图像处理实验报告-图像锐化
- 格式:doc
- 大小:158.00 KB
- 文档页数:4
昆明理工大学(数字图像处理)实验报告实验名称:图像的平滑与锐化专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解图像平滑与锐化的基本原理。
2、掌握图像滤波的基本定义及目的。
3、理解空间域滤波的基本原理及方法。
4、编程实现图像的平滑与锐化。
[实验原理]空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
1、图像的平滑目的:减少噪声方法:空域法:邻域平均法、低通滤波、多幅图像求平均、中值滤波(1)邻域平均(均值滤波器)所谓的均值滤波是指在图像上对待处理的像素给一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值的方法。
(2)中值滤波(统计排序滤波)一般地 , 设有一个一维序列 f1 , f2 , f3 ,…, fn ,取该窗口长度(点数)为 m (m为奇数 ),对一维序列进行中值滤波,就是从序列中相继抽取m 个数 fi-v , … , fi-1, fi,fi+1 , … , fi+v;其中 fi 为窗口的中心点值 ,v = ( m - 1 )/ 2 。
再将这 m 个点 值按 其数值大小排序,取中间的 那个数作为滤波输出 ,用数学公式表示为:yi = med fi-v,…,fi-1,fi,fi+1,…,fi+v其中i ∈Z,v=(m-1)/2 。
中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。
二维中值滤波可有下式表示 :yi = med { fij }中值滤波的性质有 :(1) 非线性 , 两序列 f ( r ) , g ( r )med{ f ( r ) + g ( r ) } ≠ med{ f ( r ) } + med{ g ( r ) }(2) 对尖峰性干扰效果好,即保持边缘的陡度又去掉干扰,对高斯分 布噪声效果差;(3) 对噪声延续距离小于W/2的噪声抑制效果好,W 为窗口长度。
实验三 数字图像锐化处理一、 实验目的(一)掌握数字图像锐化处理的算法原理。
(二)熟悉数字图像锐化处理的算法原理。
二、 实验原理和方法(一)拉普拉斯锐化拉普拉斯算子是最简单的各向同性微分算子,一个二元图像函数),(y x f 的拉普拉斯变换定义为y fxf f ∂∂+∂∂=∇2222(2.1) 因为任意阶微分都是线性操作,所以拉普拉搜变换也是一个线性操作。
为了更适于数字图像处理,这一方程需要表示为离散形式。
通过邻域处理有多种方法定义离散变换,考虑到有两个变量,在x 方向上对二阶偏微分采用下列定义:),(2),1(),1(22y x f y x f y x f xf--++=∂∂ (2.2) 类似地,在y 方向上为),(2)1,()1,(22y x f y x f y x f yf--++=∂∂ (2.3) 二维拉普拉斯数字实现可由这两个分量相加得到:),(4)]1,()1,(),1(),1([2y x f y x f y x f y x f y x f f --+++-++=∇ (2.4)由于拉普拉斯是一种微分算子,它的应用强调图像中灰度的突变和降低灰度慢变化的区域。
这将产生一幅把图像中的浅灰色边线和突变点叠加到暗背景中的图像。
将原始图像和拉普拉斯图像叠加在一起的简单方法可以保护拉普拉斯锐化处理的下过,同时又能复原背景信息。
如果实用的定义具有负的中心系数,那么必须将原始图像减去经拉普拉斯变换后的图像而不是加上它,从而得到锐化的结果。
所以我们使用拉普拉斯变换对图像增强的基本方法可表示为下式:⎩⎨⎧∇+∇-=系数为正如果拉普拉斯掩模中心系数为负如果拉普拉斯掩模中心),(),(),(),(),(22y x f y x f y x f y x f y x g (2.4) (二)梯度法锐化在图像处理中,一阶微分是通过梯度法实现的。
对于函数),(y x f ,在其坐标),(y x 上的梯度是通过如下二维列向量定义的:∇f ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=⎥⎦⎤⎢⎣⎡=y fx f G G y x (2.5)这个向量的模值由下式给出:∇=∇(mag f f )2122][yxG G +=2122⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=y f x f (2.6) 实际操作中,常用绝对值代替平方与开方运算近似求梯度的模值:y x G G f +≈∇ (2.7)利用33⨯的最小滤波掩模(如图2-1),在掩模中心使用绝对值并使用33⨯掩模的近似结果为:)2()2()2()2(741963321987z z z z z z z z z z z z f ++-+++++-++≈∇ (2.8)在33⨯图像区域中,第三行与第一行的差接近于x 方向上的微分,同样,第三列与第一列间的差接近于y 方向上的微分。
实验七图像锐化
一、实验题目
利用MATLAB实现图像锐化,感受各种不同的图像处理方法对最终图像效果的影响二、实验仪器
实验室电脑,MATLAB软件
三、实验原理
