有机小分子电致磷光材料研究进展
- 格式:pdf
- 大小:313.70 KB
- 文档页数:6
发光材料的研究与进展发光材料是能够在外部能量的激发下发出独特光谱的材料。
自20世纪初以来,对发光材料的研究和发展一直是科学界和工业界关注的焦点之一、发光材料广泛应用于照明、显示技术、量子点调控、生物成像等领域,并取得了很多重要的成果。
以下是对发光材料研究与进展进行的详细探讨。
首先,传统的发光材料主要包括荧光材料和磷光材料。
荧光材料是一类能够吸收外部能量后在很短时间内释放出短寿命光的材料,如荧光粉。
而磷光材料是一类能够吸收外部能量后通过激发态到基态的跃迁释放长寿命光的材料,如荧光管。
这些传统的发光材料在照明和显示领域有着广泛的应用,但受到发光效率低和色彩品质不理想等问题的限制。
随着科学技术的不断进步,新型发光材料的研究取得了很大的突破。
其中最为重要的进展之一是量子点发光材料的研究。
量子点是一类纳米材料,其具有晶格限制和量子限制效应,使其能够发出高纯度和高饱和度的光。
量子点发光材料具有调节发光色谱、发光效率高和发光稳定性好等特点,被广泛应用于显示技术和生物成像领域。
此外,研究人员还对量子点进行了表面修饰和低维小型化等方面的改进,进一步提高了量子点发光材料的性能。
另外,有机发光材料也受到了广泛的研究。
有机发光材料具有可溶性、可加工性和低成本等优势,在照明和显示等领域有着巨大的潜力。
有机发光材料的研究主要集中在改善其光电性能、延长其寿命以及减小其材料成本等方面。
近年来,通过结构的合理设计和小分子有机材料的研究,有机发光材料的发光效率和寿命得到了大幅提高,为其在实际应用中带来了更大的可能性。
此外,研究人员还不断寻求新的发光机制和发光材料。
比如,研究人员发现一些无机发光材料可以通过激发态和基态之间的共振能量转移而实现发光,从而提高了发光效率。
另外,一些新型的有机材料也被开发用于发光,如有机电致发光材料和有机荧光染料等。
这些新的发光材料的发展为照明和显示领域的应用带来了全新的可能性。
总的来说,发光材料的研究与进展在科学界和工业界具有重要的意义。
室温磷光材料由于其独特的三线态发光机理,具有stokes位移大、激发态寿命长等特点,然而传统的室温磷光材料多含重金属原子,随之产生的生物毒性问题和环境污染问题限制了其应用。
相比之下,纯有机室温磷光材料生产成本低,毒性小,可通过分子工程可对有机结构进行灵活的设计和修饰使其具有更丰富的发光特性,在防伪加密、有机电致发光、生物成像、传感检测等方面具有良好的应用前景,是无机磷光材料极具潜力的替代品,因而受到研究人员的广泛关注。
本文总结了近年来纯有机室温磷光材料在防伪加密、有机电致发光、生物成像、传感检测等方面的研究进展,并对有机室温磷光应用尚待解决的问题与未来可能的发展方向进行了简要总结和展望。
摘要:室温磷光材料由于其独特的三线态发光机理而具有Stokes位移大、激发态寿命长等特点。
然而传统的室温磷光材料多含重金属原子,随之产生的生物毒性问题和环境污染问题限制了其应用。
相比之下,纯有机室温磷光材料生产成本低、毒性小,可通过分子工程对有机结构进行灵活的设计和修饰,使其具有更丰富的发光特性,在防伪加密、有机电致发光、生物成像、传感检测等方面具有良好的应用前景。
总结了近年来纯有机室温磷光材料在防伪与信息加密及储存、有机电致发光、生物成像、传感检测及其他应用方面的研究进展,并对纯有机室温磷光材料应用尚待解决的问题与未来可能的发展方向进行了简要总结和展望。
结论综上所述,近年来研究者们报道了大量具有优异发光性能、刺激响应性、可逆调控性等不同性质的纯有机室温磷光体系,纯有机室温磷光材料从分子结构设计、性能调控优化等方面得到了快速的发展。
尽管如此,纯有机室温磷光材料实际应用的研究尚处于起步阶段,仍有许多问题值得探讨:(1)引入卤素原子。
利用重原子效应是一种提高磷光效率的主要手段,但重原子效应在提高系间窜越速率的同时也会提高磷光速率;(2)在水相环境中具有高效室温磷光发射的体系极少。
在生物体内的应用场景多为水相环境,传感、防伪等同样有防水性能的需求;(3)目前纯有机室温磷光体系多为紫外光激发,但紫外光对细胞组织有较大的危害性,并且组织穿透深度远不及红外光,难以达到实际应用的性能标准,如何构建高效的红外激发磷光体系是有待解决的问题;(4)目前缺少有效的策略实现高效的有机圆偏振室温磷光,现有的此类体系普遍量子效率低,且glum 低而不稳定,所以,应用于圆偏振电致发光器件(CP-OLED)以及防伪加密等领域的有机圆偏振室温磷光材料性能不及无机材料。
室温磷光材料室温磷光材料是一种近年来备受关注的材料,它具有许多优异的性质,例如高亮度、长寿命、不易受到环境影响等。
