铸造球铁化学成分
- 格式:xls
- 大小:1010.50 KB
- 文档页数:23
铸铁和球铁材质缩写全文共四篇示例,供读者参考第一篇示例:铸铁和球铁都是一种常见的金属材质,广泛应用于各个领域。
它们的材质缩写分别为GG和FG。
铸铁是一种以铁为基础,同时含有2.1%以上碳和其他掺杂元素的合金材料。
根据不同的成分和性能要求,铸铁又分为灰铸铁、球墨铸铁、白口铸铁、合金铸铁等多种类型。
铸铁具有较好的流动性和液态性,适用于各种复杂形状和细节的铸造。
GG是指灰口铸铁的材质缩写,灰铸铁是铸铁中常见的一种类型。
灰铸铁的主要成分是铁和碳,碳的含量在2.5%以下。
它具有较高的硬度和耐磨性,适用于制造一些承受强烈冲击和磨损的零部件,如机器床的导轨、车轮、机车车轮等。
球铁是一种特殊类型的铸铁,主要成分是铁和碳,碳的含量在2.5%以下。
球铁的特点是在铸造过程中添加了一定量的镁和其他合金元素,使得铁素体呈珠状结构,因此具有较高的强度和耐腐蚀性。
球铁常用于制造一些要求高强度和耐磨性的零部件,如汽车零部件、管道连接件等。
FG是指球墨铸铁的材质缩写,球墨铸铁是球铁的另一种名称。
球墨铸铁具有高强度、良好的耐磨性和抗冲击能力,适用于制造一些重要的机械零部件,如车轮、曲轴、飞轮等。
球墨铸铁具有较好的可切削性,可以进行一定的机加工,因此在一些需要高精度的零部件制造中也被广泛应用。
铸铁和球铁是一种重要的金属材质,具有各自独特的性能和应用特点。
通过选择合适的铸铁类型,可以满足不同工程和制造需求,提高产品的质量和效率。
希望本文对铸铁和球铁材质缩写有所了解,并在实际工程和制造中得到应用。
第二篇示例:铸铁和球铁是两种常见的金属材料,它们在工业生产中起着非常重要的作用。
但是对于很多人来说,这两种材料的区别并不是很清楚。
本文将分别介绍铸铁和球铁的特点、用途及缩写,并对它们之间的区别进行比较。
首先,让我们来看看铸铁。
铸铁是一种铁碳合金,其中碳含量在2%以下。
铸铁通常是通过将熔化的铁水浇铸到模具中制成的,因此具有较好的流动性和形状保持性。
球墨铸铁化学成分国家标准球墨铸铁是一种优质的铸铁材料,具有较高的强度和韧性,广泛应用于机械制造、汽车制造、建筑工程等领域。
为了保证球墨铸铁产品的质量,国家对其化学成分制定了相应的标准,以便生产和使用过程中能够达到统一的质量要求。
根据国家标准,球墨铸铁的化学成分主要包括碳、硅、锰、磷和硫等元素。
其中,碳是影响球墨铸铁组织和性能的主要元素之一。
适当的碳含量可以提高球墨铸铁的强度和韧性,但过高或过低的碳含量都会对其性能造成不利影响。
因此,国家标准对球墨铸铁中碳的含量进行了严格的限制,以确保产品的质量稳定。
除了碳以外,硅是另一个重要的元素。
适当的硅含量可以提高球墨铸铁的流动性和润滑性,有利于铸造过程的顺利进行。
同时,硅还可以稳定铁水中的碳,减少球墨铸铁的组织缺陷,提高产品的性能。
因此,国家标准对球墨铸铁中硅的含量也进行了严格的控制。
此外,锰、磷和硫等元素虽然含量较少,但对球墨铸铁的性能同样有着重要的影响。
锰的适量添加可以提高球墨铸铁的强度和耐磨性,但过高的锰含量会导致铁水的浑浊和晶粒变粗,降低产品的韧性。
而磷和硫是有害元素,其含量过高会导致球墨铸铁的脆性和疲劳性能下降,因此国家标准对其含量也有相应的限制。
总的来说,国家标准对球墨铸铁的化学成分进行了严格的规定,旨在保证产品的质量稳定和性能可靠。
在生产和使用过程中,必须严格按照国家标准的要求进行生产和检测,确保产品符合标准,以满足不同领域的使用需求。
