根与系数的关系-初中数学知识点
- 格式:docx
- 大小:53.06 KB
- 文档页数:1
内容 基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a<时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba -<,则此方程的正根小于负根的绝对值. 当0c a>时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba -<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <中考要求一元二次方程根与系数的关系及其应用特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:①若有理系数一元二次方程有一根aa a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =.⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.【例 1】 ⑴若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .⑵已知方程2350x x +-=的两根为1x 、2x ,则2212x x += .⑶已知α、β是方程2250x x +-=的两个实数根,22ααβα++的值为 . ⑷已知α、β是方程2520x x ++=+【巩固】 已知12,x x 为方程20x px q ++=的两根,且126x x +=,221220x x +=,求,p q 的值.【例 2】 已知方程22350x x --=的两根为12x x ,,求:⑴2212x x +; ⑵3312x x + ⑶5512x x +【巩固】1x 、2x 是方程22350x x --=的两个根,不解方程,求下列代数式的值: (1)2212x x + (2)12x x - (3)2212233x x x +-【例 3】 已知1x ,2x 是方程2310x x -+=的两个实数根,则2212x x += ,12(2)(2)x x -⋅-= ,221122x x x x +⋅+= ,2112x xx x += ,12x x -= ,2212x x -= ,1211x x -= ,2112x x x x -= .【巩固】 (2005年温州市中考试题)已知1x ,2x 方程2310x x -+=两个实数根,则1211x x += .【例 4】 关于x 的方程22410x kx +-=的一个根是-2,则方程的另一根是 ;k = 。
九年级上册数学根与系数的关系稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊九年级上册数学里超有趣的根与系数的关系,准备好跟我一起探索这个奇妙的数学世界了吗?你知道吗?一元二次方程的根与系数之间藏着神秘的联系呢。
比如说,对于方程 ax^2 + bx + c = 0(a≠0),如果它有两个根 x_1 和 x_2 ,那么就有 x_1 + x_2 = \frac{b}{a} ,x_1x_2 =\frac{c}{a} 。
这是不是很神奇?就好像是数学给我们开的一个小秘密通道。
比如说,给你一个方程 x^2 5x + 6 = 0 ,咱们很快就能知道它的根的和是 5,根的积是 6 。
然后一分解,嘿,原来方程的根就是 2 和3 。
这在解题的时候可太有用啦!有时候题目不给咱具体的根,只给方程的系数,让咱求根的和或者积,咱们用这个关系就能轻松搞定。
而且哦,根与系数的关系还能帮我们检验算出的根对不对。
算完根之后,代入这两个关系式看看,对得上就是正确的,对不上那可得重新算啦。
怎么样,是不是觉得根与系数的关系就像一个神奇的魔法棒,能在数学的世界里帮我们解决好多难题呀!稿子二哈喽呀,小伙伴们!今天咱们来唠唠九年级上册数学里那个有点神秘但又超级好玩的根与系数的关系。
想象一下,一元二次方程就像一个藏着宝贝的小盒子,而根与系数的关系就是打开这个盒子的钥匙。
比如说,对于方程 ax^2 + bx + c = 0(a≠0),一旦知道了 a 、b 、c 的值,咱们就能通过神奇的公式算出根之间的关系。
你看哈,如果方程有两个根 x_1 和 x_2 ,那么 x_1 + x_2 = \frac{b}{a} ,x_1x_2 = \frac{c}{a} 。
这可太酷了!咱们来举个例子感受一下。
比如方程 2x^2 3x 5 = 0 ,咱们一下子就能算出根的和是 \frac{3}{2} ,根的积是 \frac{5}{2} 。
有时候做题,题目会故意不直接告诉我们根是多少,而是让我们通过根与系数的关系去推理、去计算。
根与系数的关系知识点总结
嘿,宝子们!今天咱就来唠唠根与系数的关系这个超重要的知识点!
咱先说一元二次方程,就好比ax²+bx+c=0 这样的式子。
那根与系数
有啥关系呢?哎呀呀,就像是一个神秘的纽带!比如说方程x²-5x+6=0,
它的两根是 2 和 3,你看呀,这两根之和 2+3 就等于一次项系数 -5 的相反数 5,两根之积2×3 就等于常数项 6 呢!神奇不?
