当前位置:文档之家› 2012级上大学物理习题

2012级上大学物理习题

2012级上大学物理习题
2012级上大学物理习题

第1部分 质点运动学

一、选择题

1.一物体在位置1的矢径是 r 1, 速度是1v . 如图所示.经?t 时间后到达位置2,其矢径是 r 2, 速度是2v

.则在?t 时间内的平均速度是[ ]

(A) )(2112v v - (B) )(2112v v

+

(C) t

r r ?-1

2 (D) t r r ?+12

2.一物体在位置1的速度是1v , 加速度是 a 1.如图所示.经?t 时间后到达位置2,其速度是2v , 加速度是

a 2.则

在?t 时间内的平均加速度是[ ]

(A)

)(112v v -?t

(B) )(112v v

+?t

(C)

)(2112a a - (D) )(2

112a a

+ 3.作匀速圆周运动的物体[ ]

(A) 速度不变 (B) 加速度不变 (C) 切向加速度等于零 (D) 法向加速度等于零

4.一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 2

2+=(其中a 、b 为常量) , 则该质点作[ ]

(A) 匀速直线运动 (B) 变速直线运动 (C) 抛物曲线运动 (D) 一般曲线运动 5.某人以-1

s m 4?的速度从A 运动至B , 再以-1

s m 6?的速度沿原路从B 回到A ,则来回全程的平均速度大小为[ ]

(A) -1s

m 5? (B) -1s m 8.4? (C) -1

s m 5.5? (D) 0

6.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)[ ]

(A) dv dt (B) 2v R

(C)

2dv v dt R + (D) 421/2

2[()()]dv v dt R + 二、填空题

1.已知质点的运动方程为t x 3=,2

2t y =则质点在第2s 内的位移r ?

=______________。

2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 3.一质点在xOy 平面上运动,运动方程为53+=t x ,422

12

-+=t t y (SI )则t =2s 末的速率v =___________________。

4.一质点的运动方程为2

6t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为________________,

在t 由0至4s 的时间间隔内,质点走过的路程为_______________。

5.质点沿半径为R 的圆周运动,运动学方程为2

32t θ=+(SI ),则t 时刻质点的法向加速度大小为

n a =_____________________;角加速度β=_________________________。

6.一质点作半径为0.1m 的圆周运动,其角位置的运动学方程为:21

42

t π

θ=+ (SI ) 则其切向加速度大小为t a =__________________________。

7.半径为30 cm 的飞轮,从静止开始以-2s rad 500?.的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度的大小t a = ,法向加速度的大小n a = .

8.当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向300 ,则雨滴相对于地面的速率是_________;相对于列车的速率是_________。 三、计算题

1.一质点从静止出发沿半径为R =3m 的圆周运动,切向加速度为a t =32

s

m -?。

(1)经过多少时间它的总加速度a 恰好与半径成

45角? (2)在上述时间内,质点所经过的路程和角位移各为多少?

2.一质点沿半径为0.10m 的圆周运动,其角位置θ(以弧度表示)可用下式表示:2

2t θ=+,式中t 以s 计,求(1)在t =2s ,它的法向加速度和切向加速度大小各是多少? (2)当切向加速度大小恰是总加速度大小的一半时,θ的值是多少?

第2部分 质点动力学

一、填空题

1.已知一质量为m 的质点,其运动方程为t A x ωcos =,t A y ωsin =式中A 、ω为正的常量,则质点在运动过程中所受的力F =__________________________

2.一质点受力i x F 23=(SI)作用, 沿x 轴正方向运动. 在从x = 0到x = 2 m 的过程中, 力F 做功为 .

3.一个质点在几个力同时作用下的位移为k j i r

654+-=?(SI), 其中一个恒力为 k j i F 953+--=(SI).这

个力在该位移过程中所做的功为

第3部分 刚体定轴转动

一、选择题

1.飞轮绕定轴作匀速转动时, 飞轮边缘上任一点的[ ]

(A) 切向加速度为零, 法向加速度不为零 (B) 切向加速度不为零, 法向加速度为零 (C) 切向加速度和法向加速度均为零 (D) 切向加速度和法向加速度均不为零 2.刚体的转动惯量只决定于[ ]

(A) 刚体质量 (B) 刚体质量的空间分布

(C) 刚体质量对给定转轴的空间分布 (D) 转轴的位置

3.两个质量分布均匀的圆盘A 和B 的密度分别为 ρ A 和 ρ B , 如果有 ρ A >ρ B , 但两圆盘的总质量和厚度相

同.设两圆盘对通过盘心垂直于盘面的轴的转动惯量分别为J A 和J B , 则有[ ]

(A) J A >J B (B) J A <J B (C) J A =J B (D) 不能确定J A 、J B 哪个大

4.冰上芭蕾舞运动员以一只脚为轴旋转时将两臂收拢, 则[ ]

(A) 转动惯量减小 (B) 转动动能不变 (C) 转动角速度减小 (D) 角动量增大

5.一滑冰者, 开始自转时其角速度为0ω, 转动惯量为0J ,当他将手臂收回时, 其转动惯量减少为

J 3

1

, 则它的角速度将变为[ ] (A)

