基于Sobel算子的图像锐化偏微分方程图像处理
- 格式:doc
- 大小:691.00 KB
- 文档页数:6
偏微分方程在图像处理中的应用近年来,随着计算机技术的飞速发展,图像处理技术在各个领域得到了广泛应用。
而偏微分方程作为数学分析中的重要工具,也在图像处理中发挥着重要的作用。
本文将探讨偏微分方程在图像处理中的应用。
一、图像去噪图像去噪是图像处理中的一个重要问题,而偏微分方程可以通过模型来实现图像的去噪。
常见的偏微分方程去噪模型有总变分模型和非局部模型。
总变分模型是一种基于全变分的去噪方法,它通过最小化图像的总变分来实现去噪。
总变分是图像灰度在空间上的变化程度的度量,通过控制总变分的大小,可以实现去除图像中的噪声。
非局部模型则是通过对图像进行非局部相似性的测量,将图像的每个像素点与其周围像素点进行比较,从而实现去噪的效果。
二、图像增强图像增强是指通过一系列的处理方法,改善图像的质量和视觉效果。
偏微分方程可以通过图像的梯度信息来实现图像的增强。
梯度是指图像中像素灰度变化的速率,是图像中最重要的特征之一。
通过计算图像的梯度,可以得到图像中每个像素点的亮度变化情况,从而实现图像的增强。
常见的偏微分方程增强模型有梯度扩散模型和非线性扩散模型。
梯度扩散模型通过对图像的梯度进行扩散,使得图像中的细节信息得到增强。
非线性扩散模型则是通过对图像的梯度进行非线性的处理,进一步增强图像的细节信息。
三、图像分割图像分割是将图像分成若干个具有独立特征的区域的过程。
偏微分方程可以通过对图像的边缘进行检测,实现图像的分割。
边缘是图像中灰度变化突然的地方,是图像分割中最重要的特征之一。
通过对图像的边缘进行检测,可以将图像中的不同区域分割开来。
常见的偏微分方程分割模型有基于水平集的模型和基于变分的模型。
基于水平集的模型通过对图像中的边缘进行演化,实现图像的分割。
基于变分的模型则是通过最小化图像的能量函数,将图像分割成不同的区域。
四、图像恢复图像恢复是指通过一系列的处理方法,从损坏或噪声严重的图像中恢复出原始图像。
偏微分方程可以通过最小化图像的能量函数,实现图像的恢复。
《数字图像处理作业》图像的锐化处理---拉普拉斯算子、prewitt算子、sobel算子性能研究对比一、算法介绍1.1图像锐化的概念在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。
一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。
这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。
为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。
考察正弦函数,它的微分。
微分后频率不变,幅度上升2πa倍。
空间频率愈高,幅度增加就愈大。
这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。
最常用的微分方法是梯度法和拉普拉斯算子。
但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。
图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。
图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
边缘检测可分为两大类基于查找一类和基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
摘要图像增强是指依据图像所存在的问题,按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些冗余信息的处理方法。
其主要目的是使得处理后的图像对给定的应用比原来的图像更加有效同时可以有效的改善图像质量。
图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、平滑和锐化等几种常用的增强方法、彩色图像增强的理论基础,通过MATLAB实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。
关键词MATLAB ;图像锐化;边界提取AbstractImage enhancement is based on the problems existing in the images, according to the specific need to highlight some of the information in an image, at the same time, to weaken or remove some redundant information processing method. Its main purpose is to make the image after processing for a given application is more effective than the original image at the same time can effectively improve the image quality. Image enhancement technology mainly includes histogram modification, image smoothing processing, image intensification processing and color processing technology, etc. This article first