再举个例子,方程2x²+3x-2=0,它的根是 -2 和 1/2,那 -2+1/2 就等于-3/2,这不正是一次项系数 3 的相反数除以二次项系数 2 嘛!然后 -
2×(1/2) 不就是 -1,正好是常数项 -2 除以二次项系数 2 呀!
咱就说,这根与系数的关系,是不是像个隐藏的宝藏,等你去发现呀!小李之前就老弄不明白这个,还觉得很难,我就跟他讲,“你看呀,这多简单呀,就像找宝藏一样,找到了就开心啦!”他一听,恍然大悟!
其实呀,理解了这个知识点,好多数学问题都能迎刃而解呢!想想看,如果题目里给了方程的系数,那我们不就能很快算出根的一些特征啦!这多厉害呀!
根与系数的关系就是这么酷,它就像一把万能钥匙,能打开好多数学难题的大门!宝子们,一定要好好掌握哦!。
根与系数的关系公式8个根与系数之间存在以下8个关系公式:1.二次方程的根与系数的关系公式:对于一元二次方程 ax^2 + bx + c = 0,其中a ≠ 0,它的两个根可以通过以下公式表示:x = (-b ± √(b^2 - 4ac)) / (2a)2.一元三次方程的根与系数的关系公式:对于一元三次方程 ax^3 + bx^2 + cx + d = 0,其中a ≠ 0,它的根可以通过三角恒等式表示:x = (√3 R cos(θ/3) - b)/(3a), (√3 R cos((θ+2π)/3) -b)/(3a), (√3 R cos((θ+4π)/3) - b)/(3a)其中 R = ∛(q + √(q^2 + p^3)), q = (3ac - b^2)/(9a^2), p = (9abc - 27a^2d - 2b^3)/(54a^3)3.一元四次方程的根与系数的关系公式:对于一元四次方程 ax^4 + bx^3 + cx^2 + dx + e = 0,其中a ≠ 0,它的根可以用四舍五入的方法获得。
但在实际情况中,它的根通常是通过数值方法,如牛顿迭代法等获得。
4.一元五次方程的根与系数的关系公式:一般情况下,一元五次方程的根没有可以用代数方式表示的公式。
5.一元二次方程的系数与根的关系公式:如果一元二次方程 ax^2 + bx + c = 0 的两个根为 p 和 q,则其系数与根之间的关系可以通过以下公式表示:a=1b=-(p+q)c = pq6.一元三次方程的系数与根的关系公式:如果一元三次方程 ax^3 + bx^2 + cx + d = 0 的根为 p,q 和 r,则其系数与根之间的关系可以通过以下公式表示:a=1b=-(p+q+r)c = pq + qr + rpd = -(pqr)7.一元四次方程的系数与根的关系公式:如果一元四次方程 ax^4 + bx^3 + cx^2 + dx + e = 0 的根为 p,q,r 和 s,则其系数与根之间的关系可以通过以下公式表示:a=1b=-(p+q+r+s)c = pq + qr + rs + spd = -(pqr + qrs + rsp + spq)e = (pqr)s8.一元五次方程的系数与根的关系公式:一般情况下,一元五次方程的根没有可以用代数方式表示的公式。
第03讲 解一元二次方程——公式法知识点01 根的判别式1. 根的判别式:用配方法解一元二次方程()002≠=++a c bx ax ,可将方程化成 。
由配方法解方程可知,根据2244aac b -与0的大小关系可以确定方程的根的情况。
确定2244aac b -与0的大小关系只需要确定 与0的大小关系。
我们把 叫做一元二次方程的根的判别式。
用符号∆来表示。
①若⇔-=∆042>ac b 。
②若⇔=-=∆042ac b 。
③若⇔-=∆042<ac b 。
题型考点:①计算根的判别式的值判断方程的根的情况。
②根据方程的根的情况求值【即学即练1】1.一元二次方程x 2+3x ﹣1=0的根的情况是( ) A .无实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【即学即练2】2.已知方程(k ﹣3)x 2+2x +1=0有两个实数根,则k 的取值范围是( ) A .k <4 B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠3知识点02 利用公式法解一元二次方程——求根公式1. 求根公式:由222442a ac b a b x -=⎪⎭⎫ ⎝⎛+可知,=+a b x 2 。
=x 。
我们把它叫做一元二次方程的求根公式。
①042>ac b -=∆时,一元二次方程有两个不相等的实数根。
即=1x ;=2x 。
②042=-=∆ac b 时,一元二次方程有两个相等的实数根。
即==21x x 。
③042<ac b -=∆时,一元二次方程没有实数根。
2. 公式法解一元二次方程的步骤:①将一元二次方程化成 ,并确定 的值。
②计算 的值,确定一元二次方程的根的情况。
③根据根的情况把c b a ,,的值带入相应的求根公式求解。
题型考点:①根据求根公式确定c b a ,,的值。
②利用公式法解一元二次方程。