图像锐化处理主要用于图像增强中的轮廓边缘、细节以及灰度跳边部分、形成完整的物体边界,达到将物体从图像中分离出来或将同一物体表面的区域检测出来的目的
图像边缘的特性是图像中特性(像素灰度。
纹理)分布的不连续处,图像周围特性有阶跃变化的像素集合
四、实验内容
1.微分法(梯度法、Sobel算子法、拉普拉斯运算法)
微分法的目的是利用微分运算求信号的变化率,加强高频分量的作用,从而使轮廓更清晰。
2、利用MATLAB提供的edge函数,选择三种边缘检测算子对图像进行边缘检测显示结
果
3、对图像采用添加高斯和椒盐噪声,然后对有噪声的图像进行边缘检测,显示检测出
的边缘图像
五、实验截屏
实验代码如下
六、实验心得
数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。
二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。
通过图像的锐化,使得图像的质量有所改变,产生更适合人观察和识别的图像。
DSP 实验报告一、 图像的锐化处理(高通滤波处理)1、 实验原理处理模板如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--=004100αααααM 25.0=α 对应数学表达式:()[])1,(),1()1,(),1(),(41),(++++-+--+=y x f y x f y x f y x f y x f y x g αα2、 C 程序及运行结果程序:Acute_RGB_Image(int *buffer){int x,y;for (y=0;y<ImageHeight;y++)for (x=0;x<ImageWidth;x++){buffer[y*ImageWidth+x]=2*buffer[y*ImageWidth+x]-(buffer[y*ImageWidth +x-1]+buffer[(y-1)*ImageWidth+x]+buffer[y*ImageWidth+x+1]+buffer[(y+1)*ImageWidth+x])/4;if(buffer[ImageWidth*y+x]>255)buffer[ImageWidth*y+x]=255;else if (buffer[ImageWidth*y+x]<0)buffer[ImageWidth*y+x]=0;}}运行结果:锐化前锐化后分析:从上面两幅图可以看出锐化后的图像轮廓变得明显,且噪声变得强烈。
3、汇编程序及运行结果程序:ImageAcuteSub(ImageWidth,ImageHeight,buffer_red);ImageAcuteSub(ImageWidth,ImageHeight,buffer_green);ImageAcuteSub(ImageWidth,ImageHeight,buffer_blue);.mmregs.def _ImageAcuteSub.text_ImageAcuteSub:mov t0,brc1 ;IMAGE WIDTHmov t1,brc0 ;IMAGE HEIGHTrptb y_looprptb x_loopmov *ar0(#1),ac1;f(x+1,y)add *ar0(#-1),ac1 ;f(x-1,y)add *ar0(#-250),ac1 ;f(x,y-1)add *ar0(#250),ac1 ;f(x,y+1)sfts ac1,#-2mov *ar0<<#1,ac0;2f(x,y)sub ac1,ac0bcc branch1,ac0<0sub #255,ac0,ac1bcc branch2,ac1>0mov ac0,*ar0+b x_loopbranch1: mov #0,*ar0+b x_loopbranch2: mov #255,*ar0+x_loop: nopy_loop: nopRET运行结果:锐化前 锐化后分析:可以看出汇编的结果和C 程序的结果是一致的。
实验五 图像的锐化一、实验目的1、掌握图像锐化的主要原理和常用方法;2、掌握常见的边缘提取算法。
3、利用Matlab 实现图像的边缘检测。
二、实验原理及内容图像边缘是图像中特性(如象素灰度、纹理等)分布的不连续处,图像周围特性有阶跃变化或屋脊状变化的那些象素集合。
图像边缘存在于目标与背景、目标与目标、基元与基元的边界,它标示出目标物体或基元的实际含量,是图像识别信息最集中的地方。
图像的锐化处理主要用于增强图像中的轮廓边缘、细节以及灰度跳变部分,形成完整的物体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。
边缘增强是要突出图像边缘,抑制图像中非边缘信息,使图像轮廓更加清晰。
由于边缘占据图像的高频成分,所以边缘增强通常属于高通滤波。
常用的边缘检测方法有:微分法以及高通滤波法等。
1、微分法微分法的目的是利用微分运算求信号的变化率,加强高频分量的作用,从而使轮廓清晰。
微分法又可分为梯度法、Sobel 算子法以及拉普拉斯运算法.(1)梯度法对于图像),(y x f ,它在点),(y x f 处的梯度是一个矢量,定义为:Ty f x f y x f G ⎥⎦⎤⎢⎣⎡∂∂∂∂=)],([ 梯度的方向在函数),(y x f 最大变化率的方向上,梯度的幅值为:2/12)(2)(x f x f f ∂∂+∂∂=∇梯度的数值就是),(y x f 在其最大变化率方向上的单位距离所增加的量。
