直读光谱测量不确定度的评定研究
- 格式:pdf
- 大小:137.91 KB
- 文档页数:4
火花源原子发射光谱分析方法测量不确定度评定1.概述1.1目的:评定火花源原子发射光谱分析方法铁含量的测量不确定度1.2测量依据:GB/T4336—2002《碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)》1.3环境条件:室温200C~300C,湿度20%~70%。
1.4测量仪器设备:SPECTOR光谱仪,型号LAVFA18A,出厂编号4K0101;光源方式:高能放电火花;激发腔氛围:工业纯氩气(经净化),压力0.2~0.4Mpa;控样采用郑州轻金属研究院的铝块光谱标准样品中212标样,标准样品证书编号:国标样证字[2006]第745号。
该光谱仪2008年5月8日检定。
1.5被测样品及被测量被测样品是重熔铝锭生产过程中取的铝块试样被测量为被测样品的铁含量1.6测量方法:用控样调整曲线至符合要求,将加工好的试样用激发系统激发发光,经分光系统色散为光谱,对选用的内标线和分析线由光电转换系统及测量系统进行光电转换并测量,分析曲线计算出分析试样中各测定元素的含量,通过计算机分析试样中各测定元素的含量,通过计算机直接读出其含量。
1.7评定结果的使用:只要符合上述条件,可以直接使用本不确定度的评定方法,但对于不同的仪器和不同的被测元素应有不同的不确定度的值。
2.数学模型 C=XC—输出浓度 X—输入量 3.测量不确定度来源被测量C的不确定度来源主要有:①光电直读光谱仪的技术性能引入的不确定度②标准物质引入的不确定度③样品的均匀性引入的不确定度④测量的重复性引入的不确定度⑤数字修约引入的不确定度 4.标准不确定度的评定①光电直读光谱仪的技术性能引入的不确定度取一标准控样212,不对工作曲线进行校正直接在LAVFA18A光谱仪上连续激发11次,记录铁含量,其结果如下:光谱仪的技术性能引入的不确定度服从均匀分布,故K=则其标准不确定度为:UC1=SD/=0.0010/=0.0006 ②标准物质引入的不确定度我单位作为控样的标准物质为212标样,证书显示铁含量为0.140,标准偏差为0.002即UC2=0.002③样品的均匀性引入的不确定度从我单位内部分析的重熔铝锭试样中随机抽取编号为2512—08号样为例,受样品体积的限制,最多车制4次,每车制一次激发3个点,共激发12点进行评定,记录铁含量如下表:第一次车制铁含量X1=0.128 X2=0.124 X3=0.134 第二次车制铁含量X4=0.129X5=0.136 X6=0.127 第三次车制铁含量X7=0.133 X8=0.128 X9=0.131 第四次车制铁含量X10=0.138 X11=0.130 X12=0.135 SD=0.0042该项标准不确定度为UC3=SD/n=0.0093/=0.001④测量的重复性引入的不确定度取一均匀铝样激发10次得到铁含量结果如下表故标准不确定度为UC4=SD=0.0004⑥数字修约引入的不确定度计算机给出的铁含量为四位小数,检测结果最终依据“四舍六入五留双”的规则保留两位小数,数字修约导致的不确定度服从均匀分布,故该项不确定度UC5=0.005/3=0.0035.合成标准不确定度UC=UC12+UC22+UC32+UC42+UC52 =0.00386.扩展标准不确定度根据惯例,取包含因子K=2,置信概率P≈95%,则扩展不确定度为U=K×UC=2×0.0038=0.0076由于本检测室检测报告中铁含量仅保留2位小数,故取U=0.017.测量不确定度报告对铝样2512—08检测的铁含量为0.13,则检测结果为 C=C+U=错误!未指定书签。
直读光谱法测定低合金钢中碳的测量不确定度评定报告测量不确定度是评价测量结果的可靠性和可信度的重要指标之一、在直读光谱法测量低合金钢中碳含量时,测量不确定度评定是必不可少的环节。
一、引言本文针对直读光谱法测量低合金钢中碳含量的测量不确定度进行评定,目的是为了更准确、可信地评估该测量方法的适用性和测量结果的可靠性。
二、实验流程1.样品制备:从低合金钢中制备一系列不同碳含量的样品。
