化工原理:4液体的精馏
- 格式:ppt
- 大小:6.05 MB
- 文档页数:87
化工原理精馏知识点总结一、精馏原理概述精馏是一种通过升华和凝华的方法来分离液体混合物组分的技术,通过升华和凝华的过程可以使组分分离,最终获得纯净的组分产品。
精馏是一种重要的分离技术,在化工生产中得到广泛应用。
精馏的基本原理是依靠物质的汽化、冷凝和重新汽化等过程来实现组分的分离。
混合物在加热后,其中的易挥发成分首先汽化,形成蒸汽,然后在冷凝器中冷凝成液体,从而获得纯净的组分。
通过将蒸汽重新加热、汽化和冷凝,可以进行多次分离,提高分离效果。
二、精馏塔结构和工作原理1. 精馏塔结构精馏塔是进行精馏操作的设备,其结构一般由一种或多种填料、提升子、冷凝器和再沸器等组成。
填料是用来增大塔内表面积和混合物与液体之间的接触面积,提升子是用来提高温度场,从而使混合物更容易汽化。
冷凝器则是用来将蒸汽冷凝成液体,再沸器是用来将再次汽化的液体加热成蒸汽。
2. 精馏塔工作原理精馏塔是通过在填料层内和填料层与液体流动层之间的传质作用实现气液两相的接触混合。
填料层利用填料表面积大、气液接触面积大和液膜传质效果高的特点,以实现气液两相的有效滞留和有效接触,从而提高气相和液相之间的传递速率。
从而实现混合物组分的分离。
三、精馏操作过程及控制方法1. 精馏操作过程(1)进料进料是指将需要分离的混合物输入到精馏塔中。
进料的温度、压力和流量等参数对分馏操作的影响很大,需要注意调节。
(2)加热加热是将混合物中易挥发成分加热至其汽化温度的过程。
通常使用蒸汽加热或电加热等方式来进行加热。
(3)蒸馏蒸馏是指将加热后的混合物通过精馏塔,在填料层内和填料层与液体流动层之间进行传质过程,以实现组分的蒸发和再凝结的过程。
(4)冷凝冷凝是指将产生的蒸汽通过冷凝器使之冷却成液体,从而得到纯净的组分。
冷凝器通常采用水冷或风冷等方式来进行冷却。
2. 精馏操作控制方法(1)温度控制保持适当的加热温度是进行精馏操作的关键,通过合理控制加热温度,可以使易挥发组分蒸发,而留下不易挥发组分。
化工原理实验—精馏1. 概述精馏是一种常用的分离技术,广泛应用于化工工艺中。
它通过将混合液加热至蒸发,然后在冷凝器中冷却并凝结回液体,从而实现混合物中组分的分离。
本实验旨在通过精馏实验,掌握精馏原理、操作步骤和相关设备的使用方法。
2. 实验原理2.1 精馏原理精馏是基于液体混合物中各组分的不同沸点而进行的分离过程。
在加热的作用下,沸点较低的组分会先蒸发,经过冷凝器冷却后变为液体回流,而沸点较高的组分则会滞留在容器中。
通过收集冷凝后的液体,我们可以分离出混合物中的不同组分。
2.2 实验设备在精馏实验中,主要使用以下设备:•加热设备:电热板、油浴等;•冷凝器:通常采用水冷型冷凝器,通过循环冷却水实现液体冷凝;•分馏柱:用于增加接触面积,提高分离效果;•采样装置:用于采集样品,检测组分浓度等。
2.3 操作步骤精馏实验的基本步骤如下:1.准备实验设备:包括加热设备、冷凝器、分馏柱等;2.准备混合液:按照实验要求,将需要分离的混合液制备好;3.装配设备:将冷凝器安装在分馏柱上方,连接好相应的管道和热源;4.开始加热:逐渐加热混合液,将其中的沸点较低组分蒸发出来;5.冷却和回流:通过冷凝器使蒸发的组分冷却并凝结成液体,回流到容器中;6.收集液体:将回流液体收集,并记录途中温度和时间等相关数据;7.结束实验:实验完成后,及时关闭加热设备和冷凝器,整理实验装置。
3. 实验操作及数据记录3.1 实验设备准备首先,确保实验室环境安全,检查仪器设备是否齐全,并找到精馏实验所需的各种设备:•电热板:用来提供加热源;•分馏柱:用来增加接触面积,提高分离效果;•冷凝器:通常为水冷型冷凝器,确保冷却效果良好。
