光纤差动保护原理图
- 格式:pdf
- 大小:1.97 MB
- 文档页数:24
首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。
即使是微机保护装置,其原理也是这样的。
但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。
纵联保护的通道一般有以下几种类型:1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号;2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输;3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道;4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。
差动保护差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。
保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。
中文名差动保护外文名Differential protection目录1.1概述2.2原理3.3技术参数4.?环境条件1.?工作电源2.?控制电源3.?交流电流回路4.?交流电压回路5.?开关量输入回路1.?继电器输出回路2.4功能3.5主要措施4.6缺点概述编辑电流差动保护是继电保护中的一种保护。
正相序是A超前B,B超前C各是120度。
反相序(即是逆相序)是 A 超前C,C超前B各是120度。
有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。
差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。
差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。
防止TA 断线保护误动的措施:为了防止TA 断线差动保护误动,差动保护要发跳闸命令必须满足如下条件:① 本侧起动元件起动; ( 或I0>I0ZD ) ② 本侧差动继电器动作;③ 收到对侧‘差动动作’的允许信号。
保护向对侧发允许信号条件:① 保护起动动作② 差流元件动作这样当一侧TA 断线,由于电流有突变或者有‘零序电流’,起动元件可能起动,差动继电器也可能动作。
但对侧没有断线,起动元件没有起动,不能向本侧发‘差动动作’的允许信号。
所以本侧不误动。
1. 一侧为弱电源的线路内部故障,防止电流差动保护拒动的措施图2-32 一侧为弱电源的线路内部故障如图2-32所示:假设N 侧是纯负荷侧,且变压器中性点不接地,则故障前后N I 都是0,N 侧差动保护不起动,则N 侧保护不能跳闸。
同时由于N 侧保护不起动,不能向M 侧发允许信号,M 侧保护也不能跳闸。
解决措施:除两相电流差突变量起动元件、零序电流起动元件和不对应起动元件外,931保护再增加一个低压差流起动元件:① 差流元件动作。
② 差流元件的动作相或动作相间电压 、 。
③ 收到对侧的允许信号。
这样弱电源侧保护依靠此起动元件起动,两侧保护都可以跳闸。
4.收到三相跳闸位置继电器(TWJ )动作信号后该做些什么工作?图2-33 空充于故障线路因为断路器三相都断开的一侧突变量电流起动元件和零序电流起动元件均未起动,低压差流起动元件由于母线电压未降低(用母线TV )也不起动。
由于起动元件均未起动,所以该侧不能向对侧发允许信号,造成另一侧纵联差动保护拒动的问题。
装置后端子有跳闸位置继电器(TWJ )的开入量端子。
当保护装置检测到三相的TWJ 都已动作的信号并且差流元件也动作后立即发‘差动动作’允许信号。
加了本措施后断路器三相都断开的一侧由于三相的TWJ 都已动作并且差流元件也动作,所以可ZD T MAX I I I ∆+∆>∆ΦΦ25.1弱电源侧φUφφU N U 6.0<以一直向对侧提供允许信号,对侧的纵联差动保护可以跳闸。
光纤差动保护原理光纤差动保护是一种用于光纤通信系统中的重要保护方式,它能够在光纤通信系统中快速、准确地检测出故障,并迅速切换到备用路径,以确保系统的稳定运行。
光纤差动保护原理主要基于光纤差动保护装置的工作机制,下面将详细介绍光纤差动保护的原理及其工作过程。
光纤差动保护的原理是利用两条光纤的差动传输特性来实现的。
在光纤传输系统中,通常会设置一条主用光纤和一条备用光纤,它们之间通过光纤差动保护装置相连。
当主用光纤发生故障时,光纤差动保护装置会及时检测到故障信号,并迅速切换到备用光纤,以确保通信系统的正常运行。
光纤差动保护装置主要由光纤差动保护单元和控制单元两部分组成。
光纤差动保护单元负责监测光纤通信系统的工作状态,当检测到主用光纤发生故障时,会立即发出切换指令,控制单元则负责接收并执行切换指令,将通信信号切换到备用光纤上,从而实现故障切换。
在光纤差动保护装置中,光纤的差动传输特性起着至关重要的作用。
光纤的差动传输特性是指当光纤中发生故障时,主用光纤和备用光纤之间会产生一定的光功率差,光纤差动保护装置可以通过检测这种光功率差来判断光纤是否发生故障,并进行相应的切换操作。
