第18届数学解题能力展示决赛试题
- 格式:doc
- 大小:49.50 KB
- 文档页数:2
第十八届华罗庚金杯少年数学邀请赛决赛试题 A 参考答案(小学高年级组)一、填空题(每题 10 分, 共 80 分)题号 1 2 3 4 5 6 7 8答案25 2, 3 316 12 62 74 94 54二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9.解答.例如(4 + 4 + 4) ÷ 4 = 3 ,4 - (4 - 4) ⨯ 4 = 4 ,(4 ⨯ 4 + 4) ÷ 4 = 5 ,(4 + 4) ÷ 4 + 4 = 6 .10.答案:25解答. 设比小明小的学生为x人,比小华小的学生为y人.因为比小明大的学生为2x人,所以全班学生共 N =3x +1人;又因为比小华大的学生为3y人,所以全班学生共N=4y+1人. 这样, N-1既是 3 的倍数, 又是 4 的倍数, 因此N-1是3⨯4=12的倍数. 这个班学生人数大于 20 而小于 30, 所以N-1只可能是 24. 因此这个班共有学生N=24+1=25人.11.答案:1.375解答.小虎划船的全部时间为120分钟,他每划行30分钟,休息10分钟,周期为40分钟, “华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解所以一共可分为 3 个 30 分钟划行时间段, 有 3 个 10 分钟休息划船时, 顺水的船速与逆水的船速之比为 4.5:1.5=3:1. 因为小虎要把船划到离租船处尽可能远, 他在划船的过程中只能换一次划船的方向, 而且是在尽可能远处. 分两种情况讨论.1)开始向下游划船, 设最远离租船处x千米. 因为回到租船处是逆水, 所以小虎只有 110 分钟可用. 由于划船时顺流速度是逆流速度的 3 倍, 所以用在向下游划船的时间不能超过半小时. 另外两次休息时间只能用在返程, 在休息期间内船向下游漂流了13⨯1.5 , 所以⎛ 1 ⎫x ÷4.5+ x + ⨯1.5⎪ ÷1.5 = 1.5 .3⎝ ⎭整理上式得x +3x +1.5=6.75,4x= 5.25,x =1.3125(千米).2)开始向上游划, 设最远离租船处y千米. 小虎可用 120 分钟, 有两次休息时间用在向上游. 所以⎛ 1 ⎫ ⎛ 1 ⎫y + ⨯1.5⎪ ÷1.5 + y - ⨯1.5⎪ ÷ 4.5 = 1.5 .3 6⎝ ⎭ ⎝ ⎭整理上式得4 y+5 ⨯1.5 = 6.75 , 4 y= 5.5 , y =1.375(千米).6综合 1) 和 2) 的讨论, 小虎的船最多离租船处 1.375 千米.12.答案:不能解答. 设放的最小自然数为a,则放的最大自然数为a+23.于是这24个数的和为A= 12(2a+ 23).假设可能, 设每个正方形边上的数之和为S . 因为共有5个正方形, 这些和的和为5S . 因为每个数在这些和中出现两次, 所以有5S= 2A.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解记最小的 16 个数的和为B , 则B=8(2a+15) . 下面分两种情形讨论:(1)若 B ≤ S ,则S = 2 A = 24 (2a+ 23) ≥ 8(2a+15) , 9.8a+110.4 ≥16a+120 ,5 5不存在自然数 a 使得不等式成立.(2)情形 B > S 也是不可能的,因为此时不可能选择最大正方形边上的16个数使得这16 个数的和等于S .三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13.答案:5解答. 用右图代替题目中的2⨯1小长方形.因为题目所给的小长方形上下不对称,所以同一个小长方形在拼成的上下对称的正方形中, 不会既在上半部分也在下半部分. 这样, 就可以只考虑上半部分的不同情形.1)相邻的空白格在第一行最左边或最右边. 因为要排除旋转相同的, 所以只考虑相邻空白格在最右边的情况, 有下图所示的 2 种图形,2)相邻的空白格在第一行中间. 去掉旋转重合的, 有下图所示的 3 种图形,所有不同的图形为 5 种.14.答案:6036“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解解答. 令n = a1+ a2++ a2010 = b1 + b2 + + b2012 = c1 + c2 ++ c2013 ,其中, 所有的a i数字和相同, 所有的b j数字和相同, 所有的c k数字和相同. 两个自然数数字的和相同, 则它们除以 9 的余数相同, 即a i = 9u i + r, i =1, 2, , 2010,bj = 9v j + s, j =1, 2, , 2012,c k = 9w k + t, k =1, 2, , 2013.则n= 9 ⨯ (u1+u2+ +u2010 ) + 2010⨯r= 9 ⨯ (v1+v2+ +v2012 ) + 2012⨯s (1)= 9 ⨯ (w1+w2+ +w2013 ) + 2013⨯t,由上面的等式可得,9 ⨯ (u1+u2++ u2010 + 223 ⨯ r) + 3r = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(2)9 ⨯ (w1+w2++ w2013 + 223 ⨯ t) + 6 ⨯ t = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(3) 由 (2) 可以得出s是 3 的倍数, 只能是 0, 3 或 6. 下面三种情况讨论:1)s =0.此时,对j=1, 2,, 2012 ,因为b j=9v j的数字和不为零,所以v j≥1. 则n =9⨯(v1+ v2++ v2012 ) ≥ 9 ⨯ 2012 = 18108 .2)s =6.