的效率不断提高。
燃气-蒸汽联合循环里的高温热源温度较高,超过了蒸汽循环产生的蒸汽温度,而且燃气单循环产生的排气温度要超过燃气-蒸汽联合循环中的温冷源温度,因此燃气-蒸汽联合循环能够有效实现高温热源吸热效果。
所以,对于普通的循环热效率而言,必须低于联合循环产生的热效率。
为了有效改善联合循环效率的效果,在对联合循环进行设计的过程中,技术人员必须考虑效率与功率的相关条件,当燃气轮机符合设计内容后,企业决策者还需要从成本角度和循环效率方面来看,汽轮机与余热锅炉的系统形式是否在配置规范方面存在问题。
因此,为了提高循环联合效率,技术人员需要选择透平初温相对高的燃气轮机。
根据相关数据调查显示,当燃气轮机的初温不断提高时,联合循环的效率也会得到明显提高,这时联合循环的效率会超过简单循环的效率。
燃气—蒸汽联合循环在世界范围内,使用化学燃料通过热力动力机械发电的火力发电量仍然占据最高的比例。
从节约资源和保护环境等各方面来说,作为一种重要的发电装置,火力发电机组首先要求有高的热效率。
在大型热力发电设备中,目前技术水平比较成熟的,能够经济地大规模应用的只有燃气轮机和蒸汽轮机。
但是它们的热效率都不高,一般都在38—42%左右,即使最先进的燃气轮机热效率也只能达到42—44%,最先进的超临界参数蒸汽轮机热效率也只能达到43—45%。
对这两种热力机械所使用的热力循环进行分析。
燃气轮机燃气初温很高,目前的技术水平一般能达到1350—1430℃,因此燃气轮机中的热力循环平均吸热温度高,但是它的排气温度也就是循环低温也高,一般要达到450—630℃,所以燃气轮机热力循环的卡诺效率不高。
蒸汽轮机虽然循环低温较低,也就是蒸汽的冷凝温度可以降低到30—33℃,但是由于受到材料上的限制,它的蒸汽初温不高,在目前的技术水平下一般难以达到600℃,即使采用再热之后,平均吸热温度也不会太高,所以蒸汽轮机热力循环的卡诺效率也不高。
进一步分析可以发现,蒸汽轮机蒸汽初温一般在535—565℃以下,所以实际上只要有570—610℃的热源就可以让蒸汽轮机工作,而燃气轮机的排气温度就很高,在排气中蕴含着大量的热能,能够给蒸汽轮机提供所需要的热能。
因此如果使用燃气轮机排气作为蒸汽轮机的热源,蒸汽轮机就可以不额外消耗燃料了。
也就是说,蒸汽轮机可以回收燃气轮机的排气热量,额外发出一些有用功,这样就相当于增加了燃气轮机的热效率。
如前所述,目前先进的燃气轮机和蒸汽轮机的热效率基本相当,都在38—42%左右,那么,此时这个相当于增加了燃气轮机热效率的系统,热效率必然比单纯的燃气轮机和蒸汽轮机都高。
实际上,如果把上述由燃气轮机和蒸汽轮机组成的系统看成一个整体,那么在它的热力循环中,循环高温就是燃气轮机的循环高温,而循环低温则是蒸汽轮机的冷凝温度。
燃气-蒸汽联合循环机组技术发展及运行原理分析摘要:在单机设备效率提高越来越困难的情况下,要提高热力系统的效率,就必须做到能源梯级利用,以充分利用各品位的热能,提高整个系统的效率。
在这种背景下就开始出现了各种联合循环方案。
本文在此背景下主要对燃气-蒸汽联合循环机组技术发展及运行原理进行分析。
关键词:燃气-蒸汽联合循环机组技术发展运行从世界电力工业发展的历程来看,以往人们主要依靠燃煤的蒸汽轮机电站来实现发电目标。
在这个领域内,工程师的研究主要集中于提高燃煤电站的单机容量和供电效率以及解决因燃煤而造成的污染问题。
改善供电效率的主要方向是:提高蒸汽的初参数并改进其热力循环系统的设计。
目前,效率高、污染低的燃气-蒸汽联合循环发电机组开始受到重视,并获得了巨大的发展。
