(技术规范标准)三坐标测量技术规范
- 格式:doc
- 大小:39.57 KB
- 文档页数:17
三坐标测量仪操作规1 围本操作规规定了三坐标测量的准备、测量机的操作步骤、注意事项及维护保养的要求。
本操作规适用于公司三坐标测量机的操作。
2 规性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改)适用于本文件。
GB/T 16857.1:2002 产品几何量技术规(GPS) 词汇3 术语和定义3.1 三坐标测量机通过运转探测系统测量工件表面空间坐标的测量系统。
(源自GB/T 16857.1:2002,2.1)3.2 EHSEHS是环境 Environment、健康Health、安全Safety的缩写。
4 职责4.1 三坐标技术员负责测量程序的编辑,操作员的测量培训, 仪器的使用与维护保养,备品备件的申请、选型。
4.2 操作员负责测量程序的编辑,仪器的使用与维护保养,备品备件工装的申请、选型。
4.3 计量员负责仪器的周期校准工作。
5 过程描述5.1 测量前准备5.1.1 开机前应用蘸有无水乙醇的无尘布擦拭机器导轨,导轨擦拭禁用任何性质的油脂。
本标准文件为上海万泽精密铸造有限公司所有,内部使用,拥有著作权及法律规定的任何权益。
未经授权,任何个人或组织均不得以任何方式发行、披露或使用,否则其行为将受到法律许可范围内的起诉。
1 / 15.1.2 开机前检查是否有阻碍机器运行的障碍物。
5.1.3 零件检测时应满足下列环境要求:1) 室温度:20℃±2℃;2) 相对湿度:35﹪~75﹪;3) 气压要求:大于0.45Mpa,小于0.75Mpa。
5.1.4 检查空压气管是否接好,气管是否漏气。
气压低于规定值时,不准操作,否则会严重损坏机器。
5.1.5 被测零件在检测之前,应先清洗去毛刺,防止在加工完成后零件表面残留的冷却液及加工残留物影响测量机的测量精度及测头的使用寿命。
被测零件在测量之前应在室恒温,如果温度相差过大就会影响测量精度。
三坐标验收标准随着现代科技的不断发展和应用,三维坐标检测技术在工业生产、建筑工程、航空航天等领域中得到了广泛应用,成为保障产品质量和工程安全的重要手段。
三坐标验收标准作为评价和检验三维坐标检测技术性能的重要依据,对于保证产品质量、提高工作效率具有至关重要的意义。
下面将从三坐标验收标准的内容、体系和实施过程等方面展开探讨。
一、三坐标验收标准的内容三坐标验收标准主要包括几个方面的内容。
首先是对三维坐标检测机的性能参数和技术指标进行详细说明,包括测量精度、重复定位精度、测量范围、工作速度等。
其次是对三维坐标检测机的结构和工作原理进行介绍,以便用户对其工作机理有更深入的了解。
另外,三坐标验收标准还要求对三维坐标检测机的操作方法和注意事项进行详细描述,以确保用户正确操作设备,提高测量的准确性和可靠性。
二、三坐标验收标准的体系三坐标验收标准是一个完整的体系,包括设备标准、测试方法、验收准则等多个方面。
设备标准主要指导生产厂家设计和制造三维坐标检测机,确保设备符合国家标准和行业标准的要求;测试方法则是指导用户如何进行设备的性能测试和校准,以保证设备正常工作;验收准则则是用来评价设备性能是否达到要求,并作出验收结论。
三坐标验收标准的体系性和完整性,是保证设备性能和质量的重要保障。
三、三坐标验收标准的实施过程三坐标验收标准的实施过程一般包括以下几个步骤:首先是确定验收标准和验收内容,明确验收的范围和要求;其次是组织验收人员和设备,确保验收过程的公正性和客观性;然后是进行验收测试和数据采集,对设备的性能和精度进行评价;最后是制定验收报告和结论,给出设备的验收结果和建议。
实施三坐标验收标准的过程需要严格按照标准规范进行,以确保验收结果的科学性和有效性。