这些性质使得它在许多领域具有广泛的应用前景,例如显示技术、生物医学成像、光电子学等。
本文将对室温磷光材料的研究进展、应用前景以及未来发展方向进行综述。
一、室温磷光材料的研究进展室温磷光材料的研究始于上世纪80年代,当时的研究主要集中在有机磷光材料方面。
随着科技的不断进步,有机磷光材料的性能逐渐得到提高,但其应用受到了一些限制,例如易受到氧化、湿气等环境因素的影响,且其发光效率不高。
因此,人们开始将目光转向无机磷光材料。
无机磷光材料具有许多优异的性质,例如高发光效率、长寿命、不易受到环境影响等,因此备受关注。
近年来,研究者们通过不断探索和改进,成功地开发了许多优异的室温磷光材料。
其中,最具代表性的是SrAl2O4:Eu2+, Dy3+和ZnS:Cu,Al等。
SrAl2O4:Eu2+, Dy3+是一种具有优异的发光性能的室温磷光材料,其发光波长为520~540 nm,亮度高且寿命长。
该材料在显示技术、照明等领域具有广泛的应用前景。
ZnS:Cu,Al也是一种具有优异性能的室温磷光材料,其发光波长为450~490 nm,亮度高、寿命长。
该材料在生物医学成像、光电子学等领域具有广泛的应用前景。
二、室温磷光材料的应用前景室温磷光材料具有广泛的应用前景,以下将分别从显示技术、生物医学成像、光电子学等方面进行阐述。
1. 显示技术室温磷光材料在显示技术中具有广泛的应用前景。
以SrAl2O4:Eu2+, Dy3+为例,该材料具有高亮度、长寿命等优异性能,适用于LED照明、荧光显示器等领域。
此外,室温磷光材料还可用于制备平板显示器、柔性显示器等。
2. 生物医学成像室温磷光材料在生物医学成像领域也具有广泛的应用前景。
以ZnS:Cu,Al为例,该材料具有高亮度、长寿命等优异性能,适用于制备生物荧光探针、分子探针等。
Vol 135No 111・4・化 工 新 型 材 料N EW CH EMICAL MA TERIAL S 第35卷第11期2007年11月基金项目:四川省应用基础研究基金资助项目(04J Y0292104)。
作者简介:杨定宇(1976-),男,博士研究生,讲师,主要从事薄膜材料与器件的研究。
有机小分子发光材料的研究杨定宇 蒋孟衡 涂小强(成都信息工程学院光电技术系,成都610225)摘 要 系统介绍了红、绿、蓝三基色有机小分子电致发光材料的分类,分析了材料发光特性与分子结构的关系,并介绍目前的最新研究进展。
关键词 有机发光材料,浓度淬灭,发光效率,色纯度R esearch on molecular organic electroluminescent materialsYang Dingyu Jiang Mengheng Tu Xiaoqiang(Chengdu University of Information Technology ,Chengdu 610225)Abstract The types of the molecular tricolor EL materials were introduced systematically ,then analyzed the con 2nections between the EL performance and molecular structure.Moreover ,the latest progress was also presented.K ey w ords organic electroluminescent material ,concentration quenching ,luminous efficiency ,color purity 自1987年Tang 等[1]制备成功低压驱动的小分子发光器件以来,有机发光技术已取得了巨大进展,并开始进入产业化进程。
发光材料的发光机理以及各种发光材料的研究进展发光材料是指能够将其他形式的能量转化为光能的材料。
发光机理是指发光材料在受激激发下能够产生光的原理和过程。
发光机理通常可以分为两种类型:激活机理和能级机理。
激活机理是指通过激发因素(如电流、电场、光、温度等)对发光材料施加能量,从而使发光材料中的激活剂转移到高能态,然后通过非辐射过程(如振动、自旋翻转等)来传递能量,最终导致发光材料发光。
常见的激活机理包括荧光、磷光和电致发光(EL)等。
能级机理是指在发光材料的能级结构变化下,通过电子在能级间跃迁的辐射过程来实现发光。
常见的能级机理包括激光、发色中心发光、磷光和电致发光等。
有机发光材料是近年来研究的热点之一、有机发光材料具有低成本、高效率和可调性等优点,适用于柔性显示、光电器件和生物成像等领域。
有机发光材料的研究进展主要集中在改进材料合成和器件结构设计上,以提高发光效率和稳定性。