光纤差动保护的工作过程可以简单描述为,首先,光纤差动保护单元不断监测光纤通信系统的工作状态,当检测到主用光纤发生故障时,会立即向控制单元发送切换指令;接着,控制单元接收到切换指令后,会立即执行切换操作,将通信信号切换到备用光纤上;最后,光纤差动保护单元会持续监测光纤通信系统的工作状态,直到主用光纤恢复正常,再切换回主用光纤。
总的来说,光纤差动保护原理是基于光纤的差动传输特性,通过光纤差动保护装置对光纤通信系统进行实时监测,及时发现故障并进行切换操作,以确保通信系统的稳定运行。
光纤差动保护技术的应用,大大提高了光纤通信系统的可靠性和稳定性,对于保障通信网络的正常运行具有重要意义。
首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。
即使是微机保护装置,其原理也是这样的。
但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。
纵联保护的通道一般有以下几种类型:1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号;2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输;3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道;4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。
差动保护差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。
保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。
中文名差动保护外文名Differential protection目录1. 1概述2. 2原理3. 3技术参数4. ▪环境条件1. ▪工作电源2. ▪控制电源3. ▪交流电流回路4. ▪交流电压回路5. ▪开关量输入回路1. ▪继电器输出回路2. 4功能3. 5主要措施4. 6缺点概述编辑电流差动保护是继电保护中的一种保护。
正相序是A超前B,B超前C各是120度。
反相序(即是逆相序)是A 超前C,C 超前B各是120度。
有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。
差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。
差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。
光纤差动保护原理光纤差动保护是一种常用的光纤传感器技术,用于检测和保护高电流系统或高压系统中的线圈和电缆。
它基于光纤传感器的原理,利用两个相邻的光纤传感器,在电流或电压发生差异时触发保护装置。
光纤差动保护的应用范围十分广泛,包括发电厂、变电站、电力系统等。
光纤差动保护主要由光纤传感器、信号处理器和保护装置组成。
光纤传感器是核心部件,它由两根光纤组成,分别作为感测和参考。
两根光纤通常由玻璃或塑料制成,具有较高的抗干扰性能和精确度。
感测光纤安装在需要保护的设备附近,用于感测电流或电压变化;参考光纤则固定在一个不受保护的设备上,用于参考基准。
当电流或电压在两根光纤之间发生差异时,光纤差动保护会触发保护装置,以及时断开电流或电压源,避免设备受损。
触发过程主要包括光纤传感器输出信号的检测、信号处理和保护动作的执行。
光纤差动保护的原理是基于光纤的全内反射特性。
在正常工作状态下,感测光纤和参考光纤之间的光信号保持完全相等,光纤传感器的输出为零。
然而,当电流或电压发生变化时,例如线圈内部出现故障或电缆断裂,电流或电压会通过感测光纤和参考光纤之间的磁场或电场产生差异。
这种差异会影响光纤的折射率,导致感测光纤和参考光纤之间的光信号不再相等,进而触发光纤差动保护。
光纤差动保护的核心是信号处理器。
当差动信号被感测到后,传感器会将这一信息传递给信号处理器。
信号处理器会对信号进行滤波、放大和调整,以使信号在满足保护装置需求的同时,尽量减少误报。
经过信号处理后,差动信号会被传送到保护装置,触发相应的保护动作,例如断开故障区域或切断电源。
光纤差动保护具有很多优点。
首先,它具有抗干扰能力强、误报率低的特点。
光纤传感器可以抵抗电磁场干扰和放电现象,可靠性高。
其次,光纤差动保护的安装、调试和维护相对简单,可适应不同系统和设备的需求。
最后,光纤差动保护对环境要求较低,适用于各种恶劣条件下的应用。
总之,光纤差动保护是一种利用光纤传感器技术实现的设备保护装置。
4.1 光纤差动保护配置 (1)4.2 光纤分相电流差动保护 (2)4.2.1 启动元件和整组复归 (2)4.2.2 分相电流差动保护 (3)4.2.3通信可靠性 (4)4.2.4 跳闸逻辑 (5)4.2.5 CT断线 (5)4.2.6 CT饱和 (6)4.2.7 手合故障处理 (6)4.2.8 双端测距功能 (6)4.2.9 分相电流差动保护逻辑方框图 (7)4.2 保护定值表及整定原则 (1)4.1 光纤差动保护配置4.2 光纤分相电流差动保护PSL 603光纤分相电流差动保护装置以分相电流差动作为纵联保护。
