牛吃草问题例题详解(含练习和答案)
- 格式:doc
- 大小:74.50 KB
- 文档页数:6
牛吃草问题练习题及答案一、基础题1. 一片草地上有足够的草,可供10头牛吃30天。
若15头牛吃这片草地,可以吃几天?2. 一片草地上有草若干,每天生长的草量可供5头牛吃1天。
若20头牛吃这片草地,可以吃几天?3. 一片草地上有草若干,每天生长的草量可供10头牛吃2天。
若30头牛吃这片草地,可以吃几天?4. 一片草地上有草若干,每天生长的草量可供15头牛吃3天。
若40头牛吃这片草地,可以吃几天?5. 一片草地上有草若干,每天生长的草量可供20头牛吃4天。
若50头牛吃这片草地,可以吃几天?二、提高题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。
若20头牛吃这片草地,每天实际消耗的草量是生长量的几倍?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。
若30头牛吃这片草地,每天实际消耗的草量是生长量的几倍?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。
若40头牛吃这片草地,每天实际消耗的草量是生长量的几倍?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。
若50头牛吃这片草地,每天实际消耗的草量是生长量的几倍?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。
若60头牛吃这片草地,每天实际消耗的草量是生长量的几倍?三、拓展题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。
若20头牛吃这片草地,草地上的草可以维持多少天?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。
若30头牛吃这片草地,草地上的草可以维持多少天?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。
若40头牛吃这片草地,草地上的草可以维持多少天?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。
若50头牛吃这片草地,草地上的草可以维持多少天?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。
若60头牛吃这片草地,草地上的草可以维持多少天?四、综合应用题1. 一片草地原有草量可供50头牛吃20天,若这片草地每天长出的草量可以供10头牛吃1天。
牛吃草问题练习题及答案一、选择题1. 假设有一头牛,每天可以吃掉1/3的草。
如果草场的草足够一头牛吃100天,那么这头牛可以吃多少天?A. 30天B. 50天C. 100天D. 150天2. 如果有三头牛,每头牛每天可以吃掉1/3的草,草场的草足够三头牛吃30天,那么一头牛可以吃多少天?A. 30天B. 60天C. 90天D. 120天3. 某草场的草可以供5头牛吃20天,如果草场的草每天自然生长,使得草的总量每天增加1/5,那么这5头牛可以吃多少天?A. 20天B. 25天C. 30天D. 35天二、填空题4. 如果一头牛每天吃草的量是草场总量的1/5,草场的草足够这头牛吃50天,那么草场的草总量每天自然增长的比例是________。
5. 假设有四头牛,每头牛每天吃草的量是草场总量的1/6,草场的草足够这四头牛吃40天,如果草场的草每天自然减少1/7,那么这四头牛实际上可以吃______天。
三、计算题6. 某草场的草可以供7头牛吃35天,如果草场的草每天自然减少1/10,求这7头牛实际上可以吃多少天?7. 假设有一头牛,每天可以吃掉草场总量的1/4,草场的草足够这头牛吃60天,如果草场的草每天自然增长,使得草的总量每天增加1/6,求这头牛实际上可以吃多少天?四、解答题8. 一个草场的草可以供8头牛吃45天,如果草场的草每天自然减少1/9,求这8头牛实际上可以吃多少天,并解释你的计算过程。
9. 某草场的草可以供10头牛吃60天,如果草场的草每天自然增长,使得草的总量每天增加1/8,求这10头牛实际上可以吃多少天,并解释你的计算过程。
五、应用题10. 一个农场主有一块草场,他发现这块草场的草可以供15头牛吃50天。
如果草场的草每天自然减少1/12,农场主决定增加牛的数量,使得这些牛可以吃更长时间。
如果他增加到20头牛,这20头牛实际上可以吃多少天?请给出你的计算过程。
答案:1. C2. B3. C4. 1/255. 356. 35天7. 120天8. 36天9. 80天10. 60天请注意,这些答案仅供参考,具体的计算过程需要根据题目的具体条件进行详细的数学推导。
牛吃草及其变异问题汇总(附清晰的思路答案)1、有一片牧场,草每天都在匀速生长(草每天的增长量相等),如果放24头牛,则6天吃完牧草;如果放牧21头牛,则8天可以吃完牧草,设每头牛每天的吃草量相等,问:(1)如果放牧36头牛,几天可以吃完牧草?(2)要使牧草永远都吃不完,至多放牧多少头牛?解:假设1头牛1天吃1个单位的草,那么 24头牛6天所吃的牧草为:24×6=144 (这144包括牧场原有的草和6天新长的草。
)21头牛8天所吃的牧草为:21×8=168 (这168包括牧场原有的草和8天新长的草。
)1天新长的草为:(168-144)÷(8-6)=12牧场上原有的草为:24×6-12×6=72(1)方法一:36头牛减去12头,剩下24头吃原牧场的草:72÷(36-12)=72÷24=3(天)方法二、假设36头牛X天吃完草:36X=12X+7236X-12X=72X=72÷24X=3 ( 36头牛3天吃完草)(2)要是草永远吃不完,必须新长的草足够吃,每天新长的草是12,12÷1=12(头)所以要使这片草永吃不完,最多只能放12头牛吃这片草2、牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?解:假设1头牛1天吃1个单位的草,那么 10头牛20天所吃的牧草为:10×20=200 (这200包括牧场原有的草和20天新长的草。
)15头牛10天所吃的牧草为:15×10=150 (这150包括牧场原有的草和10天新长的草。
)1天新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-20×5=1001天新长的草为5,只够5头牛吃, 25头牛减去5头,剩下20头吃原牧场的草: 100÷(25-5)=100÷20=5(天)答:供25头牛吃5天3、牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?解:假设1头牛1天吃1个单位的草,那么27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天)。
说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