2.仪器:使用直读光谱仪对样品进行碳含量测量。
3.实验操作:根据仪器操作手册的要求,将待测样品放入仪器进行测量。
4.数据处理:将测得的光谱数据进行分析,并计算出样品的碳含量。
三、确定因素1.仪器误差:直读光谱仪所带来的误差是影响测量结果不确定度的重要因素之一、通过仪器的精度等级和最小分度值,可以评估仪器误差的大小。
2.操作误差:仪器的使用者在操作过程中可能产生的误差,如读数误差、操作不规范等。
3.样品制备误差:样品制备过程中可能存在的误差,如样品准备不均匀、化学反应的温度和时间控制不准确等。
四、评定方法1.统计方法:通过对多次重复测量数据的统计分析,计算出均值和标准偏差,从而评估测量结果的可靠性。
2.置信区间法:根据测量结果的置信区间范围,确定测量结果的不确定度。
3.模拟方法:通过对实验过程进行模拟,对各种影响因素进行量化分析,从而评估测量结果的不确定度。
五、实验结果与讨论根据实验数据的统计分析,得出测量结果的均值和标准偏差,进而计算出测量结果的不确定度。
同时,进行了置信区间法和模拟方法的评估,得到相应的测量不确定度。
六、结论七、改进建议1.提高仪器的精度等级,更新仪器以提高测量结果的准确性。
3.在样品制备过程中加强控制,严格控制反应条件,以提高样品制备的准确性。
4.进行更多的重复测量,扩大样本量,进一步提高统计分析的可靠性。
总之,本文通过对直读光谱法测量低合金钢中碳含量的测量不确定度进行评定,提出了改进建议,旨在提高该测量方法的可靠性和测量结果的准确性。
光电直读光谱仪测定不锈钢中C、Si、Mn、P、S元素含量的不确定度评定1 目的用光电直读光谱法测定不锈钢中C、Si、Mn、P、S元素的含量。
2 试验部分试验设备:光电直读光谱仪WLD—4C(北京现代瑞利)试验方法:依据GB/T11170—2008《不锈钢多元素含量的测定火花放电原子发射光谱分析法(常规法)》进行试验。
试验过程:先用标准试样对直读光谱仪进行校准,然后用光谱磨样机将试样表面加工成光洁平面,置于直读光谱仪的激发台上,加电激发,平行测试5次。
3 不确定度来源分析从整个操作过程分析,影响光谱分析元素不确定度的因素有以下几个方面:(1)人员。
包括测试人员的质量意识、技术水平、熟练程度及身体素质。
测试人员对试样的激发操作点不同引起测试结果偏差。
(2)仪器。
包括光谱仪的稳定性;光源的性能及其再现性;氩气系统的稳定程度(包括净化程度、压力、流量等);试样加工设备及电源稳压系统的精密度和所有这些设备的维护保养状态。
(3)试样。
包括试样成分的均匀性,重复性,热处理状态及组织结构状态;标准样品及控制样品成分的均匀性,成分含量标准的可靠性、其组织结构与被测试样的组织结构的同一性以及制样表面的光洁度。
(4)分析方法。
分析方法本身的不确定度。
工作曲线的制作及其拟合程度,操作规程(包括仪器参数的选择,干扰元素的修正方式等)。
(5)环境。
实验室的温度、湿度、噪声和清洁条件等。
4 建立数学模型建立与被测量有影响的量的函数关系:y=x+b 式中:y —修正值x —测量值 b —校正值5 分析计算各相对标准不确定度5.1 由测试人员引起的不确定度光谱分析试验由同一测试人员进行试验,不存在技术水平、操作熟练程度方面的偏差,因此由人员引起的不确定度可以忽略。
5.2 直读光谱仪的相对标准不确定度根据直读光谱仪的计量校准证书,可以得出当K=2时的各元素的扩展不确定度,见表1:表1 直读光谱仪校准证书中各元素的不确定度元素 C Si Mn P S 标准值 /% 0.0800.7340.8360.0230.023扩展不确定度 /%(k=2)0.015 0.018 0.007 0.001 0.002分别计算可以得到各元素的相对标准不确定度:211,110375.9080.02015.0)()()(-⨯=⨯=⋅=C w k C U C u rel ;211,110226.1734.02018.0)()()(-⨯=⨯=⋅=Si w k Si U Si u rel ;311,110187.4836.02007.0)()()(-⨯=⨯=⋅=Mn w k Mn U Mn u rel ;211,110174.2023.02001.0)()()(-⨯=⨯=⋅=P w k P U P u rel ;211,110348.4023.02002.0)()()(-⨯=⨯=⋅=S w k S U S u rel 。
