第七章 基因突变
- 格式:ppt
- 大小:33.02 MB
- 文档页数:97
练习1基因突变和基因重组1.[海南高考]下列有关基因突变的叙述,正确的是()A.高等生物中基因突变只发生在生殖细胞中B.基因突变必然引起个体表型发生改变C.环境中的某些物理因素可引起基因突变D.根细胞的基因突变是通过有性生殖传递的2.[2021天津]某患者被初步诊断患有SC单基因遗传病,该基因位于常染色体上。
调查其家系发现,患者双亲各有一个SC基因发生单碱基替换突变,且突变位于该基因的不同位点。
调查结果见表。
个体母亲父亲姐姐患者表型正常正常正常患病SC基因测序结果[605G/A] [731A/G] [605G/G];[731A/A] ?注:测序结果只给出基因一条链(编码链)的碱基序列,[605G/A]表示两条同源染色体上SC基因编码链的第605位碱基分别为G和A。
其他类似。
若患者的姐姐两条同源染色体上SC基因编码链的第605和731位碱基可表示为图1,根据调查结果,推断该患者相应位点的碱基应为()3.[2024绵阳模拟]编码酶X 的基因中某个碱基被替换时,表达产物将变为酶Y ,如表显示了与酶X 相比,酶Y 可能出现的四种状况,对这四种状况出现的原因判断正确的是( )比较指标① ② ③ ④ (酶Y 活性/酶X 活性)×100% 100% 50% 10% 150% 酶Y 氨基酸数目/酶X 氨基酸数目11小于1大于1A.状况①说明基因碱基序列没有发生改变B.状况②是因为氨基酸数减少了50%C.状况③可能是因为突变导致了终止密码子提前D.状况④可导致终止密码子的位置提前,使肽链变短4.[2021福建]水稻等作物在即将成熟时,若经历持续的干热之后又遇大雨天气,穗上的种子就容易解除休眠而萌发。
脱落酸有促进种子休眠的作用,同等条件下,种子对脱落酸越敏感,越容易休眠。
研究发现,XM 基因表达的蛋白发生变化会影响种子对脱落酸的敏感性。
XM 基因上不同位置的突变影响其蛋白质表达的情况和产生的种子休眠效应如图所示。
《基因突变》讲义一、什么是基因突变在生命的奥秘中,基因突变就像是一场悄无声息但影响深远的变革。
简单来说,基因突变指的是基因在结构上发生碱基对组成或排列顺序的改变。
我们身体里的每一个细胞都包含着整套的基因,这些基因就像是一份份精细的指令手册,指导着细胞的生长、发育和各种功能的执行。
而当基因中的某些部分发生了变化,就如同这份指令手册中的某些字句被涂改或者写错了,这就是基因突变。
基因突变可以发生在生殖细胞中,也可以发生在体细胞中。
如果发生在生殖细胞,比如卵子或者精子,那么这种突变就有可能传递给后代;而如果发生在体细胞,通常只影响个体自身。
二、基因突变的原因导致基因突变的原因多种多样,就像是一场复杂的交响曲,由多个因素共同演奏而成。
首先,物理因素是常见的“肇事者”之一。
比如紫外线、X 射线等各种辐射。
这些辐射具有强大的能量,能够直接作用于基因的分子结构,导致碱基对的断裂、缺失或者错误连接。
想象一下,就像是强烈的阳光可能会晒坏我们的皮肤一样,强烈的辐射也可能“伤害”到基因。
化学因素也不甘示弱。
许多化学物质,如亚硝酸盐、黄曲霉素等,都有可能诱发基因突变。
它们可以与基因中的碱基发生化学反应,改变碱基的性质,从而导致基因的突变。
生物因素同样不可忽视。
某些病毒和细菌在侵入细胞后,其遗传物质可能会整合到宿主细胞的基因中,引发基因突变。
此外,DNA 复制过程中的“小失误”也会导致基因突变。