【即学即练1】3.用公式法解方程x 2﹣4x ﹣11=0时,Δ=( ) A .﹣43B .﹣28C .45D .60【即学即练2】4.下列方程中,以x =24255c+±-为根的是( )A .x 2﹣5x ﹣c =0B .x 2+5x ﹣c =0C .x 2﹣5x +4c =0D .x 2+5x +c =0【即学即练3】5.利用公式解可得一元二次方程式3x 2﹣11x ﹣1=0 的两解为a 、b ,且a >b ,求a 值为何( ) A .B .C .D .【即学即练4】6.用公式法解方程: (1):x 2+2x ﹣6=0.(2):2x (x ﹣3)=(x ﹣1)(x +1).知识点03 根与系数的关系1. 根与系数的关系:由公式法可知,若一元二次方程的042>ac b -=∆时,一元二次方程有两个不相等的实数根,分别是 与 。
一元二次方程根与系数关系知识定位设一元二次方程有二实数根,则,。
这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。
其逆命题也成立。
韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。
而且这部分内容题型多样,方法灵活,触及知识面广。
知识梳理知识梳理1:求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。
知识梳理2:构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。
知识梳理3:证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式知识梳理4:研究方程根的情况将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。
关于方程的实根符号判定有下述定理:⑴方程有二正根,ab<0,ac>0;⑵方程有二负根,ab>0,ac>0;⑶方程有异号二根,ac<0;⑷方程两根均为“0”,b=c=0,;知识梳理4:求参数的值与解方程韦达定理及其逆定理在确定参数取值及解方程(组)中也有着许多巧妙的应用。
例题精讲【试题来源】【题目】已知a 2+2a=3,b 2+2b=3, a b +ba= . 【答案】83- 【解析】【知识点】一元二次方程根与系数的关系 【适用场合】当堂练习题 【难度系数】2【试题来源】【题目】已知关于x 的一元二次方程 x 2-2x -a 2-a=0﹙a >0﹚. (1) 证明:这个方程的一个跟比2大,另一个根比2小.(2) 若对于a=1,2…,,2011,相应的一元二次方程的两个根分别为α1,β1,α2,β2,,,α2011,β2011,求【答案】(1)见解析 (2)20111006- 【解析】【知识点】一元二次方程根与系数的关系【适用场合】当堂例题【难度系数】4【试题来源】【题目】已知关于x的方程x2+2px+1=0的两个实数根一个小于1,另一个大于1,则实数p 的取值范围是.p<-【答案】1【解析】【知识点】一元二次方程根与系数的关系【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】设a、b是方程x2+68x+1=0两根,c、d是方程x2 86x+1=0两根,则﹙a+c﹚﹙b+c﹚﹙a-d﹚﹙b-d﹚的﹜值为。
初中数学一元二次方程的根的乘积与系数的关系如何确定
一元二次方程的根的乘积与系数之间有一定的关系,可以通过方程的系数来确定。
在初中数学中,我们可以通过方程的系数a、b 和 c 来推导根的乘积与系数之间的关系。
以下是一种常见的方法:
假设我们有一个一元二次方程ax^2 + bx + c = 0。
1. 根的乘积与系数的关系:
根据一元二次方程的性质,我们知道根的乘积等于常数项系数c 除以一次项系数a。
即:根的乘积:x1 * x2 = c/a
2. 推导根的乘积与系数的关系:
我们可以通过方程的求根公式来推导根的乘积与系数的关系。
方程的求根公式为:
x1 = (-b + √(b^2 - 4ac)) / (2a)
x2 = (-b - √(b^2 - 4ac)) / (2a)
将根的乘积x1 * x2 代入,得到:
x1 * x2 = [(-b + √(b^2 - 4ac)) / (2a)] * [(-b - √(b^2 - 4ac)) / (2a)]
= (b^2 - (b^2 - 4ac)) / (4a^2)
= c/a
通过这个推导,我们可以得出根的乘积与常数项系数 c 除以一次项系数a 相等的结论。
综上所述,一元二次方程的根的乘积等于常数项系数 c 除以一次项系数a。
这个关系可以通过方程的系数来确定。
理解和应用这个关系可以帮助我们更好地解决一元二次方程相关的问题。
需要注意的是,根的乘积与系数之间的关系只能确定根的乘积,不能确定方程的具体根。
方程的具体根是由方程的系数和判别式来决定的。
根的乘积只是一个与系数相关的特定关系。