四、三坐标验收标准的意义和作用三坐标验收标准作为评价和检验三维坐标检测技术性能的重要依据,具有以下几点意义和作用:首先是为使用者提供了一个标准的检验方法和流程,可以准确评估设备的性能和精度;其次是为生产厂家提供了一个参考标准,指导生产设备的设计和制造,提高产品质量和竞争力;另外,三坐标验收标准还可以作为技术交流和合作的基础,促进行业的发展和进步。
实验室作业文件文件编号实施日期制订审核批准1.目的正确指导三坐标的使用及维护保养。
2.职责由实验室负责三坐标的使用、维护与保养及定期校验。
3.三坐标的基本组成。
3.1测量机主机和测头系统3.2控制系统和计算机.4.影响测量精度的因素。
1.温度影响对CMM精度有较大影响(环境温度应稳定)2.湿度影响湿度过大:水汽会在CMM上凝结—生锈湿度过小:影响大理石的吸水性—大理石变形;灰尘;静电3.压缩空气的影响(气浮间隙为6微米)原理:在气浮块和导轨之间有气膜,气浮轴承使轴无摩擦运动结论:气浮块的正常浮起对CMM的正常工作很重要压力波动:气浮间隙变化,重复性变化压力不足:气浮块浮不起来,导轨摩擦,精度下降(导轨和气浮块磨损)4.导轨的保护5.测针校验的准确性6.测量方法的准确性5.三坐标的使用环境。
1. 温度要求:22°C ±2°C2.2.湿度要求:40%-60%3.气压要求:4.8-6bar4.导轨保护: 每天用无水酒精擦拭导轨, 要求使用无尘纸单面擦拭,导轨上不要放物体,不要用手碰5.电源要求:220+10%(不间断电源)UPS6.三坐标开关机顺序1.开机顺序:打开气→打开控制柜电源→打开控制柜驱动→点亮控制面板→打开软件。
2.关机顺序:将测针移到右上角→关闭软件→熄灭控制面板→关闭控制柜驱动→关闭控制柜电源→关闭气源7.控制面板常用介绍实验室作业文件文件编号实施日期关机要求关机---退出测量软件-按操纵杆M 键(黄灯熄灭)-关掉左侧集成开关。
每天至少关机一次五向关机 按图片位置关机1、Z 轴处的芯片,漏出少许;2、关机位置如右图所示。
8.打开软件进入软件进行测量 1.软件2.探针校准→先校注探针再校准工作测针;3.建立基本坐标系及安全平面;4.装夹好工件在工件上提取需要的元素;5.根据图纸需要评价需要的形位位置公差。
9.根据需求提供报告 10.设备注意事宜:滤网清理每月对两侧滤网 进行清 理一次 如右图长期关机Z 轴靠上,X 轴靠近负轴如右图。
三坐标测量孔距的方法-概述说明以及解释1.引言1.1 概述概述:三坐标测量是一种精密测量技术,通过三坐标测量仪器可以实现对物体形状、尺寸、孔距等多种要素的测量。
孔距是指两个孔之间的距离,是工程设计和生产制造中常见的重要参数之一。
本文将探讨三坐标测量技术在测量孔距方面的方法和应用。
首先介绍三坐标测量技术的原理和特点,然后深入探讨不同的孔距测量方法及其优缺点,最后通过实际应用案例分析,总结该技术在孔距测量中的实际效果和应用价值。
通过本文的阐述,读者将深入了解三坐标测量在孔距测量中的重要性和实用性,为相关领域的工程技术人员提供参考与借鉴。
1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,会先对三坐标测量孔距的方法进行简要介绍和目的阐述。
接着在正文部分,分为三个小节:一是对三坐标测量技术进行简要介绍,以便读者对三坐标测量有一个全面的了解;二是对孔距测量方法进行探讨,包括不同的测量方法及其优缺点比较;三是通过实际应用案例分析,展示三坐标测量孔距方法在实际工程中的应用情况。
最后,在结论部分将对整篇文章进行总结,对不同孔距测量方法进行优劣比较,并对未来研究方向进行展望。
通过以上结构的安排,读者可以系统地了解三坐标测量孔距的方法的相关知识。
1.3 目的本文旨在探讨利用三坐标测量技术来测量孔距的方法。
通过对孔距测量方法的研究和实际应用案例分析,我们旨在总结出一种准确、高效的测量方法,并对其优劣进行比较。
同时,我们希望能够在实践中发现问题并提出未来研究方向,为这一领域的发展和提升提供有益的参考。