3.2 实验样品准备按照实验要求,取出需要分离的混合液样品。
注意记录样品的成分和浓度等信息。
3.3 装配设备将冷凝器安装在分馏柱上方,并连接好相应的管道和热源。
确保连接紧密,无泄漏。
3.4 开始实验1.打开电热板,设置适当的加热温度;2.将混合液置于分馏烧瓶中,放入加热设备中;3.监测温度变化:通过温度计等工具,记录样品温度的变化。
化工原理精馏实验化工原理精馏实验是化工工程中的一项重要实验内容,它主要用于分离和提纯混合物中的组分。
本文将介绍化工原理精馏实验的基本原理、实验步骤以及实验中需要注意的事项。
1. 实验目的化工原理精馏实验的主要目的是通过温度差异,利用液体蒸汽和凝结的原理,将混合物中的组分分离并得到纯净的产品。
通过这个实验,我们可以了解精馏作为一种分离技术的原理和应用。
2. 实验原理化工原理精馏实验的基本原理是利用混合物中各组分的不同沸点,通过升温使其中具有较低沸点的组分先蒸发,然后通过冷凝使其变为液体,从而实现分离。
在实验过程中,我们需要使用精馏塔,该塔内部设置有填料,用于增加混合物和蒸汽之间的交流面积,并实现更充分的分离。
3. 实验步骤(1) 准备实验所需设备和药品,包括精馏装置、混合物、填料等。
(2) 将混合物加入精馏瓶中,并将瓶塞密封。
(3) 将冷凝管和进料管连接到精馏瓶上,确保连接牢固。
(4) 将精馏瓶放入加热设备中,逐渐升温。
(5) 观察精馏瓶内的液体是否开始蒸发,当温度上升到某一点时,开始收集冷凝液。
(6) 根据实验需要,调整加热温度和收集冷凝液的时间,以实现所需组分的分离和提纯。
4. 实验注意事项(1) 在进行化工原理精馏实验前,需先对所需设备进行检查和清洁,确保实验过程的安全性。
(2) 在实验操作中,热量的传递速度会影响分馏过程的效果,因此需要掌握合适的加热速率。
(3) 为了避免精馏烧坏填料或其他设备,需要控制温度,确保温度在安全范围内。
(4) 实验结束后,应将设备进行清洗和消毒,防止残留物对下次实验的影响。
5. 实验结果分析通过化工原理精馏实验,可以得到分离出的纯净组分,并进行定量分析。
根据实验结果,可以进一步探讨精馏的分离效果、提纯效率等指标,并对所得纯净组分进行性质分析。
总结:化工原理精馏实验是一项重要的实验内容,通过实验可以了解精馏作为一种分离技术的原理和应用。
在实验过程中,需要注意设备的清洁和安全操作,合理控制加热温度和加热速率,以达到较好的分馏效果。
第9章液体精馏知识要点液体精馏是将挥发度不同的组分组成的混合液,在精馏塔中同时进行多次部分气化和部分冷凝,使其实现高纯度分离的过程。
实现精馏需要3个条件:①设备条件:精馏塔;②回流条件:塔底气相回流,塔顶液相回流;③相平衡条件:组分的挥发度有差异。
本章讨论重点为双组分精馏过程的计算,主要应掌握的内容包括:相平衡关系的表达和应用;精馏塔的物料衡算和操作关系;回流比的确定;理论板数的求法;影响精馏过程主要因素的分析等。
本章主要知识点间的联系图见下:图9-1 液体精馏一章主要知识点联系图1. 二元物系的气液相平衡关系气液相平衡是蒸馏过程的热力学基础,传质的极限状态。
根据相平衡可以判断过程进行的可能性。
(1) 恒压下二元物系气液相平衡的特点●液相组成与温度一一对应⇔x=f(t)●气相组成与温度一一对应⇔y= f(t)●气液两相组成一一对应⇔y=f(x)(2) 理想物系含义:指由理想气体与理想溶液构成的物系。
它满足理想气体状态方程、道尔顿分压定律和拉乌尔定律。
拉乌尔定律相对挥发度/1/1A A A B B B p x y xp x y xναν-===⋅- (9-1)11y xy xα-=⋅- (气相服从道尔顿分压定律) 相对挥发度α愈是大于1 ,则y 愈是大于x ,物系愈容易分离。