031ω (B) 03

1ω (C) 03ω (D) 0ω 6.绳的一端系一质量为m 的小球, 在光滑的水平桌面上作匀速圆周运动. 若从桌

面中心孔向下拉绳子, 则小球的[ ]

(A) 角动量不变 (B) 角动量增加

(C) 动量不变 (D) 动量减少

7.人造地球卫星绕地球作椭圆轨道运动. 卫星轨道近地点和远地点分别为A 和B ,用L 和E k 分别表示卫星

对地心的角动量及其动能的瞬时值, 则应有[ ]

(A) kB kA B A E E L L >>, (B) kB kA B A E E L L <=, (C) kB kA B A E E L L >=, (D) kB kA B A E E L L <<,

8.人造地球卫星绕地球作椭圆轨道运动. 若忽略空气阻力和其他星球的作用, 在卫星的运行过程中[ ] (A) 卫星的动量守恒, 动能守恒 (B) 卫星的动能守恒, 但动量不守恒

(C) 卫星的动能不守恒, 但卫星对地心的角动量守恒 (D) 卫星的动量守恒, 但动能不守恒

9.一人手拿两个哑铃, 两臂平伸并绕右足尖旋转, 转动惯量为J , 角速度为ω. 若此人突然将两臂收回, 转

动惯量变为

J 3

1

.如忽略摩擦力, 则此人收臂后的动能与收臂前的动能之比为[ ] (A) 1 : 9 (B) 1 : 3 (C) 9 : 1 (D) 3 : 1 10.如图所示,一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来 两个质 量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入 圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω[ ] (A) 增大 (B) 不变 (C) 减小 (D) 不能确定

二、填空题

1.如图所示,两个完全一样的飞轮, 当用98 N 的拉力作用时,产生角加速度1β; 当挂一重98 N 的重物时, 产生角加速度2β.则1β和2β的关系为 .

2.质量为32 kg 、半径为0.25 m 的均质飞轮, 其外观为圆盘形状.当飞轮作角速度为-1s rad 12?的匀速率转动时, 它的转动动能为 .

3. 长为l 、质量为0m 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动, 转动惯量为2

03

1l m ,开始时杆竖直下垂,如图所示.现有一质量为m 的子弹

以水平速度0v

射入杆上A 点,并嵌在杆中,3

2l OA =,则子弹射入后瞬间的

角速度=ω .

4. 一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为0m ,半径为R ,对轴的转动

惯量202

1

R m J =

.当圆盘以角速度0ω转动时,有一质量为m 的子弹沿盘的直径方向射入圆盘,且嵌在盘的边缘上,子弹射入后,圆盘的角速度=ω .

5.一质量m = 2200 kg 的汽车以1

h km 60-?=v 的速度沿一平直公路开行.汽车对公路一侧距公路d = 50 m 的一点的角动量是 ;对公路上任一点的角动量大小为 .

6. 哈雷慧星绕太阳运动的轨道是一个椭圆.它离太阳最近的距离是m 1075.810

1?=r ,此时它的速率是

141s m 1046.5-??=v .它离太阳最远时的速率是122s m 1008.9-??=v ,这时它离太阳的距离=2r .

三、计算题

1. 质量分别为m 和2 m 、半径分别为r 和2 r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直于盘面的水平光滑固定轴转动,对转轴的转动惯量为2

2

9mr ,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度

2.如图所示,物体的质量m 1、m 2,定滑轮的质量M 1、M 2,半径R 1、R 2都知道,且m 1>m 2,设绳子的长度不变,质量不计,绳子与滑轮间不打滑,而滑轮的质量均匀分布,其转动惯量可按匀质圆盘计算,滑轮轴承无摩擦,试应用牛顿定律和转动定律写出这一系统的运动方程,求出物体m 2的加速度和绳的张力T 1、T 2、T 3。

第4部分 气体动理论

1.理想气体能达到平衡态的原因是[ ]

(A) 各处温度相同 (B) 各处压强相同

(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 2. 如果氢气和氦气的温度相同, 物质的量也相同, 则这两种气体的[ ]

(A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D) 势能相等

3. 某气体的分子具有t 个平动自由度, r 个转动自由度, s 个振动自由度, 根据能均分定理知气体分子的平均总动能为[ ]

(A) kT t

21 (B) kT s r t 21)(++ (C) kT r 21 (D) kT s r t 2

1)2(++ 4. 在标准状态下, 体积比为2

1

21=V V 的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为[ ] (A)

2

1 (B) 3

5 (C) 6

5 (D)

10

3 5. 压强为p 、体积为V 的氢气(视为理想气体)的内能为[ ]

(A)

pV 25 (B) pV 23 (C) pV 2

1

(D) pV 6.温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系[ ]

(A)

k ε和k ε相同 (B) k ε相等而k ε不相等

(C)

k ε相等而k ε不相等 (D) k ε和k ε都不相等

7.两瓶不同种类的气体,分子平均平动动能相等,但气体密度不同,则[ ] (A) 温度和压强都相同 (B) 温度相同,压强不等 (C) 温度和压强都不同 (D) 温度相同,内能也一定相等

8.容器中储有1mol 理想气体,温度t =27℃,则分子平均平动动能的总和为[ ] (A) 3403 J (B) 3739.5 J (C) 2493 J (D) 6232.5 J

9.在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ]

(A) 速率为v 时的分子数 (B) 分子数随速率v 的变化

(C) 速率为v 的分子数占总分子数的百分比

(D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比

10.如图所示,在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为[ ]

(A) ?21d )(v v v v f (B) ?