通过本文的研究,我们希望能够为工程领域的孔距测量提供更加有效的解决方案,促进相关技术的进步和应用。
2.正文2.1 三坐标测量技术简介三坐标测量技术是一种精密实时测量技术,通过测量目标物体上各个点的三维坐标来实现对目标物体尺寸、形状等参数的准确检测。
该技术利用三个直角坐标轴上的测量探头,可以实现对物体空间内的任意点坐标的测量。
什么是三坐标测量机的精度判定标准我们都知道,三坐标技术近年发展迅速,然后在这样的科技高速发展的条件下,必然出现一些不如意的测量产品。
对于三坐标这种高精度的测量仪器,精准度就是判断其好坏的最基本因素。
如何评定三坐标的标准是否合格呢?南京三坐标专家找出关于三坐标测量机的精度评定标准提供参考。
三坐标测量机的精度评定标准:ISO103601994年,ISO10360国际标准《坐标测量机的验收、检测和复检检测》开始实施。
这个标准说明了坐标测量机性能检测的基本步骤。
中国目前实行的测量机国家标准GB/T16857.2-1997《坐标计量学-第二部分:坐标测量机的性能测定》便等同于ISO相应标准。
ISO10360在主标题“产品几何量技术规范(GPS)–坐标测量机(CMM)的验收检测和复检检测”下,共分以下六个部分—第1部分:词汇;—第2部分:测量线性尺寸的坐标测量机;—第3部分:配置转台轴线为第四轴的坐标测量机;—第4部分:扫描测量型坐标测量机;—第5部分:多探针探测系统的坐标测量机;—第6部分:计算高斯辅助要素的误差评定。
ISO标准主要包含三个主要参数:长度测量最大允许示值误差(MPEE)、最大允许探测误差(MPEP);对于扫描测量,采用最大允许扫描探测误差(MPETHP)。
在进行测量机的采购之前,用户需要熟悉有关测量机的验收标准。
以下是关于ISO10360的简要介绍:ISO10360-1(2000)“词汇”该标准的第一部分定义了所有与坐标测量机相关的词汇定义。
例如:"探测系统"或"标准球",在这儿,我们就不再细述。
ISO10360-2(2001)“测量线性尺寸的坐标测量机”(MPEE)和最大允许探测误差(MPEP)。
长度测量最大允许示值误差MPEE:在测量空间的任意7种不同的方位,测量一组5种尺寸的量块,每种量块长度分别测量3次所有测量结果必须在规定的MPEE值范围内。
坐标测量机长度测量示值误差不确定度分析1 测量方法依据坐标测量机校准技术规范JJF1064-2000, 坐标测量机的长度测量示值误差是采用量块进行校准, 一般要沿X 轴、Y 轴、Z 轴三个方向和空间四个对角线方向放置量块。
将量块的实际长度与坐标测量机所测的结果进行比较,从而得到坐标测量机的长度测量示值误差。
由于坐标测量机测量空间不同点的测量不确定度不同,不同的测量方案对测量结果的不确定度也有不同的影响,本文讨论坐标测量机自动测量沿空间对角线放置量块的不确定度,并以标称长度为100 mm 和1000 mm 的量块为例估算不确定度,最后得到与标称长度L 有关的扩展不确定度。
2 数学模型δ=R -L (1)式中:δ──坐标测量机的长度测量示值误差; R ──坐标测量机测量量块的读数; L ──对应的量块实际长度。
3 方差和灵敏系数 依:)(][)(222k k m1k c x u x f/y u ∂∂=∑=由式(1)有)()()()()(222222L u L C R u R C u u c c ⋅+⋅=δ=式中C (R )=R ∂δ∂/=1C(L)=L ∂δ∂/-1则 )()(222L u R u u c += (2)由长度测量示值误差的数学模型,根据不确定度的传播公式得到长度测量示值误差的标准不确定度是由坐标测量机读数引起不确定度分量u (R )和量块引起不确定度分量u (L )两大部分组成。
4 不确定度的来源及估算4.1 坐标测量机读数引起不确定度分量u (R )坐标测量机读数引起不确定度主要是坐标测量机的测量重复性。