此时“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解客服电话:400 650 0888 n =9(v1+ v2++ v2012 ) + 2012 ⨯ 6 ≥ 12072 .3)s =3,此时n= 9(v1+v2+ +v2012 ) + 2012 ⨯ 3 ≥ 6036 .可以取 r =2, t =1.而6036 = 3 + 3 + + 3 = 2 + 2 + + 2 +11 +11 + +112012 个x 个y 个=10 +10 + +10 +1 +1 + +1.=m 个n 个下面计算 x, y 与 m, n,⎧x + y =2010, ⎨ ⎧m + n =2013,⎨⎩10m+n= 6 0 3,6即6036 = 2⨯1786 +11⨯224 =10⨯447 +1566 = 3⨯2012.最终, 满足条件的最小自然数是 6036.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解第 5 页共5页。
2013年“迎春杯”数学解题能力展示初赛试卷(五年级)一、填空题(共3小题,每小题8分,满分24分)1.(8分)算式999999999﹣88888888+7777777﹣666666+55555﹣4444+333﹣22+1的计算结果的各位数字之和是.2.(8分)如图竖式中,使得乘积最小的两个乘数和是.3.(8分)把1﹣8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数,如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有不是整数.二、填空题(共3小题,每小题12分,满分36分)4.(12分)如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD比AD长2,那么三角形ABC的面积是.5.(12分)如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421546.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.三、填空题(每小题15分,满分75分)7.(15分)五支足球队伍比赛,每两个队伍之间比赛一场:胜者得3分,负者得0分,平局各得1分,比赛完毕后,发现各队得分均不超过9分,且恰有两只队伍同分,设五支队伍的得分从高到低依次为A、B、C、D、E(有两个字母表示的数是相同的),若恰好是15的倍数,那么此次比赛中共有多少场平局?8.(15分)由2013个边长为1的小正三角形拼成的四边形中,周长的最小值是.9.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.10.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.11.(15分)有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是多少?2013年“迎春杯”数学解题能力展示初赛试卷(五年级)参考答案与试题解析一、填空题(共3小题,每小题8分,满分24分)1.(8分)算式999999999﹣88888888+7777777﹣666666+55555﹣4444+333﹣22+1的计算结果的各位数字之和是45.【解答】解:由于计算过程没有出现进位借位,故结果各位数字之和就是式中各数的各位数字之和相加减,原式=9×9﹣8×8+7×7﹣6×6+5×5﹣4×4+3×3﹣2×2+1×1(mod10)=(9+8)(9﹣8)+(7+6)(7﹣6)+…+(3+2)(3﹣2)+1=9+8+7+6+5+4+3+2+1=45,故答案为45.2.(8分)如图竖式中,使得乘积最小的两个乘数和是160.【解答】解:(1)积的最高位是2,可以得出前面两次算出的积的最高位都是1,再由此推出第一个乘数的第一位是1,最后一位是3;(2)根据积的个位是1,可以知道两个乘数的个位数字的积的末尾是1,结合上第一个乘数的个位是3,就能确定第二个乘数的个位是7;(3)因为第一个乘数乘第二个乘数的十位数字得到的是一百多,也就能确定第二个乘数的十位数字是1;(4)根据第一个乘数乘7的积是一千零几,可以推出第一个乘数的十位数字是4.故这题中两个乘数是143和17,第一次算出的积是1001,第二次的积是143,最后的积是2431.因此这两个乘数的和是143+17=160.3.(8分)把1﹣8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数,如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有4个不是整数.【解答】解:奇偶性问题1~8八个数4奇4偶,上下两组各4个数同时满足相邻和为偶数,唯一情况为上下另组数分别同奇同偶.即上面4个为奇数,下面4个为偶数或者上面4个为偶数,下面4个为奇数.所以上下4组数和都是奇数,即它们的平均数都不是整数.所以有4个不是整数.故答案为4个.二、填空题(共3小题,每小题12分,满分36分)4.(12分)如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD比AD长2,那么三角形ABC的面积是24.【解答】解:作CE⊥AB于E.∵CA=CB,CE⊥AB,∴CE=AE=BE,∵BD﹣AD=2,∴BE+DE﹣(AE﹣DE)=2,∴DE=1,在Rt△CDE中,CE2=CD2﹣DE2=24,=•AB•CE=CE2=24,∴S△ABC故答案为245.(12分)如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是150.1253342154【解答】解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:##金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商网或医药火爆招商网这里提供专业的医药代理招商服务。