2

1

d )(v v v v Nf

(C) ?21

d )(v v

v v v f (D) ?2

1

d )(v v

v v f

11.气缸内盛有一定量的氢气, 当温度不变而压强增大一倍时, 氢气分子的平均碰撞次数Z 和平均自由程λ的变化情况是[ ]

(A) Z 和λ都增大一倍 (B) Z 和λ都减为原来的一半 (C) Z 增大一倍λ减为原来的一半 (D) Z 减为原来的一半而λ增大一倍

12.一定量的理想气体, 在容积不变的条件下, 当温度降低时, 分子的平均碰撞次数Z 和平均自由程的变化情况是[ ]

(A) Z 减小λ不变 (B) Z 不变λ减小 (C) Z 和λ都减小 (D) Z 和λ都不变 二、填空题

1.容器中储有氧气,温度t =27℃,则氧分子的平均平动动能=平ω__________,平均转动动能

=转ω___________,平均动能=动ω___________。

2. 理想气体在平衡状态下,速率区间v ~ v + d v 内的分子数为 . 3.f (v )是理想气体分子在平衡状态下的速率分布函数, 则式?2

1

d )(v v

v v f 的物理意

义是: .

4. 如图所示氢气分子和氧气分子在相同温度下的麦克斯韦速率分布曲线.则氢气 分子的最概然速率为______________,氧分子的最概然速率为____________. 5.如图所示曲线为处于同一温度T 时氦(相对原子量4)、氖(相对原子量20)

O

1

O )

s

1-

和氩(相对原子量40)三种气体分子的速率分布曲线.其中 曲线(a )是 气分子的速率分布曲线;

曲线(c )是 气分子的速率分布曲线.

5部分 热力学基础

一、选择题 1. 功的计算式A p V V =

?d 适用于[ ]

(A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程

2. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的[ ]

(A) 等温压缩 (B) 等体降压 (C) 等压压缩 (D) 等压膨胀

3. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经

等容过程使温度恢复到T , 最后经等温压缩到体积V ,如图所示.在这个 循环中, 气体必然[ ]

(A) 内能增加 (B) 内能减少 (C) 向外界放热 (D) 对外界做功

4. 根据热力学第二定律可知, 下列说法中唯一正确的是[ ]

(A) 功可以全部转换为热, 但热不能全部转换为功

(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体 (C) 不可逆过程就是不能沿相反方向进行的过程 (D) 一切自发过程都是不可逆过程

5. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外做功.”对此说法, 有以下几种评论, 哪一

种是正确的[ ]

(A) 不违反热力学第一定律, 但违反热力学第二定律

(B) 不违反热力学第二定律, 但违反热力学第一定律 (C) 不违反热力学第一定律, 也不违反热力学第二定律 (D) 违反热力学第一定律, 也违反热力学第二定律

6. 如图所示,如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与

da c b a ''所做的功和热机效率变化情况是[ ]

(A) 净功增大,效率提高 (B) 净功增大,效率降低 (C) 净功和效率都不变 (D) 净功增大,效率不变

O

7. 在图中,I c II 为理想气体绝热过程,I a II 和I b II 是任意过程.

此两任意过程中气体做功与吸收热量的情况是[ ] (A) I a II 过程放热,做负功;I b II 过程放热,做负功

(B) I a II 过程吸热,做负功;I b II 过程放热,做负功 (C) I a II 过程吸热,做正功;I b II 过程吸热,做负功

(D) I a II 过程放热,做正功;I b II 过程吸热,做正功

8. 某理想气体分别进行了如图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),

且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源 处吸 的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量 为Q ',则[ ]

(A) Q Q '<'<,ηη (B) Q Q '>'<,ηη (C) Q Q '<'>,ηη (D) Q Q '>'>,ηη

二、填空题

1.一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外做功300 J . 若冷凝器的温度为7?C, 则热源的温度为 .

2. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分) 分别为1S 和2S ,则二者的大小关系是 .

3.一卡诺机(可逆的),低温热源的温度为C 27 ,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K . 4.一定量的理想气体,从A 状态),2(11V p 经历如图所示的直线过程变到B 状态)2,(11V p , 则AB 过程中系统做功___________, 内能改变△E =_________________.

5.一定量的理想气体经历acb 过程时吸热550 J ,如图所示.则经历acbea 过程时,吸热为 .

6.如图所示,已知图中两部分的面积分别为S 1和S 2.(1) 如果气体的膨胀过程为 a →1→b ,则气体对外做功A =________;(2) 如果气体进行a →1→b →2→a

p

21

1

33m

-

的循环过程,则它对外做功A =_______________.

三、计算题

1.1 mol 的理想气体,完成了由两个等容过程和两个等压过程构成的循环过程 (如图),已知 状态1的温度为1T ,状态3的温度为3T ,且状态2和4在同一 等温线上.试求气体在这一循环过程中做的功.