为了获得测量机沿空间测量的重复性,可将长度为20 mm 的量块沿空间对角线放置,编制测量机检测编程,让测量机自动重复测量该量块10次,得到一组测量误差 x 1,x 2,…,x 10如下表1,按式(3)得到实验标准偏差s, 则u (R )可由式(4)求得。
表1测序 1 2 3 4 5 6 7 8 9 10 误差(μm ) +1.0 +1.3 +1.4 +1.3 +1.6 +1.6 +1.6 +1.4 +1.5 +1.319.0)101(911011012=-=∑∑==i i ii x x s μm (3)u (R )= s (4)4.2 量块引起不确定度分量u (L )4.2.1 由检定量块不确定度引入的不确定度分量u (L 1)首先要根据被校准的坐标测量机最大允许示值误差 MPE E 选择采用量块的等级, 一般来说检定量块不确定度应不超过(MPE E /4)。
三坐标测量测量结果的不确定度评定1、概述测量方法:GB/T 1958-2004 产品几何量技术规范(GPS)形状和位置公差检测规定:按一定布点测出在同一测量面内的各点坐标值,用电子计算机按最小二乘方计算该量块长度。
1-1测量内容:量块长度1-2使用仪器:三坐标测量仪(Global Performance 12.30.10)1-3环境条件:温度(20±2)℃湿度:50±25%1-4测量对象:不锈钢(Lex5)2、数学模型;日期:2014-4-10y= (1)x式中x—被测量块读出值y一被测量块测定值3、测量不确定度来源的分析①测量重复性所引入的标准不确定度分量;②仪器的精度所引入的不确定度4、标准不确定度分量的评定μ单位:mm4.1测量重复性所引入的标准不确定度分量1合并样本标准差为:∑==mj p s s j m 121 =0.62μm (其中m=3)标准差j s 的标准差:1)(12)(-=∑-=∧m j s m j s s σ=0.24μm)1(2-=n S spP 比=0.15μm (其中n=10)如≤∧)(s σ S p 比,则可采用合并样本标准差Sp 来评定标准不确定度分量,反之,若子 )(s ∧σ>S p 比,则应采用Sj 中的最大值S max 来评定标准不确定度分量。
所以,1u =10/73.0=0.23μm自由度:)1(-=n m pν=)110(*3-=274.2仪器的精度所引入的不确定度2u仪器的示值误差为±2.8+3L/1000m μ按均匀分布 k=3 a=2.8+3*600/1000m μ(L 取值600mm)2u =66.23/≈a m μ2221μμ+=U =2266.223.0+=2.75m μ5.扩展不确定度取置信概率P=95%,, k 95=2 扩展不确定度U 95为U 95=k 95)(e U c ⨯=2⨯2.75≈5.51m μ 6.测量结果不确定度报告与表示三坐标测量该量块的长度为599.9922±0.00551mm报告审核: 报告编制:邓过房。
三坐标操作使用规程一、概述三坐标测量技术是一种精密的测量技术,主要用于测量三维物体的形状和尺寸。
为了确保测量结果的准确性和可靠性,对三坐标的操作规程必须严格遵守。
本文将详细介绍三坐标操作的使用规程,以及注意事项和保养维护等方面的内容。
二、操作步骤1.准备工作(1)检查三坐标仪的各个部件是否完好无损。
(2)确保三坐标仪的工作环境干燥、无尘、温度适宜。
(3)检查测量装置和测量工具是否完好,并进行必要的校准。
(4)检查工作台面和测量工件是否清洁。
2.初始化(1)打开三坐标仪的电源开关,待设备自检完成后,按照设备要求进行初始化操作。
(2)校准基准坐标系和坐标轴,确保测量的准确性。
3.夹持工件(1)选择适当的夹具,将待测工件夹持到三坐标仪的测量台上。
(2)确保工件夹持牢固,不会发生移动。
4.坐标系选择(1)根据工件的特点和测量要求,选择合适的坐标系进行测量。
(2)将工件放置在测量台上,并将其与坐标系对齐。