初中数学《一元二次方程的根与系数的关系》教材讲义及过关练一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【点拨】利用根的判别式判定一元二次方程根的情况的步骤: ①把一元二次方程化为一般形式; ②确定的值; ③计算的值;④根据的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0.【点拨】(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;(2)若一元二次方程有两个实数根则 ≥0. 一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆c b a .,ac b 42-ac b 42-()002≠=++a c bx ax ⇒ac b 42-⇒ac b 42-⇒ac b 42-ac b 42-)0(02≠=++a c bx ax 21x x ,a b x x -=+21acx x =21教材知识总结也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①;②; ③;④; ⑤;⑥;⑦⑧; ⑨; ⑩.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程的两根为、,则 ①当△≥0且时,两根同号.当△≥0且,时,两根同为正数; 当△≥0且,时,两根同为负数. ②当△>0且时,两根异号.当△>0且,时,两根异号且正根的绝对值较大;222121212()2x x x x x x +=+-12121211x x x x x x ++=2212121212()x x x x x x x x +=+2221121212x x x x x x x x ++=2121212()2x x x x x x +-=22121212()()4x x x x x x -=+-12()()x k x k ++21212()x x k x x k =+++2212121212||()()4x x x x x x x x -=-=+-22212121222222121212()211()x x x x x x x x x x x x ++-+==2212121212()()4x x x x x x x x -=±-=±+-22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+20(0)ax bx c a ++=≠1x 2x 120x x >120x x >120x x +>120x x >120x x +<120x x <120x x <120x x +>当△>0且,时,两根异号且负根的绝对值较大.【点拨】(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根,则必有一根(,为有理数).【例题1】设方程2320x x --=两个根为1x 、2x ,则2212x x +=( )A .922+B .922-C .92+D .92-【例题2】若1x 、2x 是一元二次方程2350x x +-=的两根,则12x x ⋅的值是( ) A .3B .-3C .5D .-5【例题3】已知一元二次方程2202210x x -+=的两个根分别为12,x x ,则21202212x x -+的值为( ) A .1- B .0 C .2022- D .2021-一、单选题1.若关于x 的方程250x x a -+=有一个根是2,则另一个根是( ) A .6B .3C .3-D .7-2.已知1x 、2x 是一元二次方程2630x x -+=的两个实数根,则1211+x x 的值为( ) A .2B .2-C .12D .12-3.已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1B .0C .20223D .202274.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣4,2,小明看错了一次项系数p ,得到方程两个根是4,﹣3,则原来的方程是( ) A .x 2+2x ﹣8=0B .x 2+2x ﹣12=0C .x 2﹣2x ﹣12=0D .x 2﹣2x ﹣8=05.已知方程220x mx ++=的一个根是1,则它的另一个根是( ) A .1B .2C .2-D .36.关于方程2320x x -+=的根的说法中,正确的是( ) A .没有实数根B .两实数根的和为2-C .有两个不相等的实数根D .两实数根的积为3二、填空题120x x <120x x +<∆a b +a b -a b 看例题,涨知识课后习题巩固一下7.已知m ,n 是一元二次方程2320x x --=的两个根,则22m n mn +=_______.8.写出一个一元二次方程,使它的两根之和是4,并且两根之积是2,这个一元二次方程是________. 9.已知方程2210x x --=的两根分别是1x ,2x ,则12x x +的值为_________. 10.若一元二次方程2320x x --=的两个实数根为a ,b ,则a ab b -+的值为_______. 三、解答题11.已知,关于x 的一元二次方程()22210x a x a a --+-=,(1)求证:方程有两个不相等的实数根; (2)若方程两根的绝对值相等,求a 的值.12.