虽然细胞有着精密的机制来保证复制的准确性,但偶尔也会出现“打盹”的时候,从而产生错误。
三、基因突变的类型基因突变有着不同的类型,就像是不同款式的衣服,各具特点。
点突变是较为常见的一种。
它是指基因中的一个碱基对被替换成了另外一个碱基对。
这就好比原本应该是“苹果”的单词,其中一个字母被换成了别的,可能就变成了“阿婆”。
还有缺失突变,也就是基因中的一段碱基序列丢失了。
这就像一本完整的书少了几页重要的内容。
插入突变则与之相反,是在基因中额外插入了一段新的碱基序列。
第七章第一讲基因重组和基因突变一学习目标1.掌握基因突变的概念2.掌握基因重组的概念二知识梳理及拓展什么叫“生物的变异”?生物体亲代和子代之间以及子代个体之间性状的差异性1、基因突变(一)基因突变的实例红细胞不是正常的圆饼状,而是弯曲的镰刀状,人们称这种病为镰刀型细胞贫血症。
这种病患者一旦缺氧,红细胞变成长镰刀型。
病重时,红细胞受机械损伤而破裂的现象,引起严重贫血而造成死亡正常血红蛋白究竟出了什么问题?碱基对改变一定会导致蛋白质的结构改变吗?a、碱基对的替换,密码子的简并性或者容错性,还可以对应同一种氨基酸,所以碱基对的替换对生物性状影响最小。
b、碱基对的缺失或者增添,有可能使得后面所有的密码子发生改变,相应的氨基酸有可能都会变。
c、如果碱基对的改变是发生在非编码区或者编码区的内含子,那么相应的氨基酸不会变即使蛋白质的结构改变了,生物的性状也不一定会变,例如隐性突变,AA Aa基因突变的结果基因突变是染色体的某一位点上基因的改变,使一个基因变成它的等位基因(A→a或a→A),不改变染色体上基因的数量,只改变基因的内部结构,并且通常会引起一定的表现型的变化.基因突变的时间DNA复制时期有丝分裂的间期减数第一次分裂间期基因突变若发生在配子中(减数分裂时产生)将遵循遗传规律传递给后代。
若发生在体细胞(有丝分裂),一般不能遗传。
有些植物体细胞发生基因突变,可以通过无性繁殖传递。
人体某些体细胞的基因(原癌基因和抑癌基因)突变,有可能发展成癌细胞。
基因突变的原因自发突变:自然条件下DNA偶尔复制错误例如:果蝇的白眼,水稻的矮秆等。
诱发突变:基因突变的特点细菌无抗药性——抗药性棉花正常枝——短果枝果蝇红眼——白眼长翅——残翅家鸽羽毛白色——灰红色人正常色觉——色盲正常肤色——白化病1)、在生物界普遍存在—普遍性基因突变发生在生物个体发育的任何时期2)、在生物个体发育的任何时期任何部位发生—随机性3)、突变率低—低频性自然状态下,基因突变的频率是很低的。
第七章微生物的遗传变异和育种第一节微生物的遗传变异的概述遗传和变异是生物体最本质的属性之一。
所谓遗传,讲的是发生在亲子间的关系,即指生物的上一代将自己的一整套遗传因子稳定地传递给下一代的行为或功能,它具有极其稳定的特性。
而变异是指子代与亲代之间的不相似性。
遗传是相对的,变异是绝对的。
遗传保证了物种的存在和延续,而变异推动了物种的进化和发展。
在学习遗传、变异内容时,先应清楚掌握以下几个概念:(一)遗传型又称基因型,指某一生物个体所含有的全部遗传因子即基因组所携带的遗传信息。
遗传型是一种内在可能性或潜力,其实质是遗传物质上所负载的特定遗传信息。
具有某遗传型的生物只有在适当的环境条件下,通过自身的代谢和发育,才能将它具体化,即产生表型。
(二)表型指某一生物体所具有的一切外表特征及内在特性的总和,是其遗传型在合适环境下通过代谢和发育而得到的具体体现。
所以,它与遗传型不同,是一种现实性。
(三)变异指在某种外因或内因的作用下生物体遗传物质结构或数量的改变,亦即遗传型的改变。