● 泡点方程x -toB ooA Bp p x p p -=- (9-2) ● 露点方程y -to A BA A Bp p p y p p p -=⋅- (9-3) ● 相平衡方程y-x()11xy xαα=+- (9-4)● t -y (x )相图两端点A 与B :端点A 代表纯易挥发组分A(x =1),端点B 代表纯难挥发组分B(x =0)。
两线:t -x 线为泡点线,泡点与组成x 有关;t-y 线为露点线,露点与组成y 有关。
3区:t -x 线以下为过冷液体区;t-y 线以上为过热蒸汽区;在t-x 与t -y 线之间的区域为气液共存区,只有体系落在气液共存区才能实现一定程度的分离。
化工原理精馏实验数据处理1. 引言化工原理精馏实验是化工专业中非常重要的实验之一。
在精馏实验中,通过分离液体混合物中的组分,得到纯净的产品。
实验过程中需要收集大量的实验数据,并对这些数据进行处理和分析。
本文将详细探讨化工原理精馏实验数据处理的方法和技巧。
2. 实验目的化工原理精馏实验的目的是通过精馏过程将液体混合物中的组分分离出来。
实验数据处理的目的是对实验数据进行整理、分析和解释,以得到有关精馏过程的关键信息和结果。
3. 实验数据处理方法在化工原理精馏实验中,我们需要收集的实验数据包括温度、压力、流量等参数的变化情况。
为了对这些数据进行处理,我们可以采用以下方法:3.1 数据的整理和筛选首先,我们需要对收集到的实验数据进行整理和筛选。
将不符合要求或有误差的数据排除,确保数据的准确性和可靠性。
3.2 数据的统计和分析接下来,我们可以对整理后的数据进行统计和分析。
可以计算平均值、标准差、方差等统计指标,以了解数据的分布情况和稳定性。
3.3 数据的可视化为了更直观地展示数据的变化趋势和关系,我们可以将数据进行可视化处理。
可以使用图表、曲线图、散点图等方式来展示数据,以便更好地理解和解释实验结果。
4. 实验数据处理的意义和应用实验数据处理在化工原理精馏实验中具有重要的意义和应用。
通过对实验数据的处理,我们可以得到以下信息和结果:4.1 组件的分离效果通过对实验数据的分析,我们可以判断精馏过程中组分的分离效果。
可以通过计算馏分的组分含量、回收率等指标来评估分离效果的好坏。
4.2 工艺参数的优化实验数据处理还可以帮助我们优化精馏过程中的工艺参数。
通过分析数据,我们可以找到影响分离效果的关键因素,并对工艺参数进行调整和优化,以提高产品的纯度和产量。
4.3 实验结果的验证实验数据处理还可以用于验证实验结果的准确性和可靠性。
通过对实验数据的处理和分析,我们可以判断实验结果是否符合预期,从而对实验方法和操作进行改进和优化。
化工原理精馏实验报告
实验目的:掌握化工原理中的精馏操作,并通过实验验证理论知识的正确性。
实验原理:
精馏是一种分离液体混合物组成的常用方法。
精馏通过不同组成的液体在加热的条件下产生蒸汽,然后再在冷凝管中冷凝成液体,最后通过收集液体可以得到不同组成的馏分。
实验仪器:
1. 精馏塔:用于分离混合物。
2. 加热器:提供加热源。
3. 冷凝器:用于冷凝产生的蒸汽。
4. 温度计:用于测量温度。
实验步骤:
1. 将需要进行精馏的混合物加入精馏塔中。
2. 打开加热器,通过加热产生蒸汽。
3. 在冷凝器中冷凝产生的蒸汽,并收集液体。
4. 使用温度计测量液体的沸点。
5. 根据液体的沸点,确定得到的馏分的组成。
实验结果:
在实验过程中,我们成功地通过精馏操作将待分离的混合物分解为不同组成的馏分。
通过温度计测量得到的沸点数据,我们可以精确地确定馏分的组成。
实验结论:
通过这次实验,我们掌握了化工原理中的精馏操作,并验证了理论知识的正确性。
精馏是一种常用的分离液体混合物的方法,在工业生产中有着广泛的应用。
掌握了精馏操作,有助于我们理解和解决化工过程中的实际问题。