已知12,x x 是一元二次方程23260x x +-=的两个根,求1233x x +的值. 13.已知关于x 的方程22x 2mx m 90-+-=. (1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,若126x x +=,求m 的值.14.已知关于x 的一元二次方程()222120x a x a a --+--=有两个不相等的实数根1x ,2x .(1)求a 的取值范围;(2)若1x ,2x 满足22121216x x x x +-=,求a 的值.1.3 一元二次方程的根与系数的关系答案解析一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆教材知识总结(2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【点拨】利用根的判别式判定一元二次方程根的情况的步骤: ①把一元二次方程化为一般形式; ②确定的值; ③计算的值;④根据的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0.【点拨】(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;(2)若一元二次方程有两个实数根则 ≥0. 一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①;②; c b a .,ac b 42-ac b 42-()002≠=++a c bx ax ⇒ac b 42-⇒ac b 42-⇒ac b 42-ac b 42-)0(02≠=++a c bx ax 21x x ,a b x x -=+21acx x =21222121212()2x x x x x x +=+-12121211x x x x x x ++=③;④; ⑤;⑥;⑦;⑧; ⑨; ⑩.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程的两根为、,则 ①当△≥0且时,两根同号.当△≥0且,时,两根同为正数; 当△≥0且,时,两根同为负数. ②当△>0且时,两根异号.当△>0且,时,两根异号且正根的绝对值较大; 当△>0且,时,两根异号且负根的绝对值较大.【点拨】(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根,则必有一根(,为有理数).【例题1】设方程2320x x --=两个根为1x 、2x ,则2212x x +=( )A .922+B .922-C .92+D .92-【答案】A2212121212()x x x x x x x x +=+2221121212x x x x x x x x ++=2121212()2x x x x x x +-=22121212()()4x x x x x x -=+-12()()x k x k ++21212()x x k x x k =+++2212121212||()()4x x x x x x x x -=-=+-22212121222222121212()211()x x x x x x x x x x x x ++-+==2212121212()()4x x x x x x x x -=±-=±+-22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+20(0)ax bx c a ++=≠1x 2x 120x x >120x x >120x x +>120x x >120x x +<120x x <120x x <120x x +>120x x <120x x +<∆a b +a b -a b 看例题,涨知识【分析】()2221212122x x x x x x +=+-,由韦达定理可知,123x x +=,122x x =-,代入即可求解. 【解析】()2221212122x x x x x x +=+- 由韦达定理可知,123x x +=,122x x =-则2212x x +=(2322922-⨯-=+故选A .【例题2】若1x 、2x 是一元二次方程2350x x +-=的两根,则12x x ⋅的值是( ) A .3 B .-3 C .5 D .-5【答案】D【分析】根据一元二次方程根与系数的关系计算求值即可; 【解析】解:∵1x 、2x 是一元二次方程2350x x +-=的两根, ∴12551x x -==-, 故选:D .【例题3】已知一元二次方程2202210x x -+=的两个根分别为12,x x ,则21202212x x -+的值为( ) A .1- B .0 C .2022- D .2021-【答案】B【分析】根据一元二次方程解的定义及根与系数的关系可得21120221x x =-,121x x ⋅=,再代入通分计算即可求解.【解析】∵方程2202110x x -+=的两根分别为1x 、2x ,∴211202210x x -+=,121x x ⋅=, ∴21120221x x =-,∴21220221x x -+=121220221202x x --+ =12222202212022x x x x x ⋅--+ =222022120221x x ⨯--+=221x x -+ 11=-+0=故选:B .