2.1 mol 理想气体在温度400K 与300K 之间进行一卡诺循环,在400K 的等温线上,起始体积为0.001m 3,最后体积为0.005 m 3。试求气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。 3. 比热容比=γ 1.40的理想气体,进行如图所示的abca 循环,

状态a 的温度为300 K .

(1) 求状态b 、c 的温度; (2) 计算各过程中气体所吸收的热量、气体所做的功和气体内能的增量; (3) 求循环效率.

第6部分 真空中的静电场

一、选择题

1. 根据高斯定理??∑=

?s

i

q

S E 0

d ε

,下列说法中正确的是[ ]

(A) 通过闭合曲面的电通量仅由面内电荷的代数和决定

(B) 通过闭合曲面的电通量为正时面内必无负电荷 (C) 闭合曲面上各点的场强仅由面内的电荷决定

(D) 闭合曲面上各点的场强为零时, 面内一定没有电荷

2. 高斯定理成立的条件是[ ]

(A) 均匀带电球面或均匀带电球体所产生的电场 (B) 无限大均匀带电平面产生的电场 (C) 高斯面的选取必须具有某些简单的对称性 (D) 任何静电场

3.将点电荷Q 从无限远处移到相距为2l 的点电荷+和-q 的中点处, 则电势能的增加量为[ ] (A) 0 (B)

l q 0π4ε (C) l Qq 0π4ε (D) l

Qq

0π2ε

4. 在下列情况中, 零电势可以选在无限远处的是[ ]

(A) 孤立带电球体的电势 (B) 无限大带电平板的电势

)3

(C) 无限长带电直导线的电势 (D) 无限长均匀带电圆柱体的电势

5.在空间有一非均匀电场,其电场线分布如图所示。在电场中作一半径为R 的 闭合球面S ,已知通过球面上某一面元S ?的电场强度通量为e ?Φ,则通过该 球面其余部分的电场强度通量为[ ]

A .-e ?Φ

B .

24e R S π?Φ? C .24e R S

S

π-??Φ? D .0 6.有一半径为b 的圆环状带电导线,其轴线上有两点P 1和P 2,到环心距离如图所示,设无穷远处电势为零,P 1、P 2点的电势分别为U 1和U 2,则

2

1

U U 为[ ] A .31; B .52; C .21; D .2

5。

7.在边长为a 正方体中心处放置一电量为Q 的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为[ ] (A)

a 4Q 0πε (B) R 2Q 0πε (C) R Q 0πε (D) R

22Q

0πε

9. 如图所示,一电偶极子放在均匀电场中, 当电偶极矩的方向与场强方向不一致时,其所受合力F

和力偶

矩M 分别为[ ]

(A) 0,0==M F (B) 0,0≠=M F

(C) 0,0=≠M F (D) 0,0≠≠M F

10. 已知一负电荷从图5-1-48所示的电场中M 点移到N 点.有人根据这个图得出下列几点结论,其中哪一点是正确的[ ]

(A) 电场强度E M < E N ; (B) 电势U M < U N ;

(C) 电势能W M < W N ; (D) 电场力的功A > 0. 11. 边长为a 的正方体中心放置一电荷Q , 则通过任一个侧面S 的电通量??

?s

S E d 为[ ] (A)

04εQ (B) 06εQ (C) 0

8εQ

(D) 6Q

13.一个容量为10μF 的电容器,充电到500V ,则它所储存的能量为[ ]

(A) 1.25J (B)2.50J (C)5.00J (D) 0.25J

二、填空题

1. 一个带电荷量为q 的点电荷位于一边长为a 的立方体的一个顶角上, 则通过该立方体一个q 不在其上的侧面的E 通量为 .

2.如图所示,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R R 83、.现有一质量为m 、带电荷量为q 的粒子从A 点运动到B 点,在此过程中电场力所做的功为 .

3.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0 , 两平面外侧电场强度大小都为

3

E ,方向如图所示.则A 、B 两平面上的电荷面密度分别 为A σ= ,B σ= .

4.在静电场中,一质子(带电荷e =1.6×10-19

C )沿四分之一的圆弧轨道从A 点

移到B 点,如图所示,电场力作功8.0×10

-15

J ,则当质子沿四分之三的圆弧轨道

从B 点回到A 点时,电场力作功A =____________________。 设A 点电势为零,则B 点电势U =_________________。 三、计算题

1.设电荷+q 均匀分布在半径为R 的半圆环上,求球心O 点处的电势和场强。

2.如下图所示,真空中一长为L 的均匀带电细直杆,总电荷为q (q >0),试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度和电势.

3. 一半径为R 的带电球体,其电荷体密度分布为??

?><=)

(0

)(R r R r Ar ρ , 其中A 为一常数,试求球体内、外的

场强分布.