化工原理精馏实验报告实验目的:本实验旨在通过对乙醇和水的精馏实验,掌握精馏过程的基本原理和操作技术,了解精馏过程中的温度变化规律,并对实验结果进行分析和总结。
实验原理:精馏是利用液体混合物中各组分的沸点差异,通过加热混合物使其中某一组分先汽化,再凝结成液体,从而实现对混合物的分离的一种物理方法。
在精馏过程中,液体混合物首先被加热至其中某一组分的沸点,该组分首先汽化,然后通过冷凝器冷却凝结成液体,最终得到纯净的组分。
实验步骤:1. 将乙醇和水混合成一定比例的混合物,倒入精馏瓶中。
2. 装上加热设备和冷凝器,调节加热设备温度至混合物中乙醇的沸点。
3. 观察冷凝器出口的液体,收集不同温度下的液体样品。
4. 对收集的液体样品进行密度测定和酒精度测定。
实验结果:通过实验,我们得到了乙醇和水在不同温度下的液体样品。
经过密度测定和酒精度测定,我们得到了不同温度下乙醇和水的纯度和组成。
实验分析:根据实验结果,我们发现在不同温度下,乙醇和水的纯度和组成存在明显差异。
通过对实验数据的分析,我们可以得出精馏过程中乙醇和水的分离效果较好,且随着温度的升高,乙醇的纯度逐渐提高。
实验总结:本次实验通过对乙醇和水的精馏实验,使我们更加深入地了解了精馏过程的基本原理和操作技术。
同时,实验结果也验证了精馏过程中液体混合物的分离效果,并为我们今后在化工生产中的实际应用提供了重要参考。
结语:通过本次实验,我们不仅掌握了精馏过程的基本原理和操作技术,也对乙醇和水的混合物分离效果有了更深入的了解。
希望通过今后的实践操作和学习,能够更好地运用精馏技术解决实际生产中的问题,为化工生产贡献自己的一份力量。
化工原理精馏实验报告一、实验目的1.了解精馏的基本原理和操作方法。
2.掌握精馏列等常规化工装置的组装和拆卸方法。
3.学习操作精馏列进行混合物的分离。
二、实验原理精馏是利用液体混合物中组分挥发性的差异,通过升温使其分别汽化和冷凝,实现不同组分的分离。
根据原理和设备的不同,可分为常压精馏和减压精馏。
常压精馏通常采用碗状蒸馏器,其馏出液不一般含气体,供后续步骤使用。
减压精馏蒸馏器采用圆筒形设计,湿性气体排放恶劣等特点。
三、实验装置本次实验使用的精馏装置包括:碟状蒸馏器、冷凝器、接收瓶、加热器、温度传感器等。
四、实验步骤1.将碟状蒸馏器装置迅速、适当地安插在加热器上,并设置温度传感器。
2.将待测试物质加入碟状蒸馏器,并紧密封好。
3.连接冷凝器和接收瓶,确保冷凝器充分冷却。
4.使用加热器对碟状蒸馏器进行加热,并监测温度传感器。
5.在实验过程中,根据馏出液的收集情况及温度变化来调整加热器的加热功率。
6.测定不同温度下不同组分的收集量,并记录数据。
7.实验结束后,拆卸碟状蒸馏器,清洗实验装置,并做好相关记录。
五、实验结果与讨论在实验过程中,我们选择了乙醇和水的混合物进行精馏实验。
通过实验观察和数据记录,我们得到了以下结果:1.随着温度升高,乙醇的馏出量逐渐增加。
2.当温度达到78℃左右时,乙醇开始大量馏出,水的馏出量减少。
3.经过一段时间,馏出物逐渐转变为纯乙醇。
根据实验结果,我们可以得出结论:乙醇和水在常压下的沸点不同,通过精馏操作,可以将乙醇从水中分离出来,达到纯化乙醇的效果。
同时,在实验过程中,通过调节加热功率和控制温度变化,可以进一步提高乙醇的纯度。
六、实验总结本次实验通过对乙醇和水的精馏实验,掌握了精馏的基本原理和操作方法。
通过实验观察和数据记录,我们了解了温度与组分的关系,并得到了较为满意的分离效果。
同时,实验过程中我们也注意到了一些操作细节和注意事项,比如加热功率的调整和温度传感器的准确定位等。
化工原理实验—精馏化工原理实验—精馏精馏是一种重要的分离技术,主要用于分离、纯化液体混合物中的各种成分。
在实际生产和科研实验中,精馏已经成为不可或缺的重要技术。