2018年全国中学生数学能力竞赛(决赛)试题七年级(初一)组(试题总分120分;答题时间120分钟)一、画龙点睛(本大题共8小题,每小题3分,总计24分)1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,()年后父亲的年龄是儿子年龄的3倍。
2.如果(a+5)x|a+4|+8=0是关于x的一元一次方程,那么a2+a-x=()。
3.已知a2+bc=14,b2-2bc=-6,则3a2+4b2-5bc=( )。
4.一串有黑有白其排列有一定规律的珠子,被盒子遮住一部分(如图所乐),则这串珠子被盒子遮住的部分有()颗。
第4题图5.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也有类似的“黑洞”。
满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌。
譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,再求和……重复运算下去,就能得到一个固定的数T=()。
我们称之为数字“黑洞”。
6.如图,4个半径为1cm的圆相靠着放在一个正方形内,则阴影部分的面积是( )cm2。
(π取3.14).第6题图7.已知A,B,C,D,E代表1至9中不同的数字,ABCD+EEE=2018,则ABCD•EEE的最大值等于()。
8.已知三角形的内角和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是()。
二、一锤定音(本大题共4道小题,每小题3分,总计12分)9.甲、乙、丙三个人,一个姓张,一个姓李,一个姓王。
他们一个是银行职员,一个是计算机程序员,一个是秘书。
已知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙。
请问:甲、乙、丙三人的姓氏依次是()。
A.李,王,张B.张,王,李C.王,李,张D.王,张,李10.如图,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连。
目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
【导语】国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
有关专家认为,只有5%的智⼒超常⼉童适合学奥林匹克数学,⽽能⼀路过关斩将冲到国际数学奥林匹克顶峰的⼈更是凤⽑麟⾓。
以下是整理的相关资料,希望对您有所帮助。
【篇⼀】 1、钢笔每⽀a元,本⼦每本b元,李明买了3⽀钢笔和5本本⼦,⼀共应付()元。
2、如果2χ+5=9,那么3χ-2=()。
3、⼩明在班⾥的位置是第3⾏第5列,⼩华在⼩明的前⾯,则⼩华的位置⽤数对表⽰为()。
4、空⽓中氧⽓⼤约占1/5。
这⾥是把()看作单位“1”,平均分成()份,()占这样的()份。
5、某⼯⼚有⼀堆煤重10吨,计划7天烧完,实际上烧了8天,实际每天烧煤()吨,实际每天烧的煤是这堆煤的()。
6、下⾯两个等式中,△和□各表⽰⼀个数,则△和□所表⽰的数分别是()和()。
△+□=24□-△=12 7、找规律计算 ①62+26=(6+2)×11=8×11=88 ②87+78=(8+7)×11=15×11=165 ③54+45=(□+□)×11=□×11=□ 8、5个连续的奇数的和是55,则这5个奇数中最⼩的⼀个是()。
9、把6⽶长的⽊料平均锯成3段要6分钟,照这样计算,如果锯成6段,需要()钟。
10、有甲⼄两筐苹果,从甲筐拿出6.5千克放⼊⼄筐后,两筐苹果的重量都是30千克。
甲原来有苹果()千克,⼄原来有苹果()千克。
11、某次数学竞赛共20道题,评分标准是每做对⼀题得5分,每做错或不做⼀题倒扣1分,刘亮参加这次竞赛得了64分,刘亮做对了()道题。
12、在⼀次同学聚会中,见⾯时每两⼈之间都要握⼀次⼿,其中⼩明⼀共握了5次,⼤家总共握了()次⼿。
13、全班同学去划船,如果减少⼀条船,每条船正好坐9⼈;如果增加⼀条船,每条船正好坐6⼈。
总分第十八届华 罗 庚金杯少 年邀请赛决赛试题A (小学中年级组)(时间2013年4月20日10:00~11:30)一、填空题(每小题 10分, 共80分)1.计算: (2014×2014+2012)-2013×2013________.解析:(2014×2014+2012)-2013×2013=(2013+1)×(2013+1)+2013—1-2013×2013=2013×2013+2013+2013+1+2013-1-2013×2013=6039或用平方差公式。
(2014×2014+2012)-2013×2013=20142-20132+2012=2012+2013+2014=6039考试中最直接的方法,死算也OK 。
2.将长方形的纸片ABCD 按右图的方式折叠后压平, 使三角形DCF 落在三角形DEF 的位置, 顶点E 恰落在边AB 上. 已知∠1=20°, 那么∠2是________度.解析:因为翻折,∠CFD=∠E FD=90°-22°=68°∠2=180°-68°-68°=44°3.亮亮上学, 若每分钟行40米, 则8 : 00准时到校; 若每分钟行50米, 则7 : 55到校. 亮亮的家与学校的距离是________米.解析:行程型盈亏问题。
每分钟行40米,刚好够分;若每分钟行50米,则少5×50=250米所以250÷(50-40)=25分钟,亮亮的家与学校的距离是25×40=1000米.法二:六年级可以用。