overview of the principle of image enhancement and image enhancement method of classification and histogram enhancement, smoothing and sharpening of several common enhancement method, the theoretical basis of color image enhancement, through practical processing effect of MATLAB experiment compared the advantages and disadvantages of various algorithms, discussed the main technical points of the different enhancement algorithm, and its image enhancement method for performance evaluation.Key wordsMATLAB;image sharpening; edge extraction·目录摘要 0Abstract (1)第一章绪论 (3)1.1 图像锐化及边界提起发展背景和意义 (3)1.2 图像锐化处理的现状和研究方法 (3)1.3MATLAB简介 (4)1.4 MATLAB对图像处理的特点 (4)第二章基于MATLAB的图像锐化 (5)2.1图像锐化概述 (5)2.2 线性锐化滤波器 (5)2.3 非线性锐化滤波器 (6)2.3.1 Roberts算子 (6)2.3.2 Prewitt锐化算子 (7)2.3.3 Sobel锐化算子 (8)2.3.4 一阶微分锐化的效果比较 (9)2.3.5 二阶微分锐化其算法为: (9)第三章基于MATLAB的边界提取 (11)3.1图像边界提取的概念 (11)3.2微分算子法 (11)3.2.1 Sobel算子 (12)3.2.3 prewitt算子 (12)3.2.4 Laplacian算子 (13)3.2.5 Canny边缘检测法 (13)3.2.6各种方法边界提取的图像 (15)3.2.7结论 (17)参考文献 (18)致谢 (19)第一章绪论1.1 图像锐化及边界提起发展背景和意义数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
图像处理中的边缘检测算法研究与性能评估引言:在当今数字图像处理领域,边缘检测一直是一个重要且挑战性的问题。
边缘提取是图像处理中的一项基本操作,对于目标检测、图像分割和图像识别等任务都具有重要意义。
边缘检测的目标是找到图像中明显的灰度跃变区域,以准确地确定物体的边缘位置。
本文将介绍几种常见的图像处理中的边缘检测算法,并对其性能进行评估。
一、经典边缘检测算法1. Sobel算子Sobel算子是一种基于差分的边缘检测算子,它结合了图像梯度的信息。
Sobel算子使用一个3×3的模板对图像进行卷积操作,通过计算水平和垂直方向上的梯度来找到边缘位置。
Sobel算子虽然简单,但在边缘检测中表现良好。
2. Prewitt算子Prewitt算子是另一种基于差分的边缘检测算子,与Sobel 算子类似,它也使用一个3×3的模板对图像进行卷积操作。
该算子通过计算水平和垂直方向上的梯度来检测边缘。
Prewitt 算子在边缘检测中也有较好的性能。
3. Canny边缘检测Canny边缘检测是一种广泛应用的边缘检测算法。
与Sobel 和Prewitt算子相比,Canny算法不仅能够检测边缘,还能够进行边缘细化和抑制不必要的边缘响应。
它通过多阶段的边缘检测过程,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理等步骤,来提取图像中的边缘。
二、边缘检测算法的性能评估1. 准确性评估准确性是评估边缘检测算法好坏的重要指标。
在进行准确性评估时,可以使用一些评价指标,如PR曲线、F值等。
PR 曲线是以检测到的边缘像素为横坐标,以正确的边缘像素为纵坐标绘制的曲线,用于评估算法的召回率和准确率。
F值则是召回率和准确率的综合评价指标,能够综合考虑算法的检测效果。
2. 实时性评估实时性是边缘检测算法是否适用于实际应用的重要因素。
在实时性评估时,可以考虑算法的运行时间,以及算法对硬件资源的要求。
边缘检测算法应尽量满足实时性的要求,并能够在不同硬件平台上高效运行。
图像处理中的边缘检测方法与性能评估边缘检测是图像处理和计算机视觉领域中的一项重要任务。
它主要用于提取图像中物体和背景之间的边界信息,便于后续的图像分割、目标识别和物体测量等应用。
在图像处理领域,边缘被定义为亮度、颜色或纹理等属性上的不连续性。
为了实现准确且可靠的边缘检测,许多不同的方法和算法被提出并广泛应用。
在本文中,我们将介绍几种常见的边缘检测方法,并对它们的性能进行评估。
1. Roberts 算子Roberts 算子是一种基于差分的边缘检测算法,它通过对图像进行水平和垂直方向的差分运算来检测边缘。
这种算法简单且易于实现,但对噪声比较敏感。
2. Sobel 算子Sobel 算子是一种常用的基于梯度的边缘检测算法。
它通过在图像上进行卷积运算,计算像素点的梯度幅值和方向,从而检测边缘。
Sobel 算子可以有效地消除噪声,并在边缘方向上提供更好的响应。
3. Canny 边缘检测Canny 边缘检测是一种经典的边缘检测算法。
它包括多个步骤,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理。
Canny 边缘检测算法具有较高的准确性和鲁棒性,广泛应用于实际图像处理中。