5.测量参数设置(1)根据实际需要,设置测量参数,包括测量模式、测量点数、测量精度等。
(2)根据工件的形状和尺寸,设置合适的测量方法和测量路径。
6.测量操作(1)在三坐标仪的操作界面上选择相应的测量指令。
(2)按照指令逐点进行测量,保持测量时操作的稳定性和准确性。
(3)根据实际需要,可以进行多次测量,取其平均值作为最终测量结果。
7.数据处理(1)测量完成后,将测量数据进行处理,包括数据的导出和保存。
(2)对于有需要的数据,可以进行进一步的分析和处理。
8.结果报告(1)根据测量数据生成测量结果报告。
(2)报告内容包括测量结果、误差分析、测量图示等。
三、注意事项1.使用前要进行设备校准和检查,确保设备的工作正常。
2.测量前要仔细检查工件,确保工件没有破损和变形。
3.在测量过程中要轻拿轻放,避免碰撞和外力干扰。
4.测量操作要稳定,尽量避免手抖和操作不规范。
5.数据处理和结果报告要仔细进行,确保测量结果的准确性和可靠性。
三坐标测量技术规范1 测量准备 21.1 基本原则 21.2 测量准备 22 工件装夹 22.1 产品形状的保持 2 2.2 装夹方位 22.3 装夹技巧 23 测量 33.1 测量的内容和次序 3 3.2 基准点组的测量 3 3.3 线的测量 33.4 面的测量 43.5 对称部分的测量 5 3.6 测量密度 53.7 测量可靠性 54 测量数据管理 54.1 数据分类与分割 6 4.2 数据文件命名 6 4.3 填写测量报告 6 4.4 数据保存 72 数据处理 72.1 数据转换 72.2 重定位整合 72.2.1 应用背景 72.2.2 重定位整合原理 72.2.3 重定位整合操作 92.3 对称基准重建 102.4 变形处理 103 设备维护 10附1 :三坐标测量报表 111 测量准备1.1 基本原则产品测量遵循以下基本原则:所有零部件应尽可能在装配状态下测量,在装配状态下无法测量的部分可分两种情况处理:一是零件之间互相遮挡的部分,可采取逐层拆卸逐层测量的方法进行。
二是零件的反面,应采用重定位的方法进行。
在拆卸任何零件之前均应测量其重定位基准(重定位基准点或边界线),并注意在拆卸过程中保证产品上的所有零件不发生变形。
1.2 测量准备为了方便测量,提高测量速度,在测量前应对零件上不明显的轮廓(倒圆)进行描点。
点应描在轮廓的中心线上,并尽可能光顺。
可通过观察平行光(日光或日光灯)在轮廓上反射光线形成的条纹来辅助描点。
2 工件装夹2.1 产品形状的保持确保装配体及其每个零件在测量状态下的形状与使用状态下一致,不得使产品在装夹时发生变形。
对于刚性较好的装配体,应在装夹时自然放置在支架上,然后进行加固。
而对于柔性或已经产生变形的工件,则应用强行约束使其形状恢复至使用状态,然后再安装到支架上固定。
应利用支架、垫块等辅助工具保证每一个零件的各部分以及整个装配体的刚性。
特别注意在对装配体逐层拆卸、逐层测量时,应确保每一零件不发生变形。
2.2 装夹方位将工件放置在三坐标测量机的测量范围内,如不能在一次装夹位置下完成测量,则可进行多次定位,称为重定位。
重定位应注意以下原则:(1)使每次定位所能达到的测量范围最大化,以减少重定位次数。
(2)每次定位应与之前的某次定位有尽可能大的重合测量区域,以保证定位基准的设置和重定位变换的精度。
(3)应尽可能减少重定位变换(即每次定位向第一次定位进行坐标位变换)的中间环节尽可能少(详见数据处理部分有关“重定位”的叙述),以减少累积误差。
工件的放置应便于测量人员的操作,将复杂部位放置在易于测量的位置。
重要的测量面应尽可能放置成水平或垂直状态,工件的对称面应尽可能平行于测量机的坐标平面。
2.3 装夹技巧(1)采用棉花堆积并浇502的方法可完成点接触的加固。
(2)大变形产品在拆卸前可用麻线绷紧并固定在易于变形的位置,产品拆下后将其恢复至麻线绷紧的状态即可作为对装配状态的近似模拟。