一、单选题1.若关于x 的方程250x x a -+=有一个根是2,则另一个根是( ) A .6 B .3 C .3- D .7-【答案】B【解析】解:设另一个根为m ,由根和系数的关系有:25m += 解得3m = 故选:B .2.已知1x 、2x 是一元二次方程2630x x -+=的两个实数根,则1211+x x 的值为( ) A .2 B .2- C .12D .12-【答案】A【分析】通分:21121212121211x x x x x x x x x x x x ++=+=⋅⋅⋅,根据韦达定理:一元二次方程根与系数的关系:12b x x a+=-,12cx x a⋅=可得出答案. 【解析】解: 由韦达定理:12bx x a +=-,12c x x a⋅=可得211212*********23x x x x x x x x x x x x ++=+===⋅⋅⋅, 故选:A .3.已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1 B .0C .20223D .20227【答案】A【分析】直接利用根与系数的关系得出两根之和,进而得出答案.【解析】解:∵关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n , ∴1+n =-m , 解得:m +n =-1, 故(m +n )2022=1. 故选:A .4.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣4,2,小明看错了一次项系数p ,得到方程两个根是4,﹣3,则原来的方程是( ) A .x 2+2x ﹣8=0 B .x 2+2x ﹣12=0C .x 2﹣2x ﹣12=0D .x 2﹣2x ﹣8=0【答案】B课后习题巩固一下【分析】先设这个方程的两根是α、β,根据一元二次方程根与系数的关系,从而得出符合题意的方程. 【解析】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p =-4+2=﹣2,αβ=q =4×(-3)=﹣12, 原来的一元二次方程是x 2+2x ﹣12=0. 故选:B5.已知方程220x mx ++=的一个根是1,则它的另一个根是( ) A .1 B .2 C .2- D .3【答案】B【分析】设方程的另一个根为x 1,根据两根之积等于ca,即可得出关于x 1的一元一次方程,解之即可得出结论.【解析】解:设方程的另一个根为x 1,根据题意得:11x ⨯ =2,解得 x 1=2. 故选:B .6.关于方程2320x x -+=的根的说法中,正确的是( ) A .没有实数根B .两实数根的和为2-C .有两个不相等的实数根D .两实数根的积为3【答案】C【分析】根据一元二次方程的判别式得到根的情况,根据一元二次方程的根与系数的关系得到两根之和与两根之积,最后对四个选项进行判断即可. 【解析】解:∵2320x x -+=, ∴2(3)41210∆=--⨯⨯=>. ∴该方程有两个不相等的实数根. 故A 选项不符合题意,C 选项符合题意. ∵2320x x -+=有两个不相等的实数根, ∴两实数根之和为331--=,两实数根之积为221=. 故B 选项不符合题意,D 选项不符合题意. 故选:C . 二、填空题7.已知m ,n 是一元二次方程2320x x --=的两个根,则22m n mn +=_______. 【答案】6-【分析】利用一元二次方程根与系数的关系可知:m +n =3,mn =-2,由此即可求解. 【解析】解:由题意得,m +n =3,mn =-2,∴()()22326m n mn mn m n +=+=⨯-=-,故答案为:-6.8.写出一个一元二次方程,使它的两根之和是4,并且两根之积是2,这个一元二次方程是________. 【答案】2420x x -+=【分析】设此一元二次方程为()200++=≠ax bx c a ,根据两根之和是4,两根之积是2,利用a 表示b ,c ,即可得出一元二次方程.【解析】解:设此一元二次方程为()200++=≠ax bx c a ,且1x ,2x 为一元二次方程的两个根,∵它的两根之各是4,两根之积是2 ∴124bx x a +=-=,122c x x a==, ∴4b a =-,2c a =,代入一元二次方程得:()24200ax ax a a -+=≠,即2420x x -+=, 故答案为:2420x x -+=.9.已知方程2210x x --=的两根分别是1x ,2x ,则12x x +的值为_________. 【答案】14【分析】由根与系数的关系122bx x a+=-,即可求出答案. 【解析】解:∵方程2210x x --=的两根分别是1x ,2x , ∴12112224b x x a -+=-=-=⨯; 故答案为:14. 10.若一元二次方程2320x x --=的两个实数根为a ,b ,则a ab b -+的值为_______. 