L

P

4.如图所示,AB 长为2l ,OCD 是以B 为心、l 为半径的半圆。A 点有正 电荷+q ,B 点有负电荷-q ,试问

(1)把单位正电荷从O 点沿OCD 移到D 点,电场力对它作了多少功? (2)把单位负电荷从O 点沿AB 的延长线移到无穷处,电场力对它作了多少功? 5.求均匀带电球面、球体的静电能(半径为R ,带电量为Q )

第7部分 静电场中的导体和电介质

一、选择题

1. 当一个带电导体达到静电平衡时[ ]

(A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高

(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高

2.真空中有一组带电导体, 其中某一导体表面处电荷面密度为σ, 该表面附近的场强大小0/εσ=E , 其中

E 是[ ]

(A) 该处无穷小面元上电荷产生的场强 (B) 该导体上全部电荷在该处产生的场强 (C) 这一组导体的所有电荷在该处产生的场强 (D) 以上说法都不对

3. 在一点电荷产生的电场中, 以点电荷处为球心作一球形封闭高斯面, 电场中有一块对球心不对称的电介质, 则[ ]

(A) 高斯定理成立,并可用其求出封闭面上各点的场强

(B) 即使电介质对称分布, 高斯定理也不成立

(C) 高斯定理成立, 但不能用其求出封闭面上各点的电场强度

(D) 高斯定理不成立

4.在某静电场中作一封闭曲面S .若有??=?s

S D 0d

, 则S 面内必定[ ]

(A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷

(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零

5.一平行板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加

6. 将接在电源上的平行板电容器的极板间距拉大, 将会发生什么样的变化[ ] (A) 极板上的电荷增加 (B) 电容器的电容增大

(C) 两极间的场强减小 (D) 电容器储存的能量不变

7.真空中带电的导体球面和带电的导体球体, 若它们的半径和所带的电荷量都相等, 则球面的静电能W 1与球体的静电能W 2之间的关系为[ ]

(A) W 1>W 2 (B) W 1=W 2 (C) W 1<W 2 (D) 不能确定

8. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为[ ]

(A) C 增大, U 减小, W 减小 (B) C 增大, U 不变, W 增大

(C) C 减小, U 不变, W 减小 (D) C 减小, U 减小, W 减小

9.一空气平行板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.比较充入电介质前后的情形, 以下四个物理量的变化情况为[ ] (A) E 增大, C 增大, ?U 增大, W 增大 (B) E

减小, C 增大, ?U 减小, W 减小

(C) E 减小, C 增大, ?U 增大, W 减小 (D) E

增大, C 减小, ?U 减小, W 增大

二、填空题 1.如所示,金属球壳的内外半径分别r 和R , 其中心置一点电荷q , 则金属球壳的电势

2. 一平行板空气电容器, 极板面积为S , 间距为d , 接在电源上并保持电压恒定为U . 若将极板距离拉开一倍, 则电容器中的静电能改变量为 .

三、计算题

1.在半径为R 的导体球壳薄壁附近与球心相距为d (d >R )的P 点处,放一点电荷q ,求: (1)球壳表面感应电荷在球心O 处产生的电势和场强 (2)空腔内任一点的电势和场强

(3)若将球壳接地,计算球壳表面感应电荷的总电量

第13章 狭义相对论

一、选择题

1. 狭义相对论的相对性原理告诉我们[ ]

(A) 描述一切力学规律, 所有惯性系等价 (B) 描述一切物理规律, 所有惯性系等价 (C) 描述一切物理规律, 所有非惯性系等价 (D) 描述一切物理规律, 所有参考系等价 2. 光速不变原理指的是[ ]

(A) 在任何媒质中光速都相同 (B) 任何物体的速度不能超过光速

(C) 任何参考系中光速不变 (D) 一切惯性系中, 真空中光速为一相同值

4. 在惯性系S 中同时又同地发生的事件A 、B ,在任何相对于S 系运动着的惯性系中测量[ ] (A) A 、B 可能既不同时又不同地发生 (B) A 、B 可能同时而不同地发生 (C) A 、B 可能不同时但同地发生 (D) A 、B 仍同时又同地发生

5.一长度为l =5m 的棒静止在S 系中, 且棒与Ox 轴的夹角为30?.现有S '系以v =c 2

1

相对于S 系沿Ox 轴运动, 则在S '系的观察者测得此棒与O 'x '的夹角约为[ ]

(A) 25? (B) 33? (C) 45? (D) 30?

6.静止质量为m 0的物体, 以0.6c 的速度运动, 物体的总动能为静能的多少倍[ ] (A)

41 (B) 21 (C) 1 (D) 3

1 7. 在某地发生两事件, 与该地相对静止的甲测得时间间隔为4 s, 若相对于甲作匀速运动的乙测得的时间间隔为5 s, 则乙相对于甲的运动速度为[ ] (A)

c 54 (B) c 53 (C) c 51 (D) c 5

2 二、填空题

1.一长度为l =5m 的棒静止在S 系中, 且棒与Ox 轴成30?角.S '系以v =c 2

1

相对于S 系沿Ox 轴运动.则在S '系的观察者测得此棒的长度约为 .

2.一个电子用静电场加速到动能为0.25 MeV , 此时电子的质量约为静质量的 倍. 3.边长为a 的正方形薄板静止于惯性系S 的xOy 平面内, 且两边分别

与x 、y 轴平 行.今有惯性系S '以0.8c (c 为光速)的速度相对于S 系 沿x 轴作匀速直线运动, 则从S '系测得薄板的面积为 .