对于图像而言,微分x f ∂∂和yf ∂∂可用差分来近似。
)1,(),(),1(),(--+--=∆+∆=∇y x f y x f y x f y x f y x f当梯度计算完后,可采用以下几种形式突出图像的轮廓。
(1)梯度直接输出使各点的灰度),(y x g 等于该点的梯度:)],([),(y x f G y x g =这种方法简单、直接。
但增强的图像仅显示灰度变化比较陡的边缘轮廓,而灰度变换比较平缓的区域则呈暗色。
一,实验目的。
1、掌握图像锐化的主要原理和常用方法2、掌握常见的边缘提取算法3、利用C#实现图像的边缘检测二,实验原理。
图像锐化就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。
图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。
而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。
图像边缘锐化的基本方法:微分运算,梯度锐化,边缘检测。
微分运算微分运算应用在图像上,可使图像的轮廓清晰。
微分运算有:纵向微分运算,横向微分运算,双方向一次微分运算。
单向微分运算双向微分微分运算作用:相减的结果反映了图像亮度变化率的大小。
像素值保持不变的区域,相减的结果为零,即像素为黑;像素值变化剧烈的区域,相减后得到较大的变化率,像素灰度值差别越大,则得到的像素就越亮,图像的垂直边缘得到增强。
梯度锐化: 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使边缘变得清晰。
梯度锐化常用的方法有:直接以梯度值代替;辅以门限判断;给边缘规定一个特定的灰度级;给背景规定灰度级;根据梯度二值化图像。
边缘检测边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。
大多数是基于方向导数模板求卷积的方法。
将所有的边缘模板逐一作用于图像中的每一个像素,产生最大输出值的边缘模板方向,表示该点边缘的方向,如果所有方向上的边缘模板接近于零,该点处没有边缘;如果所有方向上的边缘模板输出值都近似相等,没有可靠边缘方向。
系统实验(DSP)--图像的锐化处理、图像的边缘检测DSP 实验报告一、 图像的锐化处理(高通滤波处理)1、 实验原理处理模板如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--=004100αααααM 25.0=α对应数学表达式:()[])1,(),1()1,(),1(),(41),(++++-+--+=y x f y x f y x f y x f y x f y x g αα2、 C 程序及运行结果程序:Acute_RGB_Image(int *buffer){int x,y;for (y=0;y<ImageHeight;y++)for (x=0;x<ImageWidth;x++){buffer[y*ImageWidth+x]=2*buffer[y*ImageWidth+x]-(buffer[y*ImageWidth+x-1]+buffer[(y-1)*ImageWidth+x]+buffer[y*ImageWidth+x+1]+buffer[(y+1)*ImageWidth+x])/4;if(buffer[ImageWidth*y+x]>255)buffer[ImageWidth*y+x]=255;else if (buffer[ImageWidth*y+x]<0)buffer[ImageWidth*y+x]=0;}}运行结果:锐化前锐化后分析:从上面两幅图可以看出锐化后的图像轮廓变得明显,且噪声变得强烈。
3、汇编程序及运行结果程序:ImageAcuteSub(ImageWidth,ImageHeight,buffer_red);ImageAcuteSub(ImageWidth,ImageHeight,buffer_green);ImageAcuteSub(ImageWidth,ImageHeight,buffer_blue);.mmregs.def _ImageAcuteSub.text_ImageAcuteSub:mov t0,brc1 ;IMAGE WIDTHmov t1,brc0 ;IMAGE HEIGHTrptb y_looprptb x_loopmov *ar0(#1),ac1;f(x+1,y)add *ar0(#-1),ac1 ;f(x-1,y)add *ar0(#-250),ac1 ;f(x,y-1)add *ar0(#250),ac1 ;f(x,y+1)sfts ac1,#-2mov *ar0<<#1,ac0;2f(x,y)sub ac1,ac0bcc branch1,ac0<0sub #255,ac0,ac1bcc branch2,ac1>0mov ac0,*ar0+b x_loopbranch1: mov #0,*ar0+b x_loopbranch2: mov #255,*ar0+ x_loop: nopy_loop: nopRET运行结果:锐化前 锐化后分析:可以看出汇编的结果和C 程序的结果是一致的。