联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,又因为使用干净的能源如石油和天然气,所以对环境造成的污染也很小。
1燃气-蒸汽联合循环机组技术发展就世界电力工业发展的历程来看,以往人们主要依靠燃煤的蒸汽轮机电站来实现发电目标的。
在解决因燃煤而带来的污染问题方面,人们首先致力于解决粉尘的排放问题,进而向解决NOx和SOx的方向发展。
目前,粉尘的排放问题基本上已获得比较满意的解决,NOx的问题已能在锅炉中改用低NOx燃烧器的方法得以控制。
但是无论是在燃烧前、燃烧中或燃烧后处理SOx的排放问题,都是很花钱的,许多方案都还在研究之中。
目前,世界上在解决SOx的排放问题上用得最普遍的方法是采用尾气脱硫装置(FGD)。
可是这种装置的费用很高,它大约要占全电站总投资费用的20%~25%,运行费用也很昂贵。
天然气是清洁环保的化石燃料,通过低NOx燃烧器的作用,NOx的排放量可以控制在10ppm以下,而CO2的排放量则可以比燃煤或燃油者降低50%左右。
目前,天然气储量丰富,价格便宜,这为燃气轮机及其联合循环的发展提供了有利的条件。
与传统的燃煤的蒸汽轮机电站相比,燃气轮机及其联合循环的优点是:(1)供电效率远远超过燃煤的蒸汽轮机电站。
燃气蒸汽联合循环发电技术应用及运行控制概述说明1. 引言1.1 概述随着全球能源需求的增加和环境问题的日益突出,燃气蒸汽联合循环发电技术作为一种高效、清洁的能源转换方式逐渐受到广泛关注。
该技术将燃气轮机与蒸汽循环系统有效地结合起来,通过充分利用废热产生额外的电能,并将二氧化碳等排放物减少到最低限度。
1.2 文章结构本文主要对燃气蒸汽联合循环发电技术进行综述和分析,并重点从概述、应用案例和运行控制三个方面进行详细阐述。
首先,我们将介绍该技术的基本原理、组成部分和工作过程,以便读者对其有一个全面的了解。
然后,我们将通过具体案例进行分析,以展示燃气蒸汽联合循环发电技术在实际应用中的效果和优势。
最后,我们将重点讨论该技术在运行控制方面的要点,包括控制参数与性能优化、安全运行控制策略以及故障诊断与维护管理等方面。
1.3 目的本文的目的是全面介绍燃气蒸汽联合循环发电技术,并深入探讨其在实际应用中的效果和运行控制要点。
通过对该技术的详细介绍和案例分析,我们旨在提供给读者一个清晰而全面的了解,并为相关领域的工程师、研究人员和决策者提供参考,促进该技术在能源转换领域的广泛应用与推广。
此外,我们还将展望未来燃气蒸汽联合循环发电技术的发展方向,以期为后续研究和创新提供启示。
2. 燃气蒸汽联合循环发电技术概述2.1 基本原理燃气蒸汽联合循环发电技术是一种高效能的发电方式,它结合了燃气轮机和蒸汽轮机的优点。
基本原理是通过燃料在燃气轮机中进行燃烧,产生高温高压的燃气。
然后,这些高温高压的燃气会被传递到蒸汽锅炉中,在锅炉内部与水接触产生蒸汽。
最后,该蒸汽经过管道输送至蒸汽轮机中驱动发电机转动,将化学能转化为电能。
2.2 组成部分燃气蒸汽联合循环发电系统主要由以下几个组成部分构成:- 燃气轮机:负责将燃料的化学能转换为动力能。
- 蒸汽锅炉:通过与高温高压的燃气进行换热,将水加热为蒸汽。
- 蒸汽轮机:将输入的蒸汽能量转化为旋转力,驱动发电机产生电能。
燃气—蒸汽联合循环机组探究【摘要】对燃气-蒸汽联合循环机组的性能优点进行了分析,并结合工程实例,对其在实际应用中需要注意的问题和相应的安全防范措施进行了阐述。
【关键词】燃气-蒸汽联合循环机组;性能;安全防范前言随着社会经济的发展,人们的生活水平得到了极大提高,对于自身的生活环境也提出了更高的要求,各种为人们生活提供方便的家用电器和设备不断得到应用,也带动了电力行业的发展。