走同样路程,速度比与时间成反比,速度比为4:5,则时间比为5:4,8:00-7:55=5分钟,则若每分钟行40米,亮亮用时5÷(5-4)×5=25分钟,所以亮亮的家与学校的距离是25×40=1000米.4.第一次操作将图a 左下角的正方形分为四个小正方形, 见图b; 第二次操作再将图b 左下角的小正方形分为四个更小的正方形, 见图c; 这样继续下去, 当完成第五次操作时, 得到的图形中共有________个正方形.解析:找规律。
第十八届华罗庚金杯少年数学邀请赛决赛(A)卷【小中组】一、填空题(每小题10分,共80分)1.计算:(2014×2014+2012)-2013×2013=________.2.将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=20°,那么∠2是________度.3.鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有________只.4.第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有________个正方形.图a图b图c5.右面的加法竖式中,相同的汉字代表1至9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有________个.6.大小两个正方体积木粘在一起,构成右图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是________.7.某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生________名.8.见右图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为________.二、简答题(每小题15分,共60分,要求写出简要过程)9.用4个数码4和一些加、减、乘、除号和小括号,写出值分别等于2、3、4、5、6的五个算式.10.右图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?11.某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次,商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?12.编号从1到10的10个白球排成一行,现按照如下方法涂红色:1)涂2个球;2)被涂色的2个球的编号之差大于2,求不同的涂色方法有多少种?第十八届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小中组】一、填空题(每小题10分,共80分)1.解析:【知识点】运算律,平方差公式原式6039201240272012)20132014()20132014(20122013201422=+=+-⨯+=+-=2.解析:【知识点】平面几何o 201=∠=∠CDF ,DCF ∠与CDF ∠互余,则o o o 702090=-=∠DFC ,o 70=∠=∠DFC DFE ,o o o o 4070701802=--=∠。
数学测试卷(五年级试题分数150分时间:60分钟)一、选择题(每题6分)1、一暖水瓶中装了一些水,倒满2个纸杯后,水瓶中还剩1600毫升水,再倒满3个纸杯后,水瓶中还剩850毫升。
水瓶中原有的水最多能倒满()杯。
A.6 B.7 C.8 D.92、王奶奶家这个月水费是51.4元,她家用了()吨水.A.16 B.18 C.20 D.223、实验小学四、五、六年级共订300份数学报,每个年级至少订了99份,问:共()种不同的订法?A.10 B.12 C.14 D.164、万通百货商店委托搬运站运送500个吊灯,双方商定每只运费24元,但如果运输途中发生损坏,那么每损坏一个不仅不给运费,而且还要赔偿126元,结果搬运站共运费11550元。
问:搬运过程中共损坏了()个吊灯。
A.3 B.5 C.7 D.95、皮皮和爸爸一起种了20棵小树苗,他们把第一棵树苗种在了距起点1米处,第二棵树苗种在了距起点4米处,第三棵树苗种在了距起点7米处,在距起点10的地方种下了第四棵树苗,……按照这样的种法,第20棵树苗种在了距起点()米的地方。
A.58 B.60 C.62 D.646、学校风筝节期间,展示名年级的优秀作品,其中16个不是六年级的,20个不是五年级的,现在知道五、六年级共展出18的风筝,其他年级共展出()个风筝。
A.7 B.9 C.14 D.187、甲、乙、丙三个同学中有一人在同学们都不在时把教室扫净,事后问他们是谁做的好事,甲说:“是乙干的”;乙说:“不是我干的”;丙说:“不是我干的”。
如果他们中有两人说了假话,一人说的是真话,你能断定是谁干的吗?()A.甲B.乙C.丙D.不能确定8、小明从家到学校上课,开始时每分钟走50米的速度,走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,将要迟到2分钟,于是他立即加快速度,每分钟多走10米,结果小明早到5分钟,小明家到学校的路程有多远?()A.2000米B.2100米C.2200米D.2300米9、小明和小红玩跳远游戏,小明跳一下1.8米,小红跳一下1.1米,小明每跳两次时小红恰好跳3次,如果开始时小明离小红30米,那么小明跳()米才能追上小红?A.360米B.200米C.450 D.72010、小明上学期期末考试,数学、语文、英语三科的平均成绩是82分。
第十八届华杯赛总决赛试题——必答题A 组试题组试题必答题A1 左下图是一个等腰梯形,左下图是一个等腰梯形,上底和两腰的长度是上底和两腰的长度是2,下底长度是4;右下图是一个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?必答题A2 将1,2,3,4分别填入下面的方格中,使得等式分别填入下面的方格中,使得等式+2× +3× +4× =22 成立,那么第一个方格填的数与第四个方格填的数之积是多少?成立,那么第一个方格填的数与第四个方格填的数之积是多少?必答题A3 右图的三角形ABC 中,D ,E 分别是所在边的中点,BC=6MN ,三角形GMN 的面积等于3平方厘米。