综上所述,球墨铸铁化学成分国家标准的制定对于保障产品质量、推动行业发展具有重要意义。
只有严格遵守标准要求,才能生产出优质的球墨铸铁产品,满足市场需求,推动行业的健康发展。
希望相关企业和生产单位能够重视国家标准,不断提升产品质量,为行业发展做出积极贡献。
目录摘要 (3)前言 (3)1.球墨铸铁管材的发展历史 (4)2.离心球墨铸铁管材性能特点。
(7)2.1基本性能 (7)2.2管体强度 (8)2.3理论爆破水压 (9)2.4接口安全性试验 (10)2.5耐腐蚀性 (12)2.6接口形式 (13)3.离心球墨铸铁管与其竞争管材的比较 (16)3.1塑料管 (17)3.2铝塑和钢塑复合管 (19)3.3钢管 (20)3.4水泥管 (21)3.5玻璃钢管 (22)4离心球墨铸铁管防腐涂层 (23)4.1外表面喷锌加沥青防护层 (24)4.2聚乙烯套 (25)4.3聚乙烯覆膜管 (26)4.4聚氨酯涂层 (27)4.4环氧陶瓷内衬 (28)结论 (29)离心球墨铸铁管材摘要阐述了离心球墨铸铁管的发展历史,主要性能特点,重点论述了球铁管的防腐涂层。
通过离心球墨铸铁管材与其他管材的比较,论证了在其应用领域具有竞争优势。
关键词离心球墨铸铁防腐涂层前言球墨铸铁管作为目前世界上主要管材之一,它具有力学性能好,壁薄强度高、可大量节约铸造生铁,施工简便、施工费用低,可靠性高、保证安全供水输气,耐腐蚀性好、使用寿命长等特点,广泛应用于输送饮用水、污水、煤气和天然气等领域。
随着科学技术的迅猛发展,各种新型管材不断涌现,球墨铸铁管面临着与日新月异的新管材的激烈竞争。
不同的管材有不同的使用条件和场所,在我国城市和工业输水供气工程建设上,离心球墨铸铁管仍是首选的管材,具有较强的竞争优势,且在其防腐涂层方面,尚具有一定的发展潜力。
1.球墨铸铁管材的发展历史人类使用铸铁管的历史已有数百年,据资料介绍甚至可追溯到十四世纪。
见表1-1铸铁管以其优异的耐腐蚀性能和良好的工艺性受到人们的青睐。
法国路易十四时期,为了给凡尔赛的街道和喷泉供水,铺设了大约十五英里的铸铁管线,用法兰和螺栓连接,铅作密封材料,在长期使用过程中接头部分经过修理,其使用寿命长达300余年。
1738年焦炭取代了木炭作为炼铁的能源,人们可以廉价地精炼生铁,铸铁管的使用范围逐渐扩大。
球铁700-2五大元素球铁是一种常见的铸造材料,由于其具有优异的力学性能和耐腐蚀性,在工业领域得到广泛应用。
球铁的化学成分主要由五大元素组成,分别是碳、硅、锰、硫和磷。
下面将分别介绍这五大元素在球铁中的作用。
第一大元素是碳。
碳是球铁中最主要的元素,其含量通常为2%至4%,可以显著影响球铁的性能。
碳存在于球铁中的形态有两种,一种是自由碳形成的石墨,另一种是溶解在铁基体中的碳。
自由碳的存在可以增强球铁的韧性,起到防止裂纹扩展的作用;而溶解在铁基体中的碳可以增加球铁的硬度和强度,同时降低球铁的塑性。
第二大元素是硅。
硅是球铁中的第二主要元素,其含量通常为1%至3%。
硅主要存在于铁基体中,可以增加球铁的热膨胀系数和热传导性能,从而提高球铁的耐热性。
此外,硅还能够抑制碳的溶解度,减少碳的析出,增加球铁的强度和硬度。
第三大元素是锰。
锰通常以合金形式存在于球铁中,其含量通常为0.1%至1%。
锰可以改善球铁的机械性能,提高其强度和硬度,并且还能够增加球铁的磁导率。
此外,锰还能够提高球铁的耐磨性和韧性,延长球铁的使用寿命。
第四大元素是硫。
硫是球铁中的一种有害元素,其含量必须控制在一定范围内。
过高的硫含量会导致球铁中出现硫化物,使球铁的塑性和韧性急剧降低,从而降低球铁的综合性能。