分相电流差动保护可通过标准64kb/s 数字同向接口复接PCM 终端,或用专用光缆作为通道,传送三相电流及其他数字信号,使用专用光纤作为通信媒质时采用了1Mbps 的传送速率,极大地提高了保护的性能,并采用内置式光端机,不需外接任何光电转换设备即可独立完成“光 电”转换过程。
差动继电器动作逻辑简单、可靠、动作速度快,在故障电流超过额定电流时,确保跳闸时间小于25ms ;即使在经大接地电阻故障,故障电流小于额定电流时,也能在30ms 内正确动作,而零序电流差动大大提高了整个装置的灵敏度,增强了耐过渡电阻能力。
对于高电压长距离输电线路,考虑电容电流的影响。
本保护装置计算正常时C N M I I I =+∙∙作为电容补偿电流。
在进行差动继电器计算时,必须满足故障的C N M I I I 4〉+∙∙的条件。
另外,分相电流差动保护可以借助光纤通道传输两路远方开关量信号,并各有两组出口节点。
分相电流差动保护主要由差动CPU 模件及通信接口组成。
差动CPU 模件完成采样数据读取、滤波,数据发送、接收,数据同步,故障判断、跳闸出口逻辑;通信接口完成与光纤的光电物理接口功能,另外专门加装的PCM 复接接口装置则完成数据码型变换,时钟提取等同向接口功能。
4.2.1 启动元件和整组复归 4.2.1.1 启动元件保护启动元件用于开放保护跳闸出口继电器的电源及启动该保护故障处理程序。
光纤差动保护原理分析光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。
目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。
光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧1 原理介绍光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。
根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。
光纤电流差动保护系统的典型构成如图1所示。
当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。
如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。
对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。
图中,Id表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。
采用这样的制动特性曲线,可以保证在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端发生区外故障时,因电流互感器发生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。
由于线路两侧电流互感器的测量误差和超高压线路运行时产生的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。
光纤差动保护原理光纤差动保护原理分析光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。
目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。
光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧1原理介绍光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。
根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。
光纤电流差动保护系统的典型构成如图1所示。
当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。
如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。
对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。
图中,Id表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。
采用这样的制动特性曲线,可以包管在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端产生区外故障时,因电流互感器产生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。
由于线路两侧电流互感器的测量误差和超高压线路运行时产生的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。
测试设备:长园深瑞PRS-753S 光纤纵差成套保护装置使用设备:继保之星-1600 继电保护测试系统▲继保之星-1600 继电保护测试系统测试原理:假设M侧为送电端,N侧为受电端。