在市场需求不断扩大的前提下,传统燃煤发电机组已经逐渐难以满足实际需求,因此,在单机设备效率提升越来越困难的情况下,采用联合循环方法,对机组进行改进,成为发电企业研究的重点。
一、燃气-蒸汽联合循环机组概述1.结构就目前而言,燃气-蒸汽联合循环机组是由燃气轮机、余热锅炉、蒸汽轮机以及相应的发电机组共同构成的,一种联合循环的发电机组。
2.特点燃气-蒸汽联合循环是一种对热能进行逐级利用的有效方式,可以使得锅炉热能在几个不同的温度等级内,得到逐级利用,从而极大地提高热效率,降低成本。
其工作的基本原理为:首先,天然气在进入燃烧室后,与其中的压缩空气进行混合燃烧,产生高温烟气,对燃气轮机进行膨胀做功,进而带动发电机进行发电。
然后,做功后,烟气的温度虽然有所下降,但是相对而言依然较高,以9E级燃机为例,做功后的烟气温度可以保持在540℃以上,依然具有极高的利用价值。
因此,烟气会通过相应的排气烟道,进入余热锅炉,对锅炉给水进行加热,产生水蒸汽,推动蒸汽轮机做功,进而再次带动汽轮发电机发电,大大提高了燃料利用的效率。
3.优势燃气-蒸汽联合循环机组相对于传统发电机组而言,具有几个主要的优势,⑴电厂整体循环效率高。
目前超临界的600MW燃煤机组供电效率约为40%左右,而燃气-蒸汽联合循环供电效率达58%左右。
⑵燃气-蒸汽联合循环采用天然气为燃料,基本无粉尘和SO2排放,相比于燃煤电厂,减少了三分之二的CO2和95%的NOX排放。
⑶调峰性能好,启停快捷。
伴生气联合循环系统全局能量优化与(火用)评价钢铁企业伴生能源种类繁多,布局分散,品质参差不齐,加之囿于传统回收技术与方法,各项伴生能源只进行了分散回收,且利用效率偏低。
鉴于此,本文从钢铁企业全局角度出发,首先对不同品位的伴生能源进行全局能量调优,然后着重对所提出的伴生气联合循环系统和耦合化学链燃烧的联合循环系统从组件层面进行(?)评价,最后阐述了伴生气联合循环系统在工程应用中的技术关键。
本文的主要内容如下:首先,以夹点技术为基础,利用全局温焓曲线方法,展开对钢铁企业伴生能源全局能量优化理论研究。
将在化工领域和换热器网络优化中常用的夹点技术尝试性地引入到钢铁企业余热能的利用中。
以干熄焦装置为例,阐述了在钢铁企业换热设备系统中如何进行物流选择与数据提取;以某大型钢铁企业热能利用为例,通过比对分析当前工况、目标工况和需求工况的用能情况,详细论述了以全局温焓曲线对余热能进行调优的方法,研究发现,调整后可多输出电功率22.456MW;以燃用低热值高炉煤气的联合循环发电系统和烧结机冷却热废气发电系统为例,从全局角度出发,阐述两套系统整合的优化方案。
其次,提出炼铁工序伴生气联合循环系统,并对其进行(?)、火用经济性和(?)环境影响评价。
基于能量平衡、(?)平衡和能级平衡理论,通过对富余煤气燃气-蒸汽联合循环系统及整合后的炼铁工序伴生气联合循环系统的热力学性能进行比对分析,结果表明:在富余煤气初参数及余热锅炉蒸汽侧热力参数不变条件下,整合后,系统能效率及(?)效率分别较整合前提高约3.00%及1.18%,而能级差降低约27.28%。
基于热经济学结构理论,考察了系统中每个组件的三个(?)经济指标、系统性能参数和设备购买成本及燃料成本等对单位产品成本的影响,分析了系统组件(?)损对环境的影响;与现有三个发电系统进行比较表明:该系统单位输出功成本最小,而单位燃料输出功最大。
然后,提出耦合化学链燃烧的联合循环系统,并对其进行(?)、火用经济性和(?)损环境影响指标评价。