求三角形ABC 的面积。
的面积。
等腰梯形正六角星形面积相等,五个地块栽种四种不同颜色不能同色,不相邻的地块可以同色。
问共有多少种不同的栽种方案?E D C B A A黑板上写有数字1到9.请你擦掉其中的几个数字,使得剩下的数字的两两相这十个数字,你从黑板上最多能擦掉几个数字?乘积中,个位出现由0到9这十个数字,你从黑板上最多能擦掉几个数字?第十八届华杯赛总决赛试题——必答题B组试题组试题 必答题B1 在100至200之间有三个连续的自然数,其中最小的能被3整除,中间的能整除。
写出这样的三个连续自然数。
被5整除,最大的能被7整除。
写出这样的三个连续自然数。
必答题B2 边长分别为6厘米和8厘米的两张正方形纸板,放在一个边长为10厘米的大正方形内,大正方形内未被两小正方形纸板盖住的部分的面积最小值是多少平方厘米?厘米?必答题B3 自然数n是两个质数的乘积,它的包含1但不包含n的所有因数的和等于100,那么n=? 必答题B4 如图,三角形ABC中,∠ACB=90°,AC=1cm,AB=2cm.以B为中心,将三角形ACB顺时针旋转,使得点A落在边CB的延长线上A1点,此时点C落在点C1的位置。
“数学解题能力展示”读者评选活动(六年级组样题时间:60分钟)一、选择题(每题6分,共60分)1.七岁的“电脑神童”乐乐在计算机上编了一个小程序(如下图),若开始输入的值为x=4,则最后输出的结果是()。
A.120 B.231 C.406 D.15402.北京小学有音乐、美术、科技和书法四个课外兴趣小组,玛丽想参加其中的两个,那么她一共有()种选课方案。
A.2B.4C.6D.83.笑笑和淘气玩猜数游戏,下面四个数都是五位数,其中F=0,M是一位自然数。
那么一定能被3和5整除的数是()。
A. MMMFMB.MFMFMC.MFFMFD. MFMMF4.丁丁照相馆为方便找到顾客的照片,会在每个照片袋上进行编号。
A表示证件照,B表示艺术照。
A031802表示3月18日的第二份证件照。
11月5日是小芳的生日,那天清早她第一个到这家照相馆照了一张艺术照,她的照片袋编号是()。
A.B110501B. A110501C. B110502D. B0105015. 有下列几种形状的硬纸板。
凯明将这几块硬纸板分别沿一条直线滚一滚,描出滚动过程中O点留下的痕迹。
下面()痕迹是圆形纸板滚动过程中留下的。
A BC D6.公元前6世纪的毕达哥拉斯是最早研究完全数的人。
完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数,它所有的真因子(即除了自身以外的因数)的和,恰好等于它本身。
如果一个数恰好等于它的因子之和,则称该数为“完全数”。
例如:6有四个因数1、2、3、6,除本身6以外,还有1、2、3三个因数。
6=1+2+3,恰好是所有因数之和,所以6就是“完全数”。
下面的数中是“完全数”的是()。
A.12 B.28 C.36 D.607.某市为节约用水,保护自然环境,对用水的价格进行了调整,限定每户每月用水量不超过6吨时,每吨水的价格为2.5元;当用水量超过6吨时,超过部分每吨水价3元。
图中能表示每月水费与用水量关系大致图是()。
2018年全国初中数学联赛决赛试题(江西卷)(2018年4月19日 上午9:00—11:30)一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1、从分数组{}111111,,,,,24681012中删去两个分数,使剩下的数之和为1,则删去两个数是( )(A )1148与 (B)11410与(C)11810与 (D)11812与 2的结果是( )(A )12383、555的末尾三位数字是( )(A )125 (B)375 (C)625 (D)8754、若实数,,x y z 满足方程组: 1.........(1)2 2..........(2)2 3...........(3)2xyx y yzy z zxz x⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩, 则有( )(A )x+2y+3z=0 (B) 7x+5y+2z=0 (C) 9x+6y+3z =0 (D)10x+7y+z=0 5、将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为( )(A )15 (B)18 (C)21 (D)246、某人将2008看成了一个填数游戏式:2□□8,于是他在每个框中各填写了一个两位数ab cd 与,结果所得到的六位数28abcd 恰是一个完全立方数,则ab cd +=( ) (A )40 (B)50 (C)60 (D)70 二、填空题(本题满分28分,每小题7分)7、设(9,x y +==则 .8、一本书共有61页,顺次编号为1,2,…,61,某人在将这些数相加时,有两个两位数页码都错把个位数与十位数弄反了(即:形如ab 的两位数被当成了两位数ba ),结果得到的总和是2008,那么,书上这两个两位数页码之和的最大值是 . 9、如图,在边长为1的正三角形ABC 中,由两条含0120圆心角的弓形弧 AOB , AOC 及边BC 所围成的(火炬形)阴影部分的面积是 .10、不超过6的最大整数是 . 三、解答题(共70分)11. (本题满分20分)设a 为整数,使得关于x 的方程a 2x -(a+5)x+a+7=0至少有一个有理根,试求方程所有可能的有理根.12. (本题满分25分)如图,四边形中ABCD 中 ,E,F 分别是AB,CD 的中点,P 为对角线AC 延长线上的任意一点,PF 交AD 于M ,PE 交BC 于N ,EF 交MN 于K; 求证:K 是线段MN 的中点.FCD A PE MK BN13. (本题满分25分)120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?