因此,在球铁的生产过程中,必须严格控制硫的含量,以保证球铁的质量。
第五大元素是磷。
磷是球铁中的另一种有害元素,其含量也需要严格控制。
过高的磷含量会导致球铁中出现磷化物,使球铁的塑性和韧性降低,从而影响球铁的使用性能。
因此,在球铁的生产过程中,也需要控制磷的含量。
综上所述,球铁的化学成分主要由碳、硅、锰、硫和磷组成。
这五大元素在球铁中的含量和存在形式会直接影响球铁的性能。
合理控制这五大元素的含量,可以提高球铁的强度、硬度、韧性和耐热性,从而满足不同工业领域对球铁材料的需求。
球铁中球化剂中稀土的作用
球铁中球化剂中稀土的作用
球铁是一种重要的铸造材料,具有高强度、高耐磨性、高耐腐蚀性等
优点,广泛应用于汽车、机械、航空航天等领域。
然而,球铁的生产
过程中存在一些问题,如铸件表面粗糙、内部气孔、缩孔等缺陷,影
响了铸件的质量和性能。
为了解决这些问题,人们引入了球化剂,其
中稀土是一种重要的成分。
稀土是一组元素的总称,包括15个元素,分别是镧系元素和钇系元素。
稀土具有很多特殊的物理和化学性质,如高熔点、高硬度、高化学活
性等,因此在球化剂中起着重要的作用。
稀土在球化剂中的主要作用
有以下几个方面:
1. 促进球化反应
球化剂中的稀土可以促进球化反应的进行,使铸件表面和内部形成球
状石墨,从而改善铸件的力学性能和表面质量。
稀土可以提高球化剂
的活性,使其更容易与铁水中的碳元素反应,形成球状石墨。
2. 抑制氧化
稀土可以抑制铁水中的氧化反应,减少氧化物的生成,从而降低铸件的气孔率和缩孔率。
稀土可以与氧化物结合,形成稳定的化合物,防止氧化反应的进行。
3. 改善铸件的性能
稀土可以改善铸件的力学性能、耐磨性和耐腐蚀性。
稀土可以使球状石墨分布均匀,从而提高铸件的强度和韧性;稀土可以与铁水中的硫元素结合,形成稳定的化合物,减少硫化物的生成,从而提高铸件的耐腐蚀性和耐磨性。
总之,稀土在球化剂中起着重要的作用,可以促进球化反应、抑制氧化、改善铸件的性能。
随着科技的不断发展,人们对球化剂和稀土的研究也在不断深入,相信未来会有更多的新材料和新技术应用于球铁的生产中,为各行各业提供更加优质的铸件。
高镍奥氏体球墨铸铁综述赵新武张居卿(西峡县内燃机进排气管有限责任公司河南西峡474500)摘要:本文对高镍奥氏体球墨铸铁的化学成分、金相组织、力学性能、热处理、使用要求及其工艺控制要点进行了综述。
打破了传统的“充满度”理论,利用较高的“碳当量”,获得了理想的效果。
关键词:充满度碳当量热处理高镍奥氏体球墨铸铁因其具备优异的抗热冲击性、抗热蠕变性、耐蚀性、高温抗氧化性以及低的热膨胀性和低温冲击韧性,在国内外被广泛用于制造海水泵、阀、增压器壳体、排气管、气门座等耐热、耐蚀的零部件产品。
奥氏体球墨铸铁具有原子紧密堆积的面心立方晶格结构,在常温下具有稳定的奥氏体组织,具有比普通球墨铸铁和硅钼球墨铸铁都高的热化学稳定性。
应用前景十分广阔。
此处所说的高镍奥氏体球墨铸铁是指含镍量大于12%,在铸态下获得奥氏体基体,石墨呈球状的铸铁。
是球墨铸铁的特殊品种。
在“铸造技术标准手册”(2004年5月版)中把高镍奥氏体球墨铸铁列为耐蚀铸铁。
高镍奥氏体球墨铸铁在750℃左右仍有良好的抗氧化能力和令人满意的力学性能,特别重要的是,由于其基体组织为奥氏体,在临界温度附近没有相变,因而不易因骤冷骤热而产生变形或裂纹。
某些牌号的高镍奥氏体球墨铸铁在很低的温度下仍具有良好的伸长率和抗拉强度。
例如QTANi23Mn4在-196℃抗拉强度≥620MPa,伸长率≥27%。