4. 在惯性系S 中,测得某两事件发生在同一地点,时间间隔为4 s ,在另一惯性系S '中,测得这两事件的

时间间隔为6 s ,它们的空间间隔是 . 5.观察者甲以

c 5

4

的速度(c 为真空中光速)相对于观察者乙运动,若甲携带一长度为l 、截面积为S 、质量为m 的棒,这根棒安放在运动方向上,则

(1) 甲测得此棒的密度为 ; (2) 乙测得此棒的密度为 .

v

大学物理选择题

时间 空间与运动学 1 下列哪一种说法是正确的( ) (A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小 (C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快 2 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量), 则该质点作( ) (A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动 3 一个气球以1 s m 5-?速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( ) (A )6s (B )s 30 (C )5. 5s (D )8s 4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( ) (A )匀加速运动 (B )匀减速运动 (C )变加速运动 (D )变减速运动 5 已知质点的运动方程j i r 33)s m 4()3(t m -?+=,则质点在2s 末时的速度 和加速度为( ) (A )j a j i v )s m 48( , )s m 48()s m 3(211---?=?+?= (B )j a j v )s m 48( , )s m 48(21--?=?= (C ) j a j i v )s m 32( , )s m 32()s m 3(211---?=?+?= (D )j a j v )s m 32( , )s m 32(21--?=?= 6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理学上下册公式(整合版)

大学物理公式集1 1概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置:θ 2.速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3.加速度:dt V d a =或 2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a = τ(=rβ),r V n a 2 = (=r 2 ω) 4.力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5.动量:V m p =,角动量:V m r L ?=(大小:L=rmvsin θ方向:右手螺旋法则) 6.冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势 能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tS I S F P 3 2= ?== 11. 分子平均平动能:kT 23=ω;理想气体内能:RT s r t M E )2(2 ++=μ 12. 麦克斯韦速率分布函数:NdV dN V f =)((意义:在V 附近单位速度间隔内的分子 数所占比率) 13. 平均速率:πμ RT N dN dV V Vf V V 80 )(= = ? ?∞ mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 - (万有引力) →r Mm G - =E p r r Qq ?420πε(静电力) →r Qq 04πε

大学物理习题集(上)

质点运动学 1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内 位移和平均速度; (2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度. 1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为2 2(1)(1)n s a n t -= +,并由上述数据求出量值. 1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长? (2)他在东边落地时的速度?速度与水平面的夹角? 1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为0 11 kt v v =+; (2)试证在时间t 内,船行驶的距离为01 ln(1)x v kt k =+. 图1.3

1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下, 此后飞机的加速度为a m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? 1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度. 1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算: (1)螺帽从天花板落到底面所需的时间; (2)螺帽相对于升降机外固定柱子的下降距离. v 图1.7

大学物理上下册常用公式

大学物理第一学期公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ;222z y x r 角位置:θ 2.速度:dt r d V 平均速度:t r V 速率:dt ds V ( V V )角速度:dt d 角速度与速度的关系:V=rω 3.加速度:dt V d a 或 2 2dt r d a 平均加速度:t V a 角加速度:dt d 在自然坐标系中n a a a n 其中dt dV a (=rβ),r V n a 2 (=r 2 ω) 4.力:F =ma (或F =dt p d ) 力矩:F r M (大小:M=rFcos θ方向:右手螺旋法则) 5.动量:V m p ,角动量:V m r L (大小:L=rmvcos θ方向:右手螺旋法则) 6.冲量: dt F I (=F Δt);功: r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势能形式不同 且零点选择不同其形式不同,在默认势能零点的 情况下: 机械能:E=E K +E P 9.热量:CRT M Q 其中:摩尔热容量C 与过程 有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: n tS I S F P 3 2 11. 分子平均平动能:kT 23 ;理想气体内能:RT s r t M E )2(2 12. 麦克斯韦速率分布函数:NdV dN V f )((意义:在V 附近单位速度间隔内的分子数所占比率) 13. 平均速率: RT N dN dV V Vf V V 80 )( 方均根速率: RT V 22 ;最可几速率: RT p V 3 14. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数) 15. 电场强度:E =F /q 0 (对点电荷:r r q E ?42 ) 16. 电势: a a r d E U (对点电荷r q U 04 );电势能:W a =qU a (A= –ΔW) 17. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 18. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。 mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 (万有引力) →r Mm G =E p r r Qq ?420 (静电力) →r Qq 04

大学物理上选择题

时间空间与运动学 1 下列哪一种说法就是正确得(D ) (A)运动物体加速度越大,速度越快 (B)作直线运动得物体,加速度越来越小,速度也越来越小 (C)切向加速度为正值时,质点运动加快 (D)法向加速度越大,质点运动得法向速度变化越快 2 一质点在平面上运动,已知质点得位置矢量得表示式为(其中a、b为常量),则该质点作( B ) (A)匀速直线运动 (B)变速直线运动 (C)抛物线运动 (D)一般曲线运动 3 一个气球以速度由地面上升,经过30s后从气球上自行脱离一个重物,该物体从脱落到落回地面得所需时间为( B) (A)6s(B) (C)5、 5s (D)8s 4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处得定滑轮拉湖上得船向岸边运动,设该人以匀速率收绳,绳长不变,湖水静止,则小船得运动就是( D ) (A)匀加速运动 (B)匀减速运动 (C)变加速运动 (D变减速运动 5 已知质点得运动方程,则质点在2s末时得速 度与加速度为( ) (A) (B) (C) (D) 6 一质点作竖直上抛运动,下列得图中哪一幅基本上反映了该质点得速度变化情况( B )