参考答案-、选择题(每小题7分,共42分) 1 、解:由1114123+=,而1111,236++=故删去11810与后,可使剩下的数之和为1. 故选C212====12.故选A .3、解:555=5×545=5×18125,因125被8除余l ,所以18125被8除余l ,故知555被8除余5,而在125、375、625、875四数中,只有125被8除余5,故选A 4 、解:由(1)、(3)得2x y x =-,63x z x =-,故x ≠0,代人(2)解得2710x =,所以277y =, z =-54.检验知此组解满足原方程组.于是10X +7y +Z =0.故选D5、解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线;这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形;共得21个菱形. 故选C6、解:设28abcd =3()xy ,则据末位数字特征得y =2,进而确定xy : 因360=216000,370=343000,所以60<xy <70,故只有,xy =62, 而262=238328,则ab =38,cd =32,ab +cd =70. 故选D 二.填空题(每小题7分,共28分)7、解:据条件式9........1xy +=()令z ,则(1)式化为:z xy ++=9,即有9-z =xy81-18z +2z =2222(1)(4)2x y x y xy++++ ……(2),又由2z =2(=2222(4)(1)2x y y x xy++++代入(2)得,81-18z=4,所以7718z =. 8、解:l +2+…+61=1891,2008—1891=117,由于形如ab 的页码被当成ba 后,加得的和数将相差9a b -,因为,a b 只能在1,2,…,9中取值,a b -≤8,得9a b -≤72,由于117=72+45=63+54,设弄错的两位数是ab 和cd ,若9a b -=72,9c d -=45,只有ab =19,而cd 可以取l6,27,38,49;这时ab +cd 的最大值是68;若9a b -=63,9c d -=54,则ab 可以取18,29,而cd 可以取17,28,39,ab +cd 的最大值也是68.9、解:如右图,连OA ,OB ,OC ,线段 OA 将阴影的上方部分剖分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O 旋转0120后,阴影部分便合并成△OBC ,它的面积等于△A BC .10、解:6=3(8+,令 8+a ,8-b ,得 a +b =16,ab=4,a,b 是方程21640x x -+=的两个根, 故得2a =16a -4,2b =16b -4;3a =162a -4a ,32164b b b =-;所以3a +3b =16(2a +2b )-4(a+b )=16(16(a+b )一8)-4(a+b )=252(a+b )-128=3904.∵0<b <1,∴0<3b <1, ∴3a 的最大整数值不超过3903. 三.解答题(共70分)11、解:当a =0时,方程的有理根为75x =; ……5分F CD A PEMK B N以下考虑a ≠0的情况,此时原方程为一元二次方程,由判别式2(5)4(7)0,a a a +-+≥即32a +18a -25≤0a ≤≤ 整数a 只能在其中的非零整数1,-1,-2,-3,-4,-5,-6,-7中取值,10 分由方程得x = (1)当a =1,由(1)得x =2和4;当a=-1时,方程无有理根;当a =-2,由(1)得x =1和-52;当a=-3时,方程无有理根; ……15分 当a =-4,由(1)得x =-1和34;当a=-5时,方程无有理根;当a =-6,由(1)得x =12和-13;当a =-7时,由(1)得x =37和17-; 20分12、证明:EF 截△PMN , 则.. 1..........(1)NK MF PE KM FP EN =……5分 BC 截 △PAE ,则.. 1...........(2)EB AC PNBA CP NE =, 即有2,PN CPNE AC= 所以2..............(3)PE CP ACEN AC+=, 10分 AD 截△PCF ,则..1,FD CA PMDC AP MF= 即22,............(4)PM AP PF AP ACMF AC MF AC-=∴=……15分 因AP =AC +CP ,得2CP + AC =2AP -AC ,由(3),(4)得,,........20PE FPEN MF=分 即.1,MF PEFP EN=所以由(1)得 NK =KM ,即K 是线段 AM 的中点 ……25分 13、解:将这120人分别编号为12120,,....,P P P ,并视为数轴上的120个点,用k A 表示这120人之中未答对第k 题的人所成的组,k A 为该组人数, k=l ,2,3,4,5,则1A =24,234537,46,54,85,A A A A ==== ……5分将以上五个组分别赋予五种颜色,如果某人未做对第k 题,则将表示该人点染第k 色,k=l ,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于1A +2345A A A A +++=246, 故至少染有三色的点不多于2463=82个,……10分 右上图是满足条件的一个最佳染法,即点1285,,....,P P P 这85 个点染第五色;点1237,,....,P P P 这37个点染第二色;点383983,,....,P P P 这46个点染第四色;点1224,,....,P P P 这24 个点染第一色;点252678,,....,P P P 这54个点染第三色;于是染有三色的点最多有78个. …20分因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如7980120,,...,P P P 这 42 个人) …… 25分8546 5437 24。