正常状态下或者发生区外故障时M、N两侧电流幅值相同、方向相反。
根据差动电流原理(差动电流为本侧与对侧电流向量和)得出差流为零。
当发生区内故障时,N侧电流反向,此时M、N两侧流入的电流幅值相等,方向相同,产生的差流为各相故障电流的两倍。
▲光纤电流差动保护系统构成示意图根据保护要求,当差动电流幅值小于整定值0.95倍时,保护可靠不动作;当差动电流值大于或者等于整定值1.05倍时,保护可靠动作且动作时间低于100mS。
注意:实际测试中通常将保护装置尾纤(与对侧保护连接的光纤)进行自环,并将本侧、对侧识别码设置为相同。
此时保护装置通过光纤收到的对侧(实际是本侧)发出的故障电流值与本侧故障电流值相加即为试验差动电流值。
由此,可推算出实际加入的实验电流值是产生的差动电流值的二分之一。
保护装置整定值:变化量启动电流定值:0.2A差动动作电流定值1.2A测试方法1、保护装置设置压板设置:检修压板投入,纵联差动保护投入,A 、B、C跳闸出口压板退出。
控制字设置:定值整定-纵联差动保护设置为1,其他控制字设置为0。
2、接线▲接线原理图断开IA、IB、IC、IN端子排上的连接划片,使保护装置与线路断开将测试仪的IA、IB、IC、IN输出端口接入对应端子排保护装置侧将测试仪UA、UB、UC、UN接入相应的端子排测试仪开关量输入+KM端子接入装置正电源端子口测试仪开关量输入A端子接入装置跳闸线圈端子口(本次选择压板跳闸出口)▲继保之星-1600 接线图▲电压电流接线▲开关量+KM接线▲跳闸线圈接线▲光纤自环前▲自环后实验操作1、验证0.95倍整定值下,差动保护可靠不动作。
(单独验证A相,其他相可参考此设置)根据差动动作值1.2A计算可得,差动电流实验值1.2*0.95=1.14A,实验电流为0.57A。
光纤差动保护原理分析光纤差动保护(Differential Protection)是一种常用于保护传输线路的保护方案。
该方案利用光纤在不同电流或电压下的传输特性,比较两个终点处的信号差异来判断是否发生了故障,并在出现故障时及时切除故障线路,以保护设备和人员的安全。
1.信号采集:在传输线路的起点和终点处,分别安装光纤差动保护装置。
这些装置会通过光纤将电流或电压信号从起点传输到终点,并将信号转换为光纤差动保护中的数值信号。
2.信号处理:在终点处,光纤差动保护装置会将采集到的信号进行处理。
一般会采用数字信号处理(DSP)技术,将信号转换为数字形式,并进行数字滤波、相位比对等处理,以消除噪声和干扰,提高保护的可靠性。
3.比较判断:在信号处理完成后,光纤差动保护装置将起点和终点处的信号进行比较。
如果信号差异超过设定的阈值,说明发生了故障,信号差异大于阈值即为正序故障,信号差异小于负序阈值即为负序故障。
4.故障判定:根据比较结果,光纤差动保护装置判定发生了故障。
一般情况下,如果信号差异大于正序阈值,装置会判定为正序故障,触发保护动作;如果信号差异小于负序阈值,装置会判定为负序故障,同样触发保护动作。
同时,装置还可以通过对信号进行频率和相位分析,判断故障类型和位置。
5.动作响应:一旦发生故障,光纤差动保护装置将立即触发保护动作,通过输出的信号实现线路的切除或其他必要的操作。
同时,还可以通过通信接口将故障信息发送给上位系统,以便进一步的处理和分析。
光纤差动保护的优点是灵敏度高、动作速度快、可靠性强。
通过比较两个终点的信号差异,可以及时判断和定位故障,并采取相应的措施,避免故障扩大和对系统的损害。
此外,光纤差动保护可以实现对多回路的保护,提高了传输线路的可靠性和安全性。
总之,光纤差动保护是一种基于光纤传输原理的传输线路保护方案。
通过比较起点和终点处的信号差异,及时判断和定位故障,并触发相应的保护动作。
光纤差动保护具有灵敏度高、动作速度快、可靠性强等优点,是一种常用的传输线路保护方案。
光纤差动保护原理
差动保护是一种常用的保护方式,常用于光纤通信系统中。
它通过监测光纤通道中的光信号的差异来实现对信号中断和故障的快速检测和报警。
差动保护的原理基于两个主要概念:发送端和接收端。
在发送端,光纤信号会通过分束器分为两个光路,分别进入两根并行的光纤。
在接收端,两根光纤再次汇合,并通过合束器发送到接收器。
这种并联布置的光路可以确保信号在两个光纤中以相同的速度传播。
当光信号正常传输时,两个光路上的光信号是基本相等的。
然而,如果其中一个光路发生故障或信号中断,其中一个光路上的光强度将会发生变化,导致光强度差异。
差异光信号将被差动保护系统检测到,并触发报警机制。
差动保护系统通常通过光电探测器来测量两个光路上的光强度差异。
光电探测器将光信号转换为电信号,并通过比较两个光信号的强度,检测差异。
如果差异超过设定的阈值,系统将发出报警信号。
报警信号可以触发故障指示灯、自动切换光纤通路或通知操作员。
差动保护的优势在于其快速响应和高灵敏度。
它可以在几毫秒内检测到光信号的中断或故障,保证系统的可靠性和稳定性。
同时,差动保护系统可以灵活配置,适应不同的光纤布线和通信需求。
总之,差动保护是一种有效的光纤保护方式,通过差异光信号的监测和比较,实现对信号中断和故障的快速检测和报警,确保光纤通信系统的正常运行。