高镍奥氏体球墨铸铁有各种不同的牌号,本文侧重于QTANi35Si5Cr2的某些特点综述一些共性的东西,读者可依据不同的牌号、铸件和不同的工况条件作为参考。
1 化学成分奥氏体铸铁牌号符合GB/T 5612的规定,依据GB/T56648分为12个牌号,分别见表1、表2。
表1 奥氏体铸铁化学成分(一般工程用牌号)表2 奥氏体铸铁化学成分(特殊用途牌号)注: QTANi35Si5Cr2牌:ASTM A439-83 C≤2.3. DIN1694-1981 C≤2.0。
ISO 2892:2007 C≤2.0。
铸造球铁熔铁配料规范篇一:球铁配料冲天炉熔炼球铁配料举例(铸态铁素体球铁)1、要求化学成分(%)C 3.5~3.7; Si 2.8~3.1;Mn≤0.35;P≤0.06;S≤0.026;Mg0.03~0.05; Re 0.02~0.04 注:此处的含C量为球化后的终C 量,而不是原铁水的含C量。
2、已知原材料化学成分(%)种类C SiMn P S历城14#生铁4.231.5 0.210.05 0.02回炉铁3.75 2.94 0.25 0.046 0.02Si-Fe:含Si为75%;焦炭:含S为0.5%;Si-Bi孕育剂含Si为70%;球化剂ReMg5-8:含Si为:42%;3、熔炼过程中元素烧损:酸性冲天炉:Si后炉按15%;炉前按10%;Mn后炉按20%;炉前按15%。
碱性冲天炉:Si后炉按25%;炉前按20%;Mn后炉按15%;炉前按10%。
4、用选择搭配方法试算(铁料按100公斤计算)原生铁65%;回炉铁35%。
5、核算炉料中的含C量C炉料=4.23%×65%+3.75×35%=4.06%由于球铁中碳当量比较高,在冲天炉熔炼条件下要减碳(当碳当量>3.6%时一般要减碳3~8%),如按5.5%计算,则从炉内出来的铁水含C量为:4.06%1×(1-5.5%)=3.84%;同时在球化处理过程中还要降碳0.1~0.2%(原因:○2一部分过饱和C以石墨形式析出,上浮进入熔渣)如球化反应使碳烧损;○按0.15%计算,则铁水最终含C量为:3.84%—0.15%=3.69%(符合3.5~3.7%的要求)6、含Si量的计算铁水最终含Si量包括以下几个部分:1)炉料中的含Si量Si炉料:Si炉料=1.5%×65%+2.94×35%=2.0%,烧损按15%计算,则从炉内出来的铁水含Si量为:2.0%×(1-15%)=1.7%; 2)一次孕育按0.2% 75 Si-Fe(覆盖在球化剂上),进入铁水的硅量Si孕育Ⅰ=0.2%×75%×(1-10%)=0.14%;3)二次孕育按0.4% 75 Si-Fe(在出铁槽加入),进入铁水的硅量Si孕育Ⅱ=0.4%×75%×(1-10%)=0.27%;4)三次孕育按0.2% Si-Bi(浇包孕育),进入铁水的硅量Si孕育Ⅲ=0.2%×70%×(1-10%)=0.13%;5)球化剂加入量按 1.7%,则球化剂进入铁水的硅量Si 球化=1.7%×42%×(1-10%)=0.64%;6)铁水终Si含量为上述1)~5)之和(如果生产管卡,还要计入0.1~0.2%的小颗粒75 Si-Fe浇包四次孕育)即Si 终=1.7%+0.14%+0.27%+0.13%+0.64%=2.88%(符合2.8~3.1%的要求)7、含Mn量的计算炉料中的含Mn量Mn炉料:Mn炉料=0.21%×65%+0.25×35%=0.224%,去掉烧损,则从炉内出来的铁水含Mn量为:0.224%×(1-20%)=0.18%;另外,稀土镁合金中一般允许含Mn≤4%,若以4%计(实际应根据验收化验的具体含量计算),并去掉烧损,则进入铁水的Mn量为:1.7%×4%×(1-15%)=0.058%,铁水中的总Mn量为两者之和即0.18%+0.058%=0.238%,在球化处理过程中由于Mn与S作用和Mn夹渣上浮,一般Mn含量要下降3%~5%,若以4%计算,则铁水的终Mn量Mn 终=0.238%×(1-4%)=0.228%(符合终Mn≤0.35的要求)。