无机发光材料有着较高的发光效率和较长的使用寿命,适用于照明和显示等领域。
无机发光材料的研究进展主要包括发色中心调控、杂化发光材料设计和控制发光性质等方面。
半导体发光材料是应用最广泛的发光材料之一,包括有机半导体材料和无机半导体材料。
有机半导体材料具有好的可溶性和可加工性,但发光效率较低;无机半导体材料具有较高的发光效率和较长的使用寿命,但制备工艺相对复杂。
半导体发光材料的研究进展主要集中在改进材料制备工艺和结构设计上,以提高发光效率和色纯度。
总之,发光材料的研究进展涵盖了有机发光材料、无机发光材料以及半导体发光材料等各种类型。
研究人员不断探索新的发光机理和材料合成方法,以提高发光材料的发光效率、稳定性和色纯度,推动发光材料在光电器件、生物成像和照明等领域的应用。
有机电致发光发展历程及TADF材料的发展进展有机电致发光发展历程及TADF材料的发展进展1.1引⾔有机光电材料(Organic Optoelectronic Materials),是具有光⼦和电⼦的产⽣、转换和传输等特性的有机材料。
⽬前,有机光电材料可控的光电性能已应⽤于有机发光⼆极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],⽣物/化学/光传感器[10,11,12],储存器[13,14,15],甚⾄是有机激光器[16,17]。
和传统的⽆机导体和半导体不同,有机⼩分⼦和聚合物可以由不同的有机和⾼分⼦化学⽅法合成,从⽽可制备出⼤量多样的有机半导体材料,这对于提⾼有机电⼦器件的性能有⼗分重要的意义。
其中,有机电致发光近⼗⼏年来受到了⼈们极⼤的关注。
有机电致发光主要有两个应⽤:⼀是信息显⽰,⼆是固体照明。
在信息显⽰⽅⾯,⽬前市⾯上主流的显⽰产品是液晶显⽰器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显⽰,被⼴泛应⽤于各种信息显⽰,如电脑屏幕,电视,⼿机,以及数码照相机等。
但是,液晶显⽰器也有其特有的缺点,⽐如响应速度慢,需要背光源,能耗⾼,视⾓⼩,⼯作温度范围窄等。
所以⼈们也迫切需要寻求⼀种新的显⽰技术来改变这种局⾯。
有机发光⼆级管显⽰器(OLED)被认为极有可能成为下⼀代显⽰器。
因为其是主动发光,相对于液晶显⽰器有着能耗低,响应速度快,可视⾓⼴,器件结构可以做的更薄,低温特性出众,甚⾄可以做成柔性显⽰屏等优势。
但是,有机发光显⽰技术⽬前还有许多瓶颈需要解决,尤其是在蓝光显⽰上,还需要⾯对蓝光显⽰的⾊度不纯,效率不⾼,材料寿命短的挑战。
有机电致发光材料的研究进展及应用材化1111班王蒙 1120213122摘要:简要论述有机电致发光设备的发光机理、器件结构及彩色显示方法,详细介绍有机电致发光材料的种类、组成、特点和研究近况,并对其用途和前景,尤其在军事领域的应用作了一定介绍。
另外还指出了有机电致发光在商业化过程中一些急待解决的问题。
关键词:有机发光材料,进展,应用。
正文:信息技术的持续快速发展对信息显示系统的性能,如亮度、对比度、色彩变化、分辨率、成本、能量消耗、质量和厚度等均提出了高的要求。
在已有的成熟显示技术中,电致发光显示设备能够满足上述性能要求,另外它还具有宽视角、较宽的工作温度范围和固有的强度等优点。
电致发光显示设备一般包括发光二极管(LED)、粉末磷设备、薄膜电致发光设备(TFEL)和厚介质电致发光设备等。
目前的信息显示市场上真正的参与者主要是TFEL和有机LED (OLED)。
OELD技术的发展时间并不很长,但发展速度较快。
近几年,随着市场对高质量、高可靠性、大信息量显示器件的需求日益增加,OLED技术更是得到了长足的发展,目前已有多种OLED产品投入市场。
1997年,日本Pioneer公司推出配备有绿色点阵OLED的车载音响,并建立了世界上第一条OELD生产线。
1998年,日本NEC、Pioneer公司各自研制出5英寸无源驱动全彩色四分之一显示绘图阵列(QVGA)有机发光显示器。
2000年,Motorola公司推出了有机显示屏手机。
2002年,Toshiba公司推出了17英寸的全彩色显示器。
清华大学与北京维信诺公司共同开发出国内首款多色OLED手机模块。
2003年,台湾奇美电子公司与IBM合作推出加英寸的OELD显示器。
2004年5月,日本精工爱普生公司研制成功的40英寸大屏幕OLED显示器以全彩、超薄、动态影像显示流畅的特点成为OELD显示市场上最大的亮点。
2006年,首尔半导体株式会社的子公司SeoulOptodeviceCo.Lid.以控股方式与美国SensorElectronicTechnology公司共同开发生产的世界唯一的短波长紫外发光二极管(UVEL D)产品已开始量产。