因此,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度;例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天;问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少;已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天;照此计算,可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼;已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上;问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒;问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=级自动扶梯级数= 3×100-100×=150级工程问题数量关系式:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间;例4、某项工程,甲单独做需36天完成,乙单独做需45天完成;如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务;问:甲队干了多少天分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天”这样一来,问题就简单多了;答:甲队干了12天;自主训练单独干某项工程,甲队需100天完成,乙队需150天完成;甲、乙两队合干50天后,剩下的工程乙队干还需多少天分析与解:以全部工程量为单位1;甲队单独干需100天,甲的工作效例5、单独完成某工程,甲队需10天,乙队需15天,丙队需20天;开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程;问:甲队实际工作了几天分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了自主训练一批零件,张师傅独做20时完成,王师傅独做30时完成;如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件;这批零件共有多少个分析与解:这道题可以分三步;首先求出两人合作完成需要的时间,例6、一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完;如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水自主训练甲、乙二人同时从两地出发,相向而行;走完全程甲需60分钟,乙需40分钟;出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟;甲再出发后多长时间两人相遇分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答;甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟;我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间由此看出,这道题应该用工程问题的解法来解答;答:甲再出发后15分钟两人相遇;。
小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
小学奥数六年级牛吃草的问题(含答案)1、一块草原长满草,每天牧草都均匀生长.这片草原可供10头牛吃20天,可供15头牛吃10天。
问:可供25头牛吃多少天?1.解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(10×20-15×10)÷(20-10)=5(份),原有草量:10×20-5×20=100(份),则可供25头牛吃100÷(25-5)=5天。
2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。
多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?2.解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。
3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。
若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。
问:若要5天抽干水,需多少台同样的抽水机来抽水?3.解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位,池塘中原有水量:6×20-4×20=40单位。
若要5天内抽干水,需要抽水机40÷5+4=12台。
4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?4.解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:1×3×10=30单位,船内原有水量与8小时漏水量之和为1×5×8=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时10÷5=2单位,而发现漏水时,船内已有30-2×3=24单位的水了。
小升初冲刺第2尊讲牛吃草问题麺基本公式:1) 设定一头牛一天吃草量为“ 1 ”2) 草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)+ (吃的较多天数一吃的较少天数);3) 原有草量=牛头数X吃的天数—草的生长速度X吃的天数;4) 吃的天数=原有草量+(牛头数-草的生长速度) ;5) 牛头数=原有草量十吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150 )-( 20-10 ) =5份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 +( 25-5 ) =5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150 )-( 20-10 ) =3份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120份15X 10=150份……原草量+10天的生长量120 -( 18-3 ) =8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90 )*( 6-5 ) =10份20X 5=100份……原草量-5天的减少量原草量:100+5 X 10=150或90+6 X 10=150份15X 6=90份……原草量-6天的减少量(150-10 X 10)- 10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天? 解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225 )-(9-8 )=15份30 X 8=240份……原草量-8天的减少量原草量:240+8 X 15=360份或220+9 X 15=360份25X 9=225份……原草量-9天的减少量360 -(21 + 15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
牛吃草问题姓名:主要类型:1、求时间2、求头数根本思路:①在求出“每天新生长的草量〞与“原有草量〞后,头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数及每日生长量的差)〞求出天数。
②天数求只数时,同样需要先求出“每天新生长的草量〞与“原有草量〞。
③根据(“原有草量〞+假设干天里新生草量)÷天数〞,求出只数。
根本公式:解决牛吃草问题常用到四个根本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度); (4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法“有一牧场,养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