冲天炉熔炼球铁配料举例(铸态铁素体球铁)1、要求化学成分(%)C 3.5~3.7; Si 2.8~3.1;Mn≤0.35;P≤0.06;S≤0.026;Mg 0.03~0.05; Re0.02~0.04 注:此处的含C量为球化后的终C量,而不是原铁水的含C量。
2、已知原材料化学成分(%)种类 C Si Mn P S历城14#生铁 4.23 1.5 0.21 0.05 0.02回炉铁 3.75 2.94 0.25 0.046 0.02Si-Fe:含Si为75%;焦炭:含S为0.5%;Si-Bi孕育剂含Si为70%;球化剂ReMg5-8:含Si为:42%;3、熔炼过程中元素烧损:酸性冲天炉:Si后炉按15%;炉前按10%;Mn后炉按20%;炉前按15%。
碱性冲天炉:Si后炉按25%;炉前按20%;Mn后炉按15%;炉前按10%。
4、用选择搭配方法试算(铁料按100公斤计算)原生铁65%;回炉铁35%。
5、核算炉料中的含C量C炉料=4.23%×65%+3.75×35%=4.06%由于球铁中碳当量比较高,在冲天炉熔炼条件下要减碳(当碳当量>3.6%时一般要减碳3~8%),如按5.5%计算,则从炉内出来的铁水含C量为:4.06%×(1-5.5%)=3.84%;同时在球化处理过程中还要降碳0.1~0.2%(原因:○1球化反应使碳烧损;○2一部分过饱和C以石墨形式析出,上浮进入熔渣)如按0.15%计算,则铁水最终含C量为:3.84%—0.15%=3.69%(符合3.5~3.7%的要求)6、含Si量的计算铁水最终含Si量包括以下几个部分:1)炉料中的含Si量Si炉料:Si炉料=1.5%×65%+2.94×35%=2.0%,烧损按15%计算,则从炉内出来的铁水含Si量为:2.0%×(1-15%)=1.7%;2)一次孕育按0.2% 75 Si-Fe(覆盖在球化剂上),进入铁水的硅量Si孕育Ⅰ=0.2%×75%×(1-10%)=0.14%;3)二次孕育按0.4% 75 Si-Fe(在出铁槽加入),进入铁水的硅量Si孕育Ⅱ=0.4%×75%×(1-10%)=0.27%;4)三次孕育按0.2% Si-Bi(浇包孕育),进入铁水的硅量Si孕育Ⅲ=0.2%×70%×(1-10%)=0.13%;5)球化剂加入量按1.7%,则球化剂进入铁水的硅量Si球化=1.7%×42%×(1-10%)=0.64%;6)铁水终Si含量为上述1)~5)之和(如果生产管卡,还要计入0.1~0.2%的小颗粒75 Si-Fe浇包四次孕育)即Si终=1.7%+0.14%+0.27%+0.13%+0.64%=2.88%(符合2.8~3.1%的要求)7、含Mn量的计算炉料中的含Mn量Mn炉料:Mn炉料=0.21%×65%+0.25×35%=0.224%,去掉烧损,则从炉内出来的铁水含Mn量为:0.224%×(1-20%)=0.18%;另外,稀土镁合金中一般允许含Mn≤4%,若以4%计(实际应根据验收化验的具体含量计算),并去掉烧损,则进入铁水的Mn量为: 1.7%×4%×(1-15%)=0.058%,铁水中的总Mn量为两者之和即0.18%+0.058%=0.238%,在球化处理过程中由于Mn与S 作用和Mn夹渣上浮,一般Mn含量要下降3%~5%,若以4%计算,则铁水的终Mn量Mn终=0.238%×(1-4%)=0.228%(符合终Mn≤0.35的要求)。