【答案】5【分析】先根据根与系数的关系得到3,2,a b ab +==-然后利用整体代入的方法计算. 【解析】解:根据题意得3,2,a b ab +==-()32 5.a ab b a b ab -+=+-=--=故答案为:5. 三、解答题11.已知,关于x 的一元二次方程()22210x a x a a --+-=,(1)求证:方程有两个不相等的实数根; (2)若方程两根的绝对值相等,求a 的值. 【答案】(1)证明见解析;(2)12【分析】(1)只需证明0∆>即可;(2)利用根与系数的关系列出两根之和的表达式,因为两根互为相反数,故由两根之和等于0即可求出a 的值.【解析】(1)解:[]22(21)4()10a a a ∆=----=>, ∴该方程有两个不相等的实数根.(2)解:12x x ≠,且12x x =,∴12x x =-,即120x x +=,∴210a -=,解得12a =. 12.已知12,x x 是一元二次方程23260x x +-=的两个根,求1233x x +的值. 【答案】1 【分析】利用一元二次方程根与系数的关系求出x 1+x 2=-23,x 1x 2=-2的值,将所求式子变形后,代入即可求出值.【解析】解:∵x 1,x 2是一元二次方程3x 2+2x -6=0的两个根,∴x 1+x 2=-23,x 1x 2=63-=-2, ∴()121212333x x x x x x ++= 23312⎛⎫⨯- ⎪⎝⎭==-. 13.已知关于x 的方程22x 2mx m 90-+-=.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,若126x x +=,求m 的值.【答案】(1)见解析;(2)3【分析】(1)根据方程的系数结合根的判别式,即可得出Δ>0,由此可证出此方程有两个不相等的实数根; (2)利用根与系数的关系可得122x x m +=即可找出关于m 的一元一次方程,解之即可得出结论.【解析】(1)根据题意可知:22(2)4(9)360m m ∆=--=>,∴方程有两个不相等的实数根;(2)有题意得:122x x m +=∴1226x x m +==,解得3m =14.已知关于x 的一元二次方程()222120x a x a a --+--=有两个不相等的实数根1x ,2x .(1)求a 的取值范围;(2)若1x ,2x 满足22121216x x x x +-=,求a 的值. 【答案】(1)3a <;(2)1a =-【分析】(1)由一元二次方程根的情况与判别式的关系得出不等式求解即可;(2)由一元二次方程根与系数关系,结合题中条件得出方程求解即可.【解析】(1)解:∵关于x 的一元二次方程()222120x a x a a --+--=有两个不相等的实数根,∴()()2221420a a a ∆=----->⎡⎤⎣⎦,解得:3a <;(2)解:∵关于x 的一元二次方程()222120x a x a a --+--=, ∴()1221x x a +=-,2122x x a a =--,∵22121216x x x x +-=, ∴()21212316x x x x +-=,即()()22213216a a a ----=⎡⎤⎣⎦,十字相乘因式分解得:11a =-,26a =, ∵3a <,∴1a =-.。
九年级数学一元二次方程的根与系数的关系嘿,伙计们!今天我们来聊聊一个很有趣的话题——九年级数学一元二次方程的根与系数的关系。
你们知道吗,这个知识点可是让我们这些初中生头疼不已啊!不过别担心,我会让你们轻松愉快地掌握这个知识点的!我们来看看什么是一元二次方程。
简单来说,就是一个方程里有两个未知数,而且这两个未知数之间还有一个乘号。
比如说,我们要解这个方程:x^2 5x + 6 = 0。
这个方程里有两个未知数,分别是x和5。
而且,它们之间还有一个减号和一个乘号。
好了,现在我们要找出这个方程的根和系数。
那么,什么是根和系数呢?根就是方程里的未知数的值,而系数就是方程里每个未知数前面的数字。
比如说,在这个方程里,5就是系数,因为它前面有一个5。
那么,这个方程的根和系数分别是什么呢?我们先来看这个方程的两个根。
根据求根公式,我们可以得到:x1 = (5 + sqrt(25 48)) / 2 = (5 + sqrt(-3)) / 2 ≈ 1.96x2 = (5 sqrt(25 48)) / 2 = (5 sqrt(-3)) / 2 ≈ -0.96所以,这个方程的两个根分别是1.96和-0.96。
接下来,我们来看一下这个方程的系数。
在这个方程里,5就是系数,因为它前面有一个5。
那么,这个方程的系数就是5。
好了,现在我们已经知道了这个方程的根和系数。
那么,它们有什么关系呢?其实,根和系数之间的关系非常简单。
我们可以把系数看作是未知数前面的数字,而把根看作是未知数的值。
比如说,在这个方程里,5就是系数,而1.96和-0.96就是根。
我们可以用等式表示这种关系:5x1 = x1^2 5x1 + 65x2 = x2^2 5x2 + 6这就是一元二次方程的根与系数的关系。
希望你们能够理解并掌握这个知识点!学习数学就像是一场冒险,充满了未知和挑战。
但是,只要我们勇敢地面对这些挑战,就一定能够找到答案。