变异的特点是在群体中以极低的概率(一般为10-5~10-10)出现,性状变化的幅度大,且变化后的新性状是稳定的、可遗传的。
(四)饰变指一种不涉及遗传物质结构改变而只发生在转录、翻译水平上的表型变化。
其特点是整个群体中的几乎每一个体都发生同样变化;性状变化的幅度小;因其遗传物质不变,故饰变是不遗传的。
例如,Serratia marcescens(粘质沙雷氏菌)在25℃下培养时,会产生深红色的灵杆菌素,它把菌落染成鲜血似的。
可是,当培养在37℃下时,群体中的一切个体都不产色素。
如果重新降温至25℃,所有个体又可恢复产色素能力。
所以,饰变是与变异有着本质差别的另一种现象。
上述的S.marcescens产色素能力也会因发生突变而消失,但其概率仅10-4,且这种消失是不可恢复的。
从遗传学研究的角度来看,微生物有着许多重要的生物学特性:微生物结构简单,个体易于变异;营养体一般都是单倍体;易于在成分简单的合成培养基上大量生长繁殖;繁殖速度快;易于累积不同的最终代谢产物及中间代谢物;菌落形态特征的可见性与多样性;环境条件对微生物群体中各个体作用的直接性和均一性;易于形成营养缺陷型;各种微生物一般都有相应的病毒;以及存在多种处于进化过程中的原始有性生殖方式等。
一、基因突变l基因突变l突变率l突变的类型l突变的特性l基因突变自发性和不对应性的证明l基因突变的机制l紫外线对DNA的损伤和修复(一)基因突变:简称突变,是指生物体的遗传l基因突变(mutation ):简称突变,是物质的分子结构突然发生的可遗传的变化。
染色体畸变——细胞学上可以看到染色体的变化l突变点突变——细胞学上看不到遗传物质的变化l突变株(mutant):发生了突变的微生物细胞或菌株。
l野生型(wild type):从自然界分离到的任何微生物在其发生突变前的原始菌株。
(二)突变率u每一细胞在每一世代中发生某一性状突变的几率,称突变率。
如突变率为10-8指该细胞在1亿次分裂过程中,会发生一次突变。
u为了方便常用每一单位群体在每一世代中产生突变株的数目来表示。
u自然界中微生物发生自发突变的频率很低,约10-6-10-9范围内。
其它基因的突变率。
在同u突变是独立的。
某一基因发生突变不会影响基因一个细胞中同时发生两个基因突变的几率是极低的,因为双重突变型的几率只是各个突变几率的乘积。
(三)突变类型l突变的类型很多,从实用的目的出发,按突变后极少数突变株的表型是否能在选择性培养基上加以鉴别来区分。
突变株的表型选择性突变型(株)非选择性突变型(株)营养缺陷型(株)抗性突变型(株)条件致死突变型(株)形态突变型(株)抗原突变型(株)产量突变型(株)选择性突变株(selective mutant):具有选择标记(如营养缺陷性、抗性突变型、条件致死突变型),只要选择适当的环境条件,如培养基、温度、pH值等,就比较容易检出和分离到。
非选择性突变株(non-selective mutant):无选择标记(如产量突变型、抗原突变型、形态突变型),能鉴别这种突变体的唯一方法是检查大量菌落并找出差异。
主要突变型u营养缺陷型(auxotroph):某一野生型菌株由于发生基因突变而丧失一种或几种生长因子的合成能力,因而无法在基本培养基上正常生长繁殖的变异类型。