一.球墨铸铁生产计算方法
1.铸造`球铁用料a生铁:含硫低生铁通常用本溪产地Q10 Q12。
b回炉料:自己家已知成分水冒口。
C废钢。
最好用牌号一直的。
2.球化剂。
一般用7-8XTMg 3-8XtMg(小件多用)
3.孕育剂。
Si75粒度3-5小件硅钡孕育剂2-5粒度(做二次孕育作用)
二.球墨铸铁配料计算法
1.生铁硅的计算方法。
比如配料Q10生铁50% 回炉料40% 废钢10%
已知生铁含硅Si生=0.89%si 回炉料(根据化验或者前一天配料数)si回=2.6% si球化剂中含硅量(大部分含40-45%si)
Si终=si生*50+si回*40%+si球*球化剂用量(根据用包大小加入量1.2-1.4%)
其它成分炉料计算方法大致相同
三.装料方法
1.把称好的炉料按顺序投放依次投放炉中增碳剂-废钢-生铁-回炉料。
2.炉料装入要少100kg.溶化化后浇注碳硅仪浇注调整炉料。
3.炉温升到1530-1580出炉
4.球化包包底要按如图方式(底坑必须大于球化剂堆积体积)
1)装球化剂按比例投入摊平,捣实。
2)盖上球铁铁削(块度越小越好)均与捣实。
3)撒入少许聚渣剂(不要全盖上防止凝死)
2)铁水温度达到要求时开始倾转炉。
按图5方向注入2/3水停住。
球化包开始反应同时盖上铁盖(防止溅出)。
3)待反应接近尾声时倒入剩余铁水同时把孕育剂顺流加到包里,撒上集渣剂搅拌打渣。
4)浇注三角试片,暗红色取出用水极冷。
取出看两边缩凹中间有缩松。
断口银白色为合格。
铸铁不是纯铁,它是一种以Fe、C、Si为主要成分且在结晶过程中具有共晶转变的多元铁基合金。
化学成分一般为:C2.5%-4.0%、Si1.0%一3,0%、P0.4%~1.5%、S0.02%-02%。
为了提高铸铁的机械性能,通常在铸铁成分中添加少量Cr、Ni、C。
、Mi、等合金元素制成合金铸铁。
1 铸铁的特点和分类一、铸铁的特点1.成分与组织特点铸铁与碳钢相比较,其化学成分中除了有较高的C、Si含量外(C2.5%~4,0%、Si1.0%一3.0%),还含有较高的杂质元素Mn、P,S,在特殊性能的合金铸铁中,还含有某些合金元素。
所有这些元素的存在及其含量,都将直接影响铸铁的组织和性能。
由于铸铁中的碳主要是以石墨(G)形式存在的,所以铸铁的组织是由金属基体和石墨所组成的。
铸铁的金属基体有珠光体、铁素体和珠光体加铁素体三类,它们相当于钢的组织。
因此,铸铁的组织特点,可以看成是在钢的基体上分布着不同形状的石墨。
2.铸铁的性能特点铸铁的抗拉强度、塑性和韧性要比碳钢低。
虽然铸铁的机械性能不如钢,但由于石墨的存在,却赋予铸铁许多为钢所不及的性能。
如良好的耐磨性、高消振性、低缺口敏感性以及优良的切削加工性能。
此外,铸铁的碳含量高,其成分接近于共晶成分,因此铸铁的熔点低,约为1200℃左右,铁水流动性好,由于石墨结晶时体积膨胀,所以传送收缩率小,其铸造性能优于钢,因而通常采用铸造方法制成铸件使用,故称之为铸铁。
二、铸铁的分类铸铁的分类方法很多。
根据碳存在的形式可分为三种:1.白口铸铁(简称白口铁)白口铸铁中的碳主要以渗碳体(Cm)形式存在,断口呈白亮色。
其性能硬而脆,切削加工困难。
除少数用来制造硬度高、耐磨、不需要加工的零件或表面要求硬度高、耐磨的冷硬铸件外(如破碎机的压板、轧辊、火车轮等),还可作为炼钢原料和可锻铸铁的毛坯。
2.灰口铸铁(简称灰口铁)灰口铸铁中的碳主要以片状石墨的形式存在,断口呈灰色。