摘要:对材料的任何特性参量(物理、化学)进行检测或测量时,无论分析方法如何完善,仪器设备如何先进,其测量结果总会有误差的存在[1],表征合理地赋予被测量之值的分散性,与测量结果相联系的参数,就是测量的不确定度[2]本文通过对直读光谱仪测量不锈钢中碳、硅、锰、磷、硫、铬、镍等元素的不确定度评定,分析了不确定度分量的主要来源,对各不确定度分量进行了评定。
关键词:不确定度 直读光谱仪1.实验概述1.1 设备SPECTRO MAXx固定式火花直读光谱仪1.1.1仪器原理样品经过火花放电生成蒸气,在此过程中,释放的原子和离子受到激发发射光谱。
这种光谱被传导到光学系统中,并使用光电转换元件CCD检测元素特征波长的光强度。
通过与存储在设备的已知含量标准物质元素的相应波长光强度做比较,计算出未知测试样品中元素含量。
1.2 测试条件环境温度20℃~30℃,环境湿度40~70%RHSPECTRO MAXx固定式火花直读光谱仪使用说明书。
1.3 测试方法1.3.1试样的制备依据GB/T 11170-2008制样方法,将标准试样与待测试样,测试面打磨平整,采用SPECTRO MAXx火花源原子发射光谱进行测试。
1.3.2试样的检测SPECTRO MAXx固定式火花直读光谱仪,已按照测试的需要,配置不同基体的测试程序及通道,不同元素含量范围的工作曲线。
检测人员只需依据检测试样的材料与元素含量,调取所需要通道,并进行仪器校准和类型校准后就可进行检测。
实际测试时,首先进行类型标准化,用标钢校正工作曲线,然后在试样的不同部位连续激发3次,测试数据若在重复性要求范围内则直接取平均值。
不确定度评定需要对未知样品不同位置平行测定六次。
2.不确定度来源与评定2.1建立数学模型工作曲线回归方程为I=a+bc,式中:I:仪器测量的光谱强度(或相对强度)a:工作曲线截距b:工作曲线斜率c:样品中元素的浓度随着光谱分析技术的发展,将样品进行激发时,所显示出的结果,即为样品的含量。
直读光谱法测定低合金钢中碳的测量不确定度一、概述1、目的用直读光谱法测定低合金钢中碳的测量不确定度。
2、检测依据的标准GB/T4336-2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)3、检测使用的仪器设备和检测环境(1)直读光谱仪: Q8 Magellan(德国利曼)型多通道真空直读光谱仪。
光栅刻线数高2400线/毫米、光栅焦距750毫米、波长范围110 nm – 800 nm、真空度不高于0.03mmHg、色散(一级谱线)0.52 nm/mm 、(二级谱线)0.26 nm/mm、(三级谱线)0.13 nm/mm。
工作环境: 相对湿度45%,温度23℃,Δt≤±2℃。
(2)标准物质和试样GBW01328-01333光谱标准物质(φ32×28),低合金钢试样(30mm×30mm×30mm),表面用60目的砂轮抛光。
(3)校准曲线拟合每块标准物质激发3点(RSD≤3%),根据元素含量与元素的相对光强进行曲线拟合。
(4)试验程序按GB/T4336-2002标准进行测定,分析线为C193.0nm,内标线为Fe 271.4nm。
分析试样激发两次(两次结果超过本实验室内允许差时,须重新分析),结果取平均值。
二、不确定度来源电火花直读光谱法测定低合金钢中碳的不确定度主要来自试样的不均匀性、电火花光源的不稳定性、光电倍增管负高压的不稳定性、光电流与光强的转换过程、温湿度变化引起的分光系统的漂移、校准曲线的线性拟合、标准物质的定值。
其中前4个因素对测定结果产生的不确定度集中体现在校准曲线回归拟合引入的不确定度;由于每次的实验环境是严格控制的,可以认为仪器标准化后的一定时间内温度和湿度几乎不发生变化,本文把温度和湿度变化引起的分光系统的漂移对测量结果所产生的不确定度予以忽略;因而电火花直读光谱法测定低合金钢中碳的不确定度主要来自校准曲线的回归拟合和标准物质的定值。