第十八届“希望杯”全国数学邀请赛初二 第二试年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形(D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是, (B )是2031年, (C )是2043年,(D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nb N n+=+, 则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7cmDC B A7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( ) (A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x= and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 图3y=m/ty=ktO t (小时)y(毫克)4321110、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么纳米的长度用科学记数法表示为__米。
第18届数学解题能力展示竞赛试题一、填空题。
1、如左下图,正方体六个面上分别写着1,2,3,4,5,6六个数字,且相对的两个面上的两个数的和都是7。
把六个这样的正方体,顺次贴成右下图的形状,如果左后方正方体的上面的面上的数字是1,左前方正方体上前面的面上的数字是3,且每两个贴合着的正方体中,两个贴面上的两个数的和都等于8。
那么,最右方体的右面上?2、a,b,c,d分别表示四个自然数,且a>b>c>d。
请你写出一个算式,表示一个数与另外三个数的和相乘的积,其中乘积最大的算式是。
3、如果把1,2,3,4,5,6,7,8这八个数字分别填入下面算式的□中(没有相同的),那么得出最小的差的那个算式是。
□□□□ - □□□□4、如下页左上图,8枚圆形棋子放在4×4的棋盘中,用不同的方法连接各棋子的圆心,可以得到三种位置且大小不同的正方形。
如果棋盘上的每个格都放一枚圆形棋子(如右上图),用不同的方法连接各枚棋子的圆心,那么出现与左上图那样的位置不同(不论大小是不是相等)的正方形一共有 个。
5、有两条绳子,它们的长度相等,但粗细不同。
如果从两条绳子的一端点燃,细绳子孤一端同时点燃,经过一段时间后,又同时把它们熄灭,这时量行细绳子还有10厘米没有燃尽,粗绳子还有30厘米没燃尽。
这两条绳子原来的长度是 厘米。
6、已知三个连续自然数,它们都小于2002,其中最小的一个自然数能被13整除,中间的一个自然数能被15整除,最大的一个自然数能被17整除。
那么,最小的一个自然数是 。
7、如果用四种颜色对下面三个图形的A,B,C,D,E五个区域染色,要求相邻的区域染不同的颜色,那么,对(1)(2)(3)图分别有 、 、 种染法。
A8、100个人参加测试,要求回答五道试题,并且规定凡答对3题或3题以上的为测试合格。
测试结果是:答对第一题的有81人,答对第二题的有91人,答对第三题的有85人,答对第四题的79人,答对第五题的有74人,那么至少有 人合格。
第18届WMO 地方初赛九年级A 卷答案一、选择题(每小题5分,共60分)1.A2.D3.C4.B5.C6.D7.C8.D9.D 10.A 11.D 12.D二、解答题(共6小题,共60分)13.解:(m +225--m )•m m --342=2542---m m •m m --3)2(2=2)3)(3(--+-m m m •3)2(2--m m =-2(m +3).把m =21-代入,得原式=-2×(21-+3)=-5.14.证明:过点P 作PK ∥BC 交AB 于点K ,如图,∵∠BAC =90°,AB =AC ,AD 是斜边BC 上的中线,∴∠B =∠C =∠BAD =∠CAD =45°,∴∠EKP =∠B =∠BAP =∠PAF =45°,∴AP =PK ,∵∠EPF =∠KPA =90°,∴∠EPK +∠EPA =∠EPA +∠FPA ,∴∠EPK =∠FPA ,在△AFP 和△KEP 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,EPK FP A KP AP EKP F AP ∴△AFP ≌△KEP (ASA ),∴PE =PF .15.解:(1)由题意得Δ=()[]()1443222--⨯---k k k >0,化简得102+-k >0,解得k <5.又2222(3)2410k k k --⨯+--=,解得35()k k ==或舍去,3k ∴=.(2)设方程014)3(222=--+--k k x k x 的两个根为1x ,2x ,根据题意得12||6x x y x -=-=,212122(3),41x x k x x k k +=-=-- ,222121212||()44(3)4(41)6x x x x x x k k k ∴-=+-=----=,解得12k =,由(1)知,12k =符合条件.16.解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x ,根据题意得7500(1+x )2=10800,即(1+x )2=1.44,解得x 1=0.2,x 2=-2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本),10800÷1350=8(本),12960÷1440=9(本),(9-8)÷8×100%=12.5%.