除了以上提到的方法外,还存在许多其他的边缘检测算法,如拉普拉斯算子、积分图像算法等。
这些算法各有优缺点,选择合适的算法需要根据具体应用情况和要求来确定。
对于边缘检测方法的性能评估,通常使用以下几个指标来衡量:1. 精确度精确度是评估边缘检测算法结果与真实边缘之间的差异的指标。
可以通过计算检测结果与真实边缘的重叠率或者平均绝对误差来评估。
2. 召回率召回率是评估边缘检测算法是否能够正确检测到真实边缘的指标。
可以通过计算检测结果中的边缘与真实边缘的重叠率或者正确检测到的边缘像素数量与真实边缘像素数量的比值来评估。
3. 噪声鲁棒性噪声鲁棒性是评估边缘检测算法对图像噪声的抗干扰能力的指标。
可以通过在含有不同噪声水平的图像上进行测试,并比较检测到的边缘结果与真实边缘的差异来评估。
XXXXXXXX 大学(数字图形处理)实验报告 实验名称 图像的平滑与锐化 实验时间 年 月 日专 业 姓 名 学 号 预 习 操 作 座 位 号 教师签名 总 评一、实验目的:1.了解图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本思想;2.掌握图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本步骤;二、实验原理:1. 邻域平均法的思想是用像素及其指定邻域内像素的平均值或加权平均值作为该像素的新值,以便去除突变的像素点,从而滤除一定的噪声。
邻域平均法的数学含义可用下式表示:∑∑==⎪⎭⎫ ⎝⎛=mn i imn i i i w z w y x g 11),( (1) 上式中:i z 是以),(y x 为中心的邻域像素值;i w 是对每个邻域像素的加权系数或模板系数; m n 是加权系数的个数或称为模板大小。
邻域平均法中常用的模板是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡*=11111111191Box T (2) 为了解决邻域平均法造成的图像模糊问题,采用阈值法(又叫做超限邻域平均法,如果某个像素的灰度值大于其邻域像素的平均值,且达到一定水平,则判断该像素为噪声,继而用邻域像素的均值取代这一像素值;否则,认为该像素不是噪声点,不予取代),给定阈值0T :⎩⎨⎧≥-<-=00),(),(),(),(),(),(),(T y x g y x f y x g T y x g y x f y x f y x h (3) (3)式中,),(y x f 是原始含噪声图像,),(y x g 是由(1)式计算的平均值,),(y x h 滤波后的像素值。
2.中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
1.灰度变换与空间滤波一种成熟的医学技术被用于检测电子显微镜生成的某类图像。
为简化检测任务,技术决定采用数字图像处理技术。
发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2的范围,因此,技术人员想保留I1-I2区间范围的图像,将其余灰度值显示为黑色。
(5)将处理后的I1-I2范围内的图像,线性扩展到0-255灰度,以适应于液晶显示器的显示。
请结合本章的数字图像处理处理,帮助技术人员解决这些问题。
1.1问题分析及多种方法提出(1)明亮且孤立的点是不够感兴趣的点对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。
均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
优点:速度快,实现简单;缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
其公式如下:使用矩阵表示该滤波器则为:中值滤波:滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。
其过程为:a 、存储像素1,像素2.....像素9的值;b 、对像素值进行排序操作;c 、像素5的值即为数组排序后的中值。
优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。
缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。
基于偏微分方程的图象处理课程设计
(2014年秋季学期)
学院
专业信息与计算科学
班级信计12-1班
名称基于Sobel算子的图像锐化
组员
指导教师
2014 年月日
一、目的与要求
《图像处理》就是信息与计算科学专业一门重要的基础课程之一,它主要应用在医疗、生物等学科的图象处理方面,就是当今社会发展较为迅速的一门技术。
课程设计的一个重要的环节就是实践环节,主要锻炼学生的动手能力,以及团队能力,独立思考能力等。
二、设计的方案
2、1模型的建立
Sobel算子 (加权平均差分法)
Sobel算子就是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。
Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
实际使用中,常用如下两个模板来检测图像边缘。
-1 0 1
与一些传统的图像锐化方法相比,基于sobel 算子的锐化在诸多方面都得到了改进,这些也成了sobel 算子发展的有力保证,sobel 算子的具体定义如下:
Dx=[f(x+1,y-1)-f(x-1,y-1)]+2[f(x+1,y)-f(x-1,y)]+[f(x+1,y+1)-f(x-1,y+1)], Dy=[f(x-1,y+1)-f(x-1,y-1)]+2[f(x,y+1)-f(x,y-1)]+[f(x+1,y+1)-f(x+1,y-1)]、 Sobel 算子也可用模版表示,如图2所示,模版中的元素表示算式中相应像素的加权因子。