所以,伙计们,加油吧!让我们一起在数学的世界里畅游吧!。
初中数学解题方法|根与系数的关系和完全平方公式一、介绍在初中数学的学习中,根与系数的关系和完全平方公式是一个重要且基础的内容。
掌握了这两个概念和方法,可以帮助学生更好地解决代数题目,提高解题效率和准确率。
本文将分别介绍根与系数的关系和完全平方公式的相关知识,并共享解题方法,帮助学生更好地理解和运用这两个重要的数学概念。
二、根与系数的关系1. 什么是根与系数?在代数中,一个一元二次方程可以用一般形式表示为ax²+bx+c=0,其中a、b、c分别为二次项系数、一次项系数和常数项。
方程的根指的是能够使方程成立的未知数的值,不同的根可以使方程等式成立。
而系数则是指在方程中与未知数相关的常数。
2. 根与系数的关系根与系数之间存在着重要的关系,这一关系可以通过韦达定理来描述。
设一元二次方程ax²+bx+c=0的根为x₁和x₂,则有以下结论:(1)根的和与系数的关系x₁+x₂=-b/a根的和等于一次项系数b的相反数除以二次项系数a的负数。
(2)根的积与系数的关系x₁x₂=c/a根的积等于常数项c除以二次项系数a。
通过根与系数的关系,我们可以利用方程的系数来求解方程的根,或者根据已知的根来推导方程的系数,从而更好地理解方程的性质和特点。
三、完全平方公式1. 什么是完全平方公式?在代数运算中,完全平方公式是指一个代数式能够被一个一元二次不等式平方并展开成二次式的方法。
对于一元二次不等式(a+b)²,根据完全平方公式展开后得到a²+2ab+b²。
2. 完全平方公式的应用完全平方公式在代数运算中有着广泛的应用,尤其是在解决代数方程或不等式的过程中。
通过完全平方公式,我们可以将一个一元二次不等式进行因式分解,从而更好地理解并解决数学问题。
四、解题方法1. 根与系数的关系的解题方法(1)已知方程的系数求根当已知一元二次方程的系数时,我们可以通过根与系数的关系来求解方程的根。
•引言•一元二次方程的基本概念•一元二次方程的根与系数的关系•案例分析目•练习与巩固•总结与回顾录0102一元二次方程是数学学习中的重要内容,是初中数学的核心知识点之一。
掌握一元二次方程的解法有助于学生更好地理解其他高级的数学概念,提高数学成绩。
学习一元二次方程还有助于培养学生的逻辑思维和解决问题的能力,对于学生的长远发展具有重要意义。
学习一元二次方程的重要性示例公式法因式分解法图像法030201根的判别式根与系数的关系一元二次方程的根的性质根的判别式是二次方程解的公式,它基于方程的系数,可以判断方程是否有实数解、两个不同的实数解或相同的实数解。
根的判别式详细描述总结词根与系数的关系推导是一元二次方程求解的关键步骤。
详细描述通过配方、因式分解等数学方法,将一元二次方程转化为两个一次方程,再解这两个一次方程得到原方程的解。
同时,根据判别式的性质,可以判断出方程的解的情况。
详细描述案例一:实际问题中的一元二次方程求解总结词在实际问题中,一元二次方程通常出现在投资、增长率等经济问题的数学模型中。
详细描述例如,某公司预计未来三年的年利润为10%的增长率,假设第一年的利润为100万元,求第二、三年的利润。
此问题可以通过一元二次方程求解得到。
案例二:数学竞赛中的一元二次方程求解总结词详细描述在物理问题中,一元二次方程通常出现在与运动、力等相关的物理公式中。
详细描述例如,在自由落体运动中,物体下落的距离h与时间t的关系可以表示为h = -gt² + v0t + h0,其中g是重力加速度,v0是初速度,h0是初始高度。
我们可以使用一元二次方程来求解时间t。
总结词案例三:物理问题中的一元二次方程求解VS总结词:强化基础详细描述:设计一系列简单的一元二次方程题目,旨在帮助学生掌握解一元二次方程的基本方法,并熟悉根与系数的关系。
示例题目:$2x^{2} - 4x = 0$,$3x^{2} + 5x = 0$等。
1 / 1 根与系数的关系
1.根与系数的关系
(1)若二次项系数为1 ,常用以下关系:1x ,2x 是方程2
0x px q ++=的两根时,12x x p +=- ,12x x q =,反过来可得()12p x x =-+,12q x x =,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.
(2)若二次项系数不为1,则常用以下关系:1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根时,12b x x a +=- ,12c x x a =,反过来也成立,()12b x x a =-+ ,12=c x x a
. (3)常用根与系数的关系解决以下问题:
①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③
不解方程求关于根的式子的值,如求,2212x x +等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足
的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑()0a ≠,0∆≥ 这两个前提条件.。