本文将就化工原理实验中的精馏实验进行详细介绍。
一、实验原理精馏的基本原理是根据不同成分在液态和气态之间的平衡关系,在加热条件下将混合物中单一成分蒸发和冷凝来实现分离、提纯目标成分。
实验中要分离的混合物首先被加热到沸腾点以上,因为各种成分的沸点不同,有些成分的沸点比另一些成分高得多,因此在离开混合物比较早的时候,一些液体成分便会压缩成气体形式,通过冷凝的方式回到液体形式,从而分离。
二、实验步骤1.实验前准备:确定实验目的,熟悉仪器使用方法和名词术语,检查实验物品是否准备充分。
2.实验流程:(1)调整设备:将水箱放在上部,并根据实验需要将装有混合物的烧瓶安装在下部。
(2)加热混合物:先在小火下加热,让混合物慢慢升温,确定加热速度以防止挥发速度过快。
随着温度的升高,由混合物挥发出来的单一成分便会通过塞子进入冷凝器,冷凝器中的水为其退回到液体形态,收集并量取所需要的物质。
3.实验结束:(1)关闭所有开关:实验完成后,将电源关闭,并将实验设备切断电源和气源。
(2)清洗设备与仪器:清洗所有已使用的材料和设备,以确保下次的实验能保证卫生和安全。
三、实验注意事项1.将水箱放置在塞子上方,仔细检查所有漏洞的位置和具有修复能力的地方,以避免机械故障与事故到来。
2.在进行实验时,必须小心谨慎地装填液体混合物,尤其是对于易燃物质,必须保持警惕,并根据实验条件和混合物来选择实验设备和材料。
3.在加热过程中,如果需要调整加热器的温度,必须慢慢调整,直到较稳定的加热水平达到。
总之,精馏实验是一项非常重要的化工原理实验,同学们在进行实验时一定要小心谨慎,严格遵守实验规范,才能保证实验的顺利进行。
第9章 液体精馏一、填空1精馏过程是利用 部分冷凝 和 部分汽化 的原理而进行的。
精馏设计中,回流比越 大 ,所需理论板越少,操作能耗 增加 ,随着回流比的逐渐增大,操作费和设备费的总和将呈现 先降后升 的变化过程。
2精馏设计中,当回流比增大时所需理论板数 减小 (增大、减小),同时蒸馏釜中所需加热蒸汽消耗量 增大 (增大、减小),塔顶冷凝器中冷却介质消耗量 减小 (增大、减小),所需塔径 增大 (增大、减小)。
3分离任务要求一定,当回流比一定时,在5种进料状况中, 冷液体 进料的q 值最大,提馏段操作线与平衡线之间的距离 最远 , 分离所需的总理论板数 最少 。
4相对挥发度α=1,表示不能用 普通精馏分离 分离,但能用 萃取精馏或恒沸精馏分离 分离。
5某二元混合物,进料量为100kmol/h ,x F =0.6,要求得到塔顶x D 不小于0.9,则塔顶最大产量为 66.7 kmol/h 。
6精馏操作的依据是 混合液中各组分的挥发度差异 ,实现精馏操作的必要条件包括 塔顶液相回流 和 塔底上升蒸气 。
7负荷性能图有 五 条线,分别是 液相上限线 、 液相上限线 、 雾沫夹带线 、 漏液线 和 液泛线 。
8写出相对挥发度的几种表达式 =B A v v /=BB A A x p x p //=BA B A x x y y //=oB o A p p /。
二、选择1 已知q=1.1,则加料中液体量与总加料量之比为 C 。
A 1.1:1B 1:1.1C 1:1D 0.1:1 2 精馏中引入回流,下降的液相与上升的汽相发生传质使上升的汽相易挥发组分浓度提高,最恰当的说法是 D 。
A 液相中易挥发组分进入汽相; B 汽相中难挥发组分进入液相;C 液相中易挥发组分和难挥发组分同时进入汽相,但其中易挥发组分较多;D 液相中易挥发组分进入汽相和汽相中难挥发组分进入液相必定同时发生。
3 某二元混合物,其中A为易挥发组分,液相组成x A=0.6,相应的泡点为t1,与之相平衡的汽相组成y A=0.7,相应的露点为t2,则⎽⎽⎽A⎽⎽⎽A t1=t2B t1<t2C t1>t2D 不确定4某二元混合物,进料量为100kmol/h,x F=0.6,要求得到塔顶x D不小于0.9,则塔顶最大产量为⎽⎽⎽B⎽⎽⎽。