7 有四个质点A、B、C、D沿轴作互不相关得直线运动,在时,各质点都在处,下列各图分别表示四个质点得图,试从图上判别,当时,离坐标原点最远处得质点( ) 8 一质点在时刻从原点出发,以速度沿轴运动,其加速度与速度得关系为,为正常数,这质点得速度与所经历得路程得关系就是( ) (A) (B) (C) (D)条件不足,无地确定 9 气球正在上升,气球下系有一重物,当气球上升到离地面100m高处,系绳突然断裂,重物下落,这重物下落到地面得运动与另一个物体从100m高处自由落到地面得运动相比,下列哪一个结论就是正确得() (A)下落得时间相同(B)下落得路程相同 (C)下落得位移相同(D)落地时得速度相同 10 质点以速度作直线运动,沿直线作轴,已知时质点位于处,则该质点得运动方程为( ) (A)

大学物理选择题大全

第一章 质点运动学 习题(1) 1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数; (B )在任意运动过程中,平均速度 2/)(0t V V V +=; (C )任何情况下,;v v ?=? r r ?=? ; (D )瞬时速度等于位置矢量对时间的一阶导数。 2、一质点作直线运动,某时刻的瞬时速度 m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为: ( ) (A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。 3、 一物体从某一确定高度以 0V 的速度水平抛出(不考虑空气阻力),落地时的速 度为t V ,那么它运动的时间是: ( ) (A) g V V t 0 -或g V V t 2 02- ; (B) g V V t 0 -或 g V V t 2202- ; (C ) g V V t 0 - 或g V V t 202- ; (D) g V V t 0 - 或g V V t 2202- 。 4、一质点在平面上作一般曲线运动,其瞬 时速度为 V ,瞬时速率为v ,某一段时间内的平均速度为V ,平均速率为V , 它们之间的关系必定是 ( ) (A) V V V V == ,;(B) V V V V =≠ ,;(C)V V V V ≠= ,;(D) V V V V ≠≠ ,。 5、下列说法正确的是: ( ) (A )轨迹为抛物线的运动加速度必为恒 量; (B )加速度为恒量的运动轨迹

可能是抛物线; (C )直线运动的加速度与速度的方向一 致; (D )曲线运动的加速度必为变量。 第一章 质点运动学 习题(2) 1、 下列说法中,正确的叙述是: ( ) a) 物体做曲线运动时,只要速度大小 不变,物体就没有加速度; b) 做斜上抛运动的物体,到达最高点 处时的速度最小,加速度最大; (C )物体做曲线运动时,有可能在某时刻法向加速度为0; (D )做圆周运动的物体,其加速度方向一定指向圆心。 2、质点沿半径为R 的圆周的运动,在自然 坐标系中运动方程为 22 t c bt s -=,其中 b 、 c 是常数且大于0,Rc b >。其切向加速度和法向加速度大小达到相等所用 最短时间为: ( ) (A) c R c b + ; (B) c R c b - ; (C) 2cR c b -; (D) 22cR cR c b +。 3、 质点做半径为R 的变速圆周运动时的加 速度大小为(v 表示任一时刻质点的速率) ( ) (A ) t v d d ; (B )R v 2 ; (C ) R v t v 2 +d d ; (D ) 2 22)d d (??? ? ??+R v t v 。 第二章 牛顿定律 习题 1、水平面上放有一质量m 的物体,物体与水平面间的滑动摩擦系数为μ,物体在图示 恒力F 作用下向右运动,为使物体具有最大的加速度,力F 与水平面的夹角θ应满 足 : ( ) (A )cosθ=1 ; (B )sinθ=μ ; (C ) tan θ=μ; (D) cot θ=μ。

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

大学物理上课后选择题

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx + (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均 速度大小和平均速率大小分别为 (A) t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小 是 ;经过的路程是 。 (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的 速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。 (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。 如人相对于岸静止,则1V 、2V 和3V 的关系是 。 1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还

大学物理(上)课后习题答案1

1-1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1-2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自 然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1-3 分析与解 t d d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述); t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为 22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t l l t x -== v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θ l h l cos /0 220v v v = -= ,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C). 1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理考试常考题选择填空部分含答案详解