3 测量3.1 测量的内容和次序测量的内容包括基准点、分型(边界)线、轮廓线、面、结构等。
测量的次序按如下原则制订:(1)先难后易:即先测量难度较大的部分。
(2)先重后轻:即先测量重要的部分。
如基准点、分型线等。
(3)先配合后个体:即先测量装配结合部分。
(4)先整体后细节:即先完成主体的形位测量,再补充细节。
当然,在安排次序时,还要结合下面的具体情况灵活处理:(1)造型进度的需要。
(2)在同一次定位下完成尽可能多的数据测量。
(3)测量器具的局限。
如探针在同一方位下可测量尽可能多的数据,以减少探针的换位次数。
3.2 基准点组的测量基准点组由三个基准点组成,是进行重定位变换的依据。
基准点的生成及测量要求如下:(1)基准点必须设定在重复定位后可以测量到的范围内,最好能用于多次重复定位。
用针尖在产品表面(可贴纸)点出,要求点径微小(直径0.2mm以内)并且醒目。
(2)重复测量可靠性和精度要求高,两次定位下的测量重复误差(指三点之间的间距测量重复误差)不超过0.2mm。
为此可以采取多次测量取平均值的方法提高可靠性。
(3)基准点所形成的三角形面积要尽可能大,边长应有明显差异(大于5mm)。
3.3 线的测量当测量人员直接对边界线进行测量时,由于难以将探针尖对准边界线,因此常常造成较大的测量误差,效率也较低。
为此,可采用如下方法改进:在边界线某一侧的面(面1)上、并且在距边界线不远处(1mm 以内)采点(称为边界附近测量点),然后测量边界线另一侧面(面2)的完整数据。
在造型时,先完成面2的制作,然后直接将边界附近测量点投影在面2上即可作为边界线测量结果。
图1中是两个典型情况的示意。
采用这一方法时有两点需要特别注意:一是边界附近测量点一定要在离边界足够近,以保证投影的准确性;二是面2的测量数据一定要完整,否则一旦面2无法制作,则边界线无法求出。
本方法将边界线的测量转化为边界线附近的面内点的测量,避开了对边界线的直接测量,不仅保证的测量精度,还有效提高了测量效率。
(a)(b)图13.4 面的测量平面的测量应使测量点形成的多边形面积尽可能大,以保证测量精度。
曲面的测量应注意使扫描方向与曲面的长度方向垂直如图2(a)。
当曲面长度与宽度基本相同时,应考虑采用网格扫描,如图2(b)。
(a)(b)图2当然,一些简单曲面如直纹面只需要测量上、下两条边界线即可。
对于特殊曲面的测量需要与造型人员协商确定。
3.5 对称部分的测量对称的曲面一般只需要测量一半。
轮廓线和结构除了完整测量其中一半之外,还需要对另外一半进行部分测量,以取得足以进行对称基准重建的数据。
在选择另一半用于对称基准重建的轮廓线进行测量时,应注意以下几点:(1)轮廓线的范围要足够大,最好在对称部分的全范围内分布。
(2)要选择足够清晰、变形小、重要的轮廓线进行测量,一般采用分型线。
(3)轮廓线可以分段测量,测量密度也可适当减小。
3.6 测量密度测量密度应掌握两个基本原则:(1)最少增半:即按需要的最小测量密度的1.5倍进行测量,以确保数据的完备性。
如圆弧线的测量至少需要三点,实际测量4到5个点。
(2)急密缓疏/疏密有致:在曲率较大处测量密度高,曲率较小处测量密度低。
在多个面的交会处、变化较多的细节部分等需要增加密度,以确保测量的完备性。
3.7 测量可靠性确保测量数据准确、数据保存可靠的几个措施:(1)为防止测量设备精度飘移,必须在一定的时间间隔内(建议为半小时)进行零点复校。
如出现零点超差(一般为0.2mm),则该时间间隔内的测量数据全部报废。
(2)同一次零点校验的操作应做两次,并进行对比以防止操作失误。
(3)在多名测量人员进行配合测量时,应按零件、测量属性进行明确的分工,以防止漏测及重复测量。
即使增加了零点校验的次数,总体上还是提高了效率。
(4)重要的工件应制作并测量重定位基准,以备补测数据。