教案:《基因突变》的教学设计第一章:引言1.1 课程背景介绍基因突变的概念和重要性解释基因突变在生物进化中的作用强调基因突变与人类疾病的关系1.2 教学目标让学生了解基因突变的基本概念让学生理解基因突变的原因和机制让学生掌握基因突变与疾病的关系1.3 教学方法采用讲授法介绍基因突变的基本概念和机制采用案例分析法讨论基因突变与疾病的关系采用小组讨论法促进学生思考和讨论第二章:基因突变的基本概念2.1 基因突变的定义解释基因突变的含义和特点强调基因突变是生物进化的基础2.2 基因突变的原因介绍基因突变的外因和内因解释基因突变发生的机制2.3 基因突变的表现形式介绍点突变、插入突变和缺失突变等类型强调基因突变的表现形式对生物功能的影响第三章:基因突变的原因和机制3.1 外因引起的基因突变介绍化学物质、辐射等外因对基因的影响解释外因引起基因突变的机制3.2 内因引起的基因突变介绍DNA复制错误、DNA修复缺陷等内因对基因的影响解释内因引起基因突变的机制3.3 基因突变的发生过程描述基因突变的发生过程和步骤强调基因突变的发生是一个随机和低频的过程第四章:基因突变与疾病的关系4.1 基因突变与遗传疾病介绍基因突变与遗传疾病的关系解释基因突变如何导致遗传疾病的发生4.2 基因突变与癌症介绍基因突变与癌症的关系解释基因突变如何导致癌症的发生和发展4.3 基因突变与药物耐药性介绍基因突变与药物耐药性的关系解释基因突变如何导致药物耐药性的产生第五章:案例分析与小组讨论5.1 案例一:囊性纤维化介绍囊性纤维化的基因突变原因和机制分析囊性纤维化对患者生活的影响5.2 案例二:镰状细胞贫血介绍镰状细胞贫血的基因突变原因和机制分析镰状细胞贫血对患者生活的影响5.3 小组讨论让学生分组讨论案例中的基因突变与疾病的关系鼓励学生提出问题和观点,促进思考和讨论教案:《基因突变》的教学设计第六章:基因突变的研究方法6.1 基因突变检测技术介绍PCR、DNA测序等基因突变检测技术强调这些技术在研究基因突变中的应用和重要性6.2 基因突变的功能研究介绍细胞培养、分子克隆等方法研究基因突变的功能强调功能研究对理解基因突变影响的重要性6.3 基因突变动物模型的构建介绍基因敲除、基因敲入等动物模型构建方法强调动物模型在研究基因突变疾病中的应用和重要性第七章:基因突变与生物进化7.1 基因突变与物种形成介绍基因突变在物种形成中的作用和意义强调基因突变是生物进化的原材料7.2 基因突变与种群遗传学介绍基因突变在种群遗传学中的作用和意义强调基因突变对种群基因频率的影响7.3 基因突变与生物适应性介绍基因突变在生物适应性中的作用和意义强调基因突变对生物环境适应的影响第八章:基因突变与生物技术8.1 基因突变与基因编辑介绍CRISPR/Cas9等基因编辑技术强调基因编辑技术在基因突变研究和应用中的重要性8.2 基因突变与基因治疗介绍基因治疗的概念和方法强调基因治疗在基因突变相关疾病治疗中的应用和前景8.3 基因突变与生物制药介绍基于基因突变的生物制药方法强调生物制药在基因突变相关疾病治疗中的应用和前景第九章:基因突变的伦理问题9.1 基因突变与遗传歧视介绍基因突变与遗传歧视的关系强调保护基因突变携带者权益的重要性9.2 基因突变与基因隐私介绍基因突变与基因隐私的关系强调保护个人基因信息的重要性9.3 基因突变与基因治疗伦理介绍基因突变与基因治疗伦理的问题强调基因治疗伦理原则和规范第十章:总结与拓展10.1 课程总结回顾本课程的重点内容和知识点强调基因突变的重要性和应用前景10.2 课程拓展介绍基因突变相关的研究进展和热点问题鼓励学生进行基因突变相关的课题研究和创新实践重点和难点解析重点一:基因突变的基本概念和原因基因突变是生物进化的基础,理解其定义和特点是教学重点。