故a 的值至少是12.5.17.解:过D 作DH 垂直AB 于点H ,交BC 于点E ,连接AE .∵点D 在AB 的垂直平分线上,∴AD =BD ,DH 垂直平分AB ,∴∠DAB =∠DBA ,AE =BE ,∴∠EAB =∠EBA =45°,∴∠AEC =90°,∠DBE =∠DAE ,∵∠ADC =∠CBD ,∴∠ADC =∠DAE ,∴AE //CD ,∴∠BCD =90°.又∵∠CAB =∠DHB =90°,∴AC ∥DE ,∴四边形ACDE 是平行四边形.在等腰Rt △ABC 中,易得AE =BE =CE ,则可设CD =AE =x ,则BC =2x ,而AD =BD =5,在Rt △BCD 中,有222)5()2(=+x x ,解得x =1(舍负),在△BHE 和△DCE 中,易得∠EBH =∠EDC =45°,则△ECD 也为等腰直角三角形,则CD =CE =1,故AC =DE =2.18.解:(1)在y =a (x -1)(x -3),令x =0可得y =3a ,∴C (0,3a ),∵y =a (x -1)(x -3)=a (x 2-4x +3)=a (x -2)2-a ,∴D (2,-a );(2)在y =a (x -1)(x -3)中,令y =0可解得x =1或x =3,∴A (1,0),B (3,0),∴AB =3-1=2,∴S △ABD =21×2×a =a .如图,设直线CD 交x 轴于点E ,设直线CD 解析式为y =kx +b ,把C 、D 的坐标代入可得⎩⎨⎧-=+=,2,3a b k a b 解得⎩⎨⎧=-=.3,2a b a k ∴直线CD 解析式为y =-2ax +3a ,令y =0可解得x =23,∴E (23,0),∴BE =3-23=23,∴S △BCD =S △BEC +S △BED =21×23×(3a +a )=3a ,∴S △BCD :S △ABD =(3a ):a =3,∴k =3;(3)∵B (3,0),C (0,3a ),D (2,-a ),∴BC 2=32+(3a )2=9+9a 2,CD 2=22+(-a -3a )2=4+16a 2,BD 2=(3-2)2+a 2=1+a 2,∵∠BCD <∠BCO <90°,∴△BCD 为直角三角形时,只能有∠CBD =90°或∠CDB =90°两种情况:①当∠CBD =90°时,则有BC 2+BD 2=CD 2,即9+9a 2+1+a 2=4+16a 2,解得a =-1(舍去)或a =1,此时抛物线解析式为y =x 2-4x +3;②当∠CDB =90°时,则有CD 2+BD 2=BC 2,即4+16a 2+1+a 2=9+9a 2,解得a =22-(舍去)或a =22,此时抛物线解析式为y =22x 2-22x +223.综上可知,当△BCD 是直角三角形时,抛物线的解析式为:y =x 2-4x +3或y =22x 2-22x +223.。
第18届数学解题能力展示竞赛试题
一、填空题。
1、如左下图,正方体六个面上分别写着1,2,3,4,5,6六个数字,且相对的两个面上的两个数的和都是7。
把六个这样的正方体,顺次贴成右下图的形状,如果左后方正方体的上面的面上的数字是1,左前方正方体上前面的面上的数字是3,且每两个贴合着的正方体中,两个贴面上的两个数
的和都等于8。
那么,最右方体的右面上 ?
2、a,b,c,d分别表示四个自然数,且a>b>c>d。
请你写出一个算式,表示一个数与另外三个数的和相乘的积,其中乘积最大的算式是。
3、如果把1,2,3,4,5,6,7,8这八个数字分别填入下面算式的□中(没有相同的),那么得出最小的差的那个算式是。
□□□□ - □□□□
4、如下页左上图,8枚圆形棋子放在4×4的棋盘中,
用不同的方法连接各棋子的圆心,可以得到三种位置且大小不同的正方形。
如果棋盘上的每个格都放一枚圆形棋子(如右上图),用不同的方法连接各枚棋子的圆心,那么出现与左上图那样的位置不同(不论大小是不是相等)的正方形一共有个。
5、有两条绳子,它们的长度相等,但粗细不同。
如果从两条绳子的一端点燃,细绳子孤一端同时点燃,经过一段时间后,又同时把它们熄灭,这时量行细绳子还有10厘米没有燃尽,粗绳子还有30厘米没燃尽。
这两条绳子原来的长度是厘米。
6、已知三个连续自然数,它们都小于2002,其中最小的一个自然数能被13整除,中间的一个自然数能被15整除,最大的一个自然数能被17整除。
那么,最小的一个自然数是。
7、如果用四种颜色对下面三个图形的A,B,C,D,E五个区域染色,要求相邻的区域染不同的颜色,那么,对(1)(2)(3)图分别有、、种染法。
8、100个人参加测试,要求回答五道试题,并且规定凡答对3题或3题以上的为测试合格。
测试结果是:答对第一题的有81人,答对第二题的有91人,答对第三题的有85人,答对第四题的79人,答对第五题的有74人,那么至少有人合格。
二、解答题。
1、蓝天小学举行《迎春》环保知识大赛,一共有100名男、女选手参加初赛。
经过初赛、复赛,
最后确定了参加决赛的人选。
已知参加决赛的男选手的人数,占初赛的男选手的
20%;参加决赛的
女选手的人数,占初赛的女选手人数的12.5%,而且比参加决赛的男选手的人数多。
参加决赛的男、女选手各多少人?
2、有许多边长是3cm,2cm,1cm的正方形纸板。
用这些正方形纸板拼成一个长5cm,宽3cm 的长方形。
一共有()种不同的拼法。
(通过翻转能相互得到的拼法,算一种拼法)
3、在下面的图中有11个空的圆圈,要求把1~13这些数填入各圈内(其中3,4已经填好),使得上面两个圆圈内数的和,等于与它相连的下面的圆圈内的数(例如,虚线框中上面两个圈中的数相加,它们的和应等于相连的下面一个圈中的数),并且最下面空着的四圆圈中的数之和等于43。