4 测量数据管理2.1 数据转换数据转换的任务和要求:(1)将测量数据格式转化为CAD软件可识别的IGES格式,合并后以产品名称或用户指定的名称分类保存。
(2)不同产品、不同属性、不同定位、易于混淆的数据应存放在不同的文件中,并在IGES文件中分层分色。
数据转换使用《三坐标测量数据处理系统》完成,操作方法见软件用户手册。
2.2 重定位整合2.2.1 应用背景在产品的测绘过程中,往往不能在同一坐标系将产品的几何数据一次测出。
其原因一是产品尺寸超出测量机的行程,二是测量探头不能触及产品的反面,三是在工件拆下后发现数据缺失,需要补测。
这时就需要在不同的定位状态(即不同的坐标系)下测量产品的各个部分,称为产品的重定位测量。
而在造型时则应将这些不同坐标系下的重定位数据变换到同一坐标系中,这个过程称为重定位数据的整合。
对于复杂或较大的模型,测量过程中常需要多次定位测量,最终的测量数据就必需依据一定的转换路径进行多次重定位整合,把各次定位中测得的数据转换成一个公共定位基准下的测量数据。
2.2.2 重定位整合原理工件移动(重定位)后的测量数据与移动前的测量数据存在着移动错位,如果我们在工件上确定一个在重定位前后都能测到的形体(称为重定位基准),那么只要在测量结束后,通过一系列变换使重定位后对该形体的测量结果与重定位前的测量结果重合,即可将重定位后的测量数据整合到重合前的数据中。
重定位基准在重定位整合中起到了纽带的作用,如图4所示。
图4图5给出了因被测量物体的尺寸超出了测量范围而必须进行两次定位的示意。
其中,图5(a)和图5(b)分别为第一次定位和第二次定位的情况。
在被测物体上选取不共线且在两次定位状态下均可测量的三个点A、B和C,称为重定位基准点。
设在第一次定位状态下测得A、B、C的坐标值分别为(x1,y1,z1) 、(x2,y2,z2)和(x3,y3,z3)。
在第二次定位状态下测得的坐标值分别为(X1,Y1,Z1)、(X2,Y2,Z2)和(X3,Y3,Z3)。
由于工件发生过移动,如果不进行重定位整合,直接将两次定位下的测量数据合并,就会产生如图5(c)的结果。
如果我们利用一系列变换,将第二次定位下测量得到的A、B、C三点“拖动”至与第一次定位下的测量结果重合,同时第二次定位下的其它测量数据也跟着进行同样的变换,则可将第二次定位下的测量数据转换到第一次定位下的坐标系中,从而完成两次定位下的数据整合,如图5(d)。
除了利用基准点外,还常常采用基准线进行重定位整合,即在两次定位中分别测量产品上的同一条边界线或轮廓线(称为重定位基准线,如图5中标出的两条粗线段),然后将第二次定位下的测量数据进行一系列变换,使两次定位下的重定位基准线重合,即可将第二次定位测量数据整合到第一次定位中。
(a)第一次定位(b) 第二次定位(c)直接合并的结果(d) 重定位整合的结果图42.2.3 重定位整合操作首先,重定位基准(无论是基准点还是基准线)必须设置在两次定位下都能进行精确测量的位置。
当需要进行两次以上的重定位时,应将所有重定位下的测量数据整合到第一次定位中。
如果在第N次定位与第一次定位之间不能设置重定位基准,则它不能直接与第一次定位进行整合,需要通过另外的定位间接地整合到第一次定位中。
例如,在某次测量中做了5次定位,其中第5次定位与第3次定位之间设置了重定位基准,而第3次定位与第一次定位之间存在重定位基准,则可先将第5次定位下的测量数据整合到第3次定位中,然后再与第3次定位一起整合到第一次定位中。
这一整合过程称为重定位整合路径,简写为5-3-1。
显然,重定位整合路径必须以1为结束,即最终整合到第一次定位中。
而且该路径越短越好,以减少中间过程的累积误差。
这就要求测量人员合理地规划重定位,使每次定位都能以最短的路径整合到第一次定位中。
三个重定位基准点构成一个重定位基准,称为一个重定位基准点组(简称基准点组),并以组号区分不同的基准点组。