101202102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦ 121000121---⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
图2
2、2模型的实现
由于sobel 算子就是相隔两行或两列之差分,故边缘两侧元素得到增强,同时由于sobel 算子引入了平均元素,对图像中的随机噪声有一定的平滑作用,所以离散化采用sobel 算子,同时以sobel 算子较强的锐化作用达到锐化目的
三、主要实现程序 ( MATLAB )
命令:
>> W_H1=[-1,0,1;-2,0,2;-1,0,1];
>> W_H2=[-1,-2,-1;0,0,0;1,2,1];
>> T=0、165;
>> L=imread('1、bmp','bmp');
>> %L=imread('1、tif','tif');
>> [height,width]=size(L);
>> L1=double(L);
>> L2=zeros(height+2,width+2);
>> L2(2:height+1,2:width+1)=L1;
>> for i=2:height+1
for j=2:width+1
sum1=0;
sum2=0;
for m=-1:1
for n=-1:1
sum1=sum1+W_H1(m+2,n+2)*L2(i+m,j+n); end
end
for m=-1:1
for n=-1:1
sum2=sum2+W_H2(m+2,n+2)*L2(i+m,j+n); end
end
grey=abs(sum1)+abs(sum2);
L1(i-1,j-1)=grey;
end
end
>> big=max(max(L1));
>> small=min(min(L1));
>> for i=1:height
for j=1:width
L1(i,j)=(L1(i,j)-small)/(big-small);
if(L1(i,j)>T)
L1(i,j)=1;
else
L1(i,j)=0;
end
end
end
>> imshow(L1)
四、测试与调试
实验结果:
1.原图像:
2.Sobel算子锐化图像:
4、1图像锐化的概念
在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声与量化噪声等。
一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。
这将导致原始图像在平滑处理之后,图像边缘与图像轮廓模糊的情况出现。
为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
图像锐化处理的目的就是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因就是因为图像受到了平均或积分运算,因此可以对其进行
逆运算(如微分运算)就可以使图像变得清晰。
从频率域来考虑,图像模糊的实质就是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般就是先去除或减轻噪声后再进行锐化处理。
4、2基于Sobel 算子
考察正弦函数sin 2ax π,它的微分2cos2a ax ππ。
微分后频率不变,幅度上升2a π倍。
空间频率愈高,幅度增加就愈大。
这表明微分就是可以加强高频成分的,从而使图像轮廓变清晰。
而在本章讨论中,研究了基于sobel 算子的图像锐化。
图像边缘检测:边缘检测就是检测图像局部显著变化的最基本运算,梯度就是函数变化的一种度量。
图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
边缘检测可分为两大类基于查找一类与基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大与最小值来检测边界,通常就是将边界定位在梯度最大的方向。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常就是Laplacian 过零点或者非线性差分表示的过零点。
单独使用Sobel 算子做边缘检测,边缘定位精度不高,有时还可能对非边缘像素的响应大于某些边缘处的响应或者响应差别不就是很大,造成漏检或误检,但就是它对噪声具有较好的鲁棒性。
Prewitt 算子与Sobel 算子提取边缘的结果差不多。
在提取边缘的同时它对噪声具有平滑作用,能够抑制一定的噪声。
由于Prewitt 边缘检测算子就是通过八个方向模板对图像进行卷积运算,因此运算量比较大。
4、3性能研究与结论
sobel 算子在prewitt 算子基础上能检测边缘点,且能进一步抑制噪声的影响,但检测的边缘较宽。
梯度算子与laplacian 算子都对噪声敏感,因此一般用它们检测边缘前要先对图像进行平滑。
五、 课程设计总结与体会
六、参考文献
[1] MATLAB7、X 图像处理M 、何兴华,周媛媛、人民邮电出版社:北京,2006,72-73、
[2] 数字图像处理M 、阮秋琦、电子工业出版社:北京,2005,12-14、
[3] MATLAB 函数速查手册M 、邓微、人民邮电出版社:北京,2008,23-24、
[4]陆宗骐,梁诚,用Sobel 算子细化边缘[J],中国图像图形学报。
2000
[5]张壇,陈刚,基于偏微分方程的图像处理。
北京,2004
[6]唐振军,张显全,一种二值图像边界提取算法。
图像处理,2006。