〞一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草与6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草与9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。
第二种:公式解法有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,那么6天吃完牧草,如果放牧21头牛,那么8天吃完牧草,假设每头牛吃草的量是相等的。
牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
所以,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。
例2 一个水池装一个进水管和三个同样的出水管。
先打开进水管,等水池存了一些水后,再打开出水管。
如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。
那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似。
出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水。
因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题。
设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量。
两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份。
每分钟进水量答:出水管比进水管晚开40分钟。
例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。
但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量。
设1头牛1天吃的草为1份。
20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草。
由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份)。
由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天。
例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。
问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。
男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级。
由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级)。
解:自动扶梯每分钟走(20×5-15×6)÷(6—5)=10(级),自动扶梯共有(20+10)×5=150(级)。
答:扶梯共有150级。
例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。
如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解。
旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客。
设1个检票口1分钟检票的人数为1份。
因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份)。
假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份)。
同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分)。
例6有三块草地,面积分别为5,6和8公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。
问:第三块草地可供19头牛吃多少天?分析与解:例1是在同一块草地上,现在是三块面积不同的草地。
为了解决这个问题,只需将三块草地的面积统一起来。
[5,6,8]=120。
因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天。
因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天。
120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?”这与例1完全一样。
设1头牛1天吃的草为1份。
每天新长出的草有(240×14-264×10)÷(14-10)=180(份)。
草地原有草(264—180)×10=840(份)。
可供285头牛吃840÷(285—180)=8(天)。
所以,第三块草地可供19头牛吃8天。
练习1.一牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周或供23头牛吃9周。
那么,可供21头牛吃几周?2.一牧场上的青草每天都匀速生长。
这片青草可供17头牛吃30天,或供19头牛吃24天。
现有一群牛,吃了6天后卖掉4头,余下的牛又吃了2天将草吃完,这群牛原来有多少头?3.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年。
假设地球新生成的资源增长速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少亿人?4.有一水池,池底有泉水不断涌出。
用10部抽水机20时可以把水抽干;用15部同样的抽水机,10时可以把水抽干。
那么,用25部这样的抽水机多少小时可以把水抽干?5.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
如果同时开放3个检票口,那么40分钟检票口前的队伍恰好消失;如果同时开放4个检票口,那么25分钟队伍恰好消失。
如果同时开放8个检票口,那么队伍多少分钟恰好消失?6.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。
白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米。
黑夜里往下滑,两只蜗牛滑行的速度却是相同的。
结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底。
那么,井深多少米?7.两位顽皮的孩子逆着自动扶梯的方向行走。
在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端。
问:该扶梯共多少级?答案与提示1.12周。
解:设1头牛1周吃的草为1份。
牧场每周新长草(23×9-27×6)÷(9-6)=15(份)。
草地原有草(27-15)×6=72(份),可供21头牛吃72÷(21-15)=12(周)。
2.40头。
解:设1头牛1天吃的草为1份。
牧场每天新长草(17×30-19×24)÷(30-24)=9(份)。
草地原有草(17-9)×30=240(份)。
这群牛8天应吃掉草240+9×8+4×2=320(份),所以这群牛有320÷8=40(头)。
3.70亿。
解:设1亿人生活1年的资源为1份。
地球每年新生成资源(80×300-100×100)÷(300-100)=70(份)。
当新生成的资源不少于每年消耗掉的资源时,地球上的资源才不致减少。
所以地球最多能养活70亿人。
4.5时。
解:设1部抽水机1时抽出的水为1份。
水池中每小时涌出泉水(10×20-15×10)÷(20-10)=5(份)。
水池中原有水(10-5)×20=100(份)。
25部抽水机抽干需100÷(25-5)=5(时)。