灰口铸铁具有良好的铸造性能和切削加工性能,且价格低廉,制造方便,因而应用比较广泛。
球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素;对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素;同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素;1、碳及碳当量的选择原则:碳是球墨铸铁的基本元素,碳高有助于石墨化;由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间;铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限;将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力;但是,碳含量过高,会引起石墨漂浮;因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则;2、硅的选择原则:硅是强石墨化元素;在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用;但是,硅提高铸铁的韧脆性转变温度图1,降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量;球墨铸铁中终硅量一般在—%;选定碳当量后,一般采取高碳低硅强化孕育的原则;硅的下限以不出现自由渗碳体为原则;球墨铸铁中碳硅含量确定以后,可用图2进行检验;如果碳硅含量在图中的阴影区,则成分设计基本合适;如果高于最佳区域,则容易出现石墨漂浮现象;如果低于最佳区域,则容易出现缩松缺陷和自由碳化物;3、锰的选择原则:由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成Fe、Mn3C;这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大;锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加%,脆性转变温度提高10~12℃;因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过~%;只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外;4、磷的选择原则:磷是一种有害元素;它在铸铁中溶解度极低,当其含量小于%时,固溶于基体中,对力学性能几乎没有影响;当含量大于%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性;磷提高铸铁的韧脆性转变温度,含磷量每增加%,韧脆性转变温度提高4~℃;因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于%;对于比较重要的铸件,磷含量应低于%;球墨铸铁中碳硅含量确定以后,可用图2进行检验;如果碳硅含量在图中的阴影区,则成分设计基本合适;如果高于最佳区域,则容易出现石墨漂浮现象;如果低于最佳区域,则容易出现缩松缺陷和自由碳化物;5、硫的选择原则:硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷;球墨铸铁中硫的含量一般要求小于%;。