精馏的化工原理和应用1. 引言精馏是一种常见的分离技术,在化工过程中有广泛的应用。
它通过利用液体混合物的不同沸点,将其分离为纯净的组分。
本文将介绍精馏的基本原理和常见的应用领域。
2. 精馏的基本原理精馏的基本原理是通过控制温度和压力,在复杂的液体混合物中分离出不同沸点的组分。
它基于以下两个基本概念:2.1 液体沸点液体沸点是指在一定的压力下,液体开始转化为气体的温度。
不同组分的液体在不同的沸点下发生沸腾,从而可以通过控制温度将液体分离出来。
2.2 蒸馏过程精馏通过蒸馏过程来实现分离。
蒸馏过程包括以下几个步骤:1.将液体混合物加热到使其中最易挥发组分开始汽化的温度。
2.挥发的气体通过蒸馏塔上升,经过冷凝器冷却为液体,称为馏出液。
3.馏出液再次加热,挥发为气体,再次经过冷凝器冷却变为液体,称为返流液。
4.不易挥发组分在蒸馏塔内逐渐富集,最后得到纯净的组分。
3. 精馏的应用精馏作为分离技术,在化工领域有广泛的应用。
下面介绍一些常见的应用领域:3.1 原油精馏原油精馏是利用精馏的原理将原油分解成不同的组分,例如汽油、柴油、润滑油等。
这种分离处理可以使原油中的各种组分得到高效的利用,提高资源利用率。
3.2 酒精提纯酒精的提纯一般使用精馏技术。
通过控制温度,将酒精从其他杂质中分离出来,得到高纯度的酒精。
3.3 盐水淡化盐水淡化是将含盐的海水或咸水中的盐分去除,得到淡水的过程。
精馏技术可以通过控制温度和压力,将水蒸发并冷凝为淡水,实现盐水淡化。
3.4 精炼化学品制备在化学品制备过程中,常常需要对原材料进行精炼,去除其中的杂质。
精馏作为一种常见的精炼方法,在化学品制备过程中有重要应用。
3.5 食品加工在食品加工中,精馏技术可以用于去除食品中的某些成分,提高产品的纯度和质量。
例如,酒精加工、精制油脂等。
4. 总结精馏是一种常见的化工分离技术,利用液体混合物的不同沸点将其分离为纯净的组分。
本文介绍了精馏的基本原理和常见的应用领域,包括原油精馏、酒精提纯、盐水淡化、精炼化学品制备和食品加工等。
精馏实验一、实验任务和目的:1、充分利用计算机采集和控制系统具有的快速、大容量和实时处理的特点,进行精馏过程多实验方案的设计,并进行实验验证,得出实验结论。
以掌握实验研究的方法。
2、学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。
3、学习精馏塔性能参数的测量方法,并掌握其影响因素。
4、测定精馏过程的动态特性,提高学生对精馏过程的认识。
二、实验原理:在板式精馏塔中,由塔釜产生的蒸汽沿塔板逐板上升与来自塔板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔内中,这在生产中无实际意义。
但是,由于此时所需理论塔板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时使用。
3、实验流程(简图);4、操作步骤;4.1、设置参数设置精馏段塔板数为5,设置提馏段塔板数为3,配置浓度比为0.66的乙醇/正丙醇混合液,设置进料罐的一次性进料量为2L。
4.2、精馏塔进料(1)连续点击"进料"按钮,进料罐开始进料,直到罐内液位达到70%以上。
(2)启动进料泵。
(3)设定进料泵功率,将进料流量控制器的 OP 值设为50%。
(4)设定预热器功率,将进料温度控制器的 OP 值设为60%,开始加热。
(5)打开塔釜液位控制器,控制液位在70%-80%之间。
4.3、启动再沸器(1)将塔顶冷凝器内通入冷却水。
(2)设定塔釜加热功率,将塔釜温度控制器的 OP 值设为 50%。