字图像处理》实验报告2012年安徽省普通高校对口招收中等职业学校毕业考试语文试题(本卷满分150分,时间120分钟)一.语言文学知识与语言表达(共11小题,每小题3分,计33分)1.下列句子中加点字的注音,正确的一项是( )A.殷(yān)红的鲜血滴落在泥土上。
B.她梦想到盛(shèng)在名贵盘碟里的佳肴。
C.第二步工作叫掐丝,就是拿扁铜丝粘(nián)在铜胎表面上。
D.仿佛远处高楼上渺茫的歌声似(sì)的。
2.下列句子没有错别字的一项是( )A.得知我还必需回渡假村,她楞住了。
B.住宅的寒伧,墙壁的暗淡,家俱的破旧,衣料的粗陋,都使她苦恼。
C.归来时带着几份鹊跃的心情,一跳一跳就跳过了那些山坡。
D.丈夫从实验室回来时,孩子们已经做完功课睡觉了。
3.对下列词语中加点字的解释,不正确的一项是( )A.累世(累:连续)勤能补拙(拙:笨)B.睿智(睿:锋利)越俎代庖(庖:厨房)C.绵亘(亘:延续不断)扪心自问(扪:摸)D.自诩(诩:夸耀)自惭形秽(秽:丑陋)4.下列句子成语使用恰当的一项是( )A.贵族老爸们养尊处优的生活场所已消失得杳无音信。
B.过去有些园名,可以望文生义,如梅园,它的特色是梅。
C.在孩子们的眼神里,我看到了他们的心悦诚服。
D.赚钱是每一个生意人众望所归的事。
5.下列句子没有语病的一项是( )A.人脑是一部最奇妙的机器,但它能和平结合,使人成为万物之灵。
B.好的立意,来源于作者对社会生活的用心提炼、体验、思考和观察。
C.母亲在非解释一下不足以平服别人的时候才这样说。
D.人物的塑造,要经过摊牌打磨的过程,才能创造出鲜活的形象。
6.将下列句子组成语意连贯的一段文字,排序正确的一项是( )①当时我很年轻,而且正是不动扳机就感到手痒的时期。
②我察觉到,在这双眼睛里有某种新的东西,某种只有它和这座山才了解的东西。
③我总是认为,狼越少,鹿就越多,因此,没有狼的地方就意味着是猎人的天堂。
一、实验目的:
①掌握图像锐化的概念;
②掌握Prewitt 算子对图像进行锐化的原理、过程;
③熟悉Matlab 编程。
二、实验内容:
①利用Prewitt 算子对图像进行锐化处理;
②掌握Maltab 中和图像锐化相关的函数。
三、实验原理:
①利用Prewitt 算子对图像进行锐化处理;
②掌握Maltab 中和图像锐化相关的函数。
三、实验原理:
图像锐化处理是改善图像视觉效果的手段,用来对图像的轮廓或边缘进行增强,减弱或消除低分频率分量而不影响高频分量。
图像锐化处理的主要技术体现在空域和频域的高通滤波,而空域高通滤波主要用模版卷积来实现。
(一)梯度算子法
在图像处理中,一阶导数通过梯度来实现,因此利用一阶导数检测边缘点的方法就称为梯度算子法。
梯度值正比于像素之差。
对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。
下面给出的平滑梯度算子法具有噪声抑制作用。
1、Prewitt 梯度算子法(平均差分法)
因为平均能减少或消除噪声,Prewitt 梯度算子法就是先求平均,再求差分来求梯度。
水平和垂直梯度模板分别为:
利用检测模板可求得水平和垂直方向的梯度,再通过梯度合成和边缘点判定,就可得到平均差分法的检测结果。
四、实验步骤:
I=imread('Miss.bmp');
figure;
imshow(I);
title('原始图像');
II=eye(258,258);
for i=2:257
for j=2:257
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙101101101x d ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙111000111y d
II(i,j)=I(i-1,j-1);
end
end
II(2:257,1)=I(:,2);
II(2:257,258)=I(:,255);
II(1,:)=II(3,:);
II(258,:)=II(256,:);
IX=zeros(256,256);
IY=zeros(256,256);
H1=[-1 0 1 -1 0 1 -1 0 1]';
H2=[-1 -1 -1 0 0 0 1 1 1]';
for i=2:257
for j=2:257
Block1=II(i-1:i+1,j-1:j+1);
X1=Block1(:);
sum1=sum(X1.*H1);
sum2=sum(X1.*H2);
IX(i,j)=sum1;
IY(i,j)=sum2;
end
end
figure;
IX=-IX;
IY=-IY;
imshow(IX,[0 255]);
title('垂直锐化');
figure;
imshow(IY,[0 255]);
title('水平锐化');
RT=(IX.^2+IY.^2).^(1/2);
figure;
imshow(RT,[0 255]);
title('最终锐化结果');
五、实验结果(显示所图像,并标明是什么图像):
图1 原始图像
2 水平锐化
3 垂直锐化
4 最终锐化结果
六、实验小结:
数字图像处理中图像锐化应从水平和垂直两个方向进行,最后的锐化结果由水平和垂直锐化结果共同得到,锐化结果一方面是模糊的图像变得清晰了,另一方面提取了目标物体的边界,对图像进行分割。
锐化的图像质量有所改变,更适合观察、识别。