质 点 运 动 学 一.选择题: 1、质点作匀速圆周运动,其半径为R ,从A 点出发,经过半圆周到达B 点,则在下列各 表达式中,不正确的是 (A ) (A )速度增量 0=?v ,速率增量 0=?v ; (B )速度增量 j v v 2-=?,速率增量 0=?v ; (C )位移大小 R r 2||=? ,路程 R s π=; (D )位移 i R r 2-=?,路程 R s π=。 2、质点在平面上运动,已知质点位置矢量的表达式为j bt i at r 22+=(其中a 、b 为常量) 则该质点作 ( D ) (A )匀速直线运动; (B )一般曲线运动; (C )抛物线运动; (D )变速直线运动。 3、质点作曲线运动,r 表示位置矢量,s 表示路程,v 表示速度, a 表示加速度。下列表达式中, 正确的表达式为 ( B ) (A )r r ?=?|| ; (B) υ==dt s d dt r d ; (C ) a dt d =υ ; (D )υυd d =|| 。 4、一个质点在做圆周运动时,则有 ( B ) (A )切向加速度一定改变,法向加速度也改变; (B )切向加速度可能不变,法向加速度一定改变; (C )切向加速度可能不变,法向加速度不变; (D )切向加速度一定改变,法向加速度不变。 5、质点作匀变速圆周运动,则:( C ) (A )角速度不变; (B )线速度不变; (C )角加速度不变; (D )总加速度大小不变。 二.填空题: 1、已知质点的运动方程为x = 2 t -4 t 2(SI ),则质点在第一秒内的平均速度 =v -2 m/s ; 第一秒末的加速度大小 a = -8 m/s 2 ;第一秒内走过的路程 S = 2.5 m 。

大学物理学上练习题(供参考)

一. 选择题 1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作[ ]。 (A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向。 2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[ ]。 (1) a t = d /d v , (2) v =t /r d d , (3) v =t S d /d , (4) t a t =d /d v 。 (A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的; (D) 只有(3)是对的。 3. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]。 (A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。 4. 一小球沿斜面向上运动,其运动方程为s=5+4t -t 2 (SI), 则小球运动到最高点的时刻是 [ ]。 (A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。 5. 一质点在xy 平面内运动,其位置矢量为j t i t r ?)210(?42-+= (SI ),则该质点的位置 矢量与速度矢量恰好垂直的时刻为[ ]。 (A) s t 2=; (B )s t 5=; (C )s t 4=; (D )s t 3=。 6. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。当0=t 时,初速 为v 0,则速度v 与时间t 的函数关系是[ ]。 (A) 0221v v +=kt ; (B) 022 1v v +-=kt ; (C) 02121v v +=kt ; (D) 0 2121v v +-=kt 。 [ ] 7. 一质点在0=t 时刻从原点出发,以速度0v 沿x 轴运动,其加速度与速度的关系为 2a k =-v ,k 为正常数,这质点的速度v 与所经路程x 的关系是[ ]。 (A) 0kx e -=v v ; (B) 02 012x =-v v ()v ;

大学物理下主要公式(含文字)

毕奥-沙伐尔定律:20 04r r l Id B d ??=πμ 磁场叠加原理:??=L r r l Id B 20 04 πμ 运动电荷的磁场:2004r r v q B ??=πμ 磁场的高斯定理:0=???S S d B 磁通量:???= S m S d B Φ 安培环路定理:∑?=?I l d B L 0μ 载流直导线:()120sin sin 4ββπμ-=a I B 圆电流轴线上任一点: () 2 32 22 03 2 022R x IR r IR B += = μμ 载流螺线管轴线上任一点: ()120cos cos 2 ββμ-= nI B 安培力:B l Id f d ?=, ??=L B l Id f 载流线圈在均匀磁场中所受的磁力矩: B P M m ?= 洛仑兹力:B v q f ?= 磁力的功:?ΦΦΦΦ I A Id A I =??→?= =?恒量 2 1 b IB R U H AA =',nq R H 1= 法拉第电磁感应定律:dt d i Φ ε- = 动生电动势:???=a b ab l d )B v ( ε 感生电动势,涡旋电场: S d t B l d E L k i ???-=?=???ε 自感:I N L Φ=, dt dI L L -=ε,2 21LI W m = 互感:212112I N M Φ= ,1 21221I N M Φ = 2112M M = dt dI M 212 12-=ε, dt dI M 12121-=ε 磁场的能量: μω2212 B BH m = =,?=V m m dV W ω 麦克斯韦方程组的积分形式: i S q S d D ∑=??? (1) 0=???S S d B (2) ??????-=?S L S d t B l d E (3) ??????+=?S L S d )t D (l d H δ (4) E D ε=, H B μ=, E γδ= 平面简谐波方程: )] u r t (cos[H H )]u r t (cos[E E { -=- =ωω00 坡印廷矢量:H E S ?= 相长干涉和相消干涉的条件: π π ??)k (k { 122+±±= 3210,,, k = 减弱,相消干涉) 加强,相长干涉) ((2/)12({ λλδ+±±=k k , (21??=) 杨氏双缝干涉: (暗纹) (明纹) 3,2,12,1,0)4/()12()2/({ ==-±±=k k a D k a kD x λλ 薄膜反射的干涉: 2/)12({ 2 sin 222122λλ λ δ+=+ -=k k i n n e

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

大学物理试题1.1

1.选择题 1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张 力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上 升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g . 2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( ) (A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒 的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的 角速度ω至少应为 ( ) (A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球 上的重力加速度为g ,则水星表面上的重力加速度为: ( ) (A) 0.1 g (B) 0.25 g (C) 2.5 g (D) 4 g 5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则 摆锤转动的周期为 ( ) (A)g l . (B)g l θcos . (C)g l π 2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动, 则转台的角速度ω应满足 ( ) (A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( ) (A) 恒为零. (B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 a 1 m θ θ l ωO R A A O O ′ ω

大学物理下练习题答案汇总

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

相关主题
文本预览
相关文档 最新文档