场效应管及其基本电路详解(1)
- 格式:ppt
- 大小:2.29 MB
- 文档页数:80
场效应管放大电路图大全(五款场效应晶体管放大电路原理图详解)-全文场效应管放大电路图(一)图3-26所示是一种超小型收音机电路,它采用两只晶体管,这种电路具有较高的灵敏度。
图3-26场效应管在袖珍收音机电路中的应用该电路中,电池作为直流电源通过负载电阻器R1为场效应管漏极提供偏置电压,使其工作在放大状态。
由外接天线接收天空中的各种信号,交流信号通过C1,进入LC谐振电路。
LC谐振电路是由磁棒线圈和电容器组成的,谐振电路选频后,经C4耦合至场效应管VT的栅极,与栅极负偏压叠加,加到场效应管栅极上,使场效应管的漏极电流ID相应变化,并在负载电阻器R1上产生压降,经C5隔离直流后输出,在输出端即得到放大了的信号电压。
放大后的信号送入三极管的基极,由三极管放大后输出较纯净的音频信号送到耳机。
图3-27所示是FM收音机调谐电路,它是由高频放大器VT1、混频器VT3和本机振荡器VT2等部分构成的。
天线感应的FM调频广播信号,经输入变压器L1加到VT1晶体管的栅极,VT1为高频放大器主要器件,它将FM高频信号放大后经变压器L2加到混频电路VT3的栅极,VT2和LC谐振电路构成本机振荡器,振荡信号由振荡变压器的次级送往混频电路VT3的源极。
混频电路VT3由漏极输出,经中频变压器IFT(L4)输出10.7MHz中频信号。
图3-27FM收音机电路(调谐器部分)场效应管放大电路图(二)与双极型晶体管一样,场效AM29LV017D-70EC应管也有三种基本接法:共源、共漏和共栅极接法,其中,共源相当于共发射极接法;共漏相当于共集电极接法;共栅相当于共基极接法。
共源极电路,如图4-19(a)所示,相当于双极晶体管的共发射极电路。
当交流信号Ui经C,加到栅一源极时,使栅极偏压随信号而变,于是控制了ID的变化,在RL上产生压降,通过C2将放大了的信号电压输出。
如果用Rc;表示场效应管的栅极偏置电阻,用R喁表示场效应管的栅一源间电阻,则共源电路的输入电阻R,=Rc//Rcs≈Rc(因Rcs》Rc)。
场效应管驱动电路详解(一)场效应管驱动电路详解什么是场效应管驱动电路?场效应管驱动电路是一种常用的电路,用于控制场效应管的工作状态。
场效应管是一种电子元件,具有高输入阻抗、低输出阻抗等特点,广泛应用于各种电子设备中。
为什么需要场效应管驱动电路?场效应管具有高输入阻抗,可以很好地隔离输入信号源和输出负载之间的电路,防止输入信号源的变化对输出负载产生干扰。
同时,场效应管的控制特性使得其能够根据输入信号的变化来调节输出信号的幅度和相位。
场效应管驱动电路的工作原理场效应管驱动电路通常由输入端、输出端和控制端组成。
输入端接收外部的控制信号,输出端控制输出负载的电流或电压,控制端用于调节场效应管的工作状态。
场效应管驱动电路中最常见的是共源极和共漏极配置。
共源极配置对应于控制端与驱动端之间存在一定的电阻,采用负反馈机制来调节输出信号。
共漏极配置则不需要电阻,输出信号直接由场效应管控制。
场效应管驱动电路的应用场效应管驱动电路广泛应用于各种电子设备中,例如功率放大器、无线通信设备、音视频处理器等。
它可以提供稳定的输出信号,并根据输入信号的变化进行调节,满足不同应用的需求。
场效应管驱动电路的设计与优化在设计场效应管驱动电路时,需要考虑如下因素:1.输入阻抗:合理选择输入阻抗,以保证输入信号源的驱动能力。
2.输出阻抗:合理选择输出阻抗,以适应不同负载的需求。
3.带宽:确定驱动电路的带宽,以保证信号传输的稳定和准确性。
4.控制电压:根据场效应管的特性确定控制电压的范围,以保证电路的正常工作。
通过合理设计和优化,如选取合适的电阻、电容值、调整电路的参数等,可以使得场效应管驱动电路的性能达到最佳状态。
总结场效应管驱动电路是一种常用的电路,它通过控制场效应管的工作状态来实现对输出信号的调节。
在设计和优化时,需要考虑输入阻抗、输出阻抗、带宽和控制电压等因素。
合理设计和优化场效应管驱动电路可以使其性能达到最佳状态,满足各种应用需求。
第4章场效应管及其电路本章要点●MOS管的原理、特性和主要参数●结型场效应管原理、特性及主要参数●场效应管放大电路的组成与原理本章难点●MOS管的原理和转移特性及主要参数●场效应管的微变等效电路法场效应管(FET)是一种电压控制器件,它是利用输入电压产生电场效应来控制输出电流的。
它具有输入电阻高、噪声低、热稳定性好、耗电省等优点,目前已被广泛应用于各种电子电路中。
场效应管按其结构不同分为结型(JFET)和绝缘栅型(IGFET)两种,其中绝缘栅型场效应管由于其制造工艺简单,便于大规模集成,因此应用更为广泛。
4.1 绝缘栅场效应管(MOSFET)绝缘栅型场效应管简称MOS管,由于其内部由金属—氧化物—半导体三种材料制成,可分为增强型和耗尽型两大类,每一类中又有N沟道和P沟道之分。
下面主要讨论N沟道增强型MOS管的工作原理,其余三种仅做简要介绍。
4.1.1 N沟道增强型场效应管(NMOS管)1.结构N沟道增强型MOS管的结构如图4-1(a)所示。
它是在一块掺杂浓度较低的P型硅片(称为衬底)上,通过扩散工艺形成两个高掺杂的N+区,通过金属铝引出两个电极分别作为源极S和漏极D,再在半导体表面覆盖一层二氧化硅绝缘层,在源漏极之间的绝缘层上制作一铝电极,作为栅极G,另外从衬底引出衬底引线B(工作时通常与源极S接在一起)。
在两个N+区之间的半导体区,是载流子从源极S流向漏极D的通道,把它称为导电沟道。
由于栅极与导电沟道之间被二氧化硅所绝缘,故将此类场效应管称为绝缘栅型。
图4-1(b)是N沟道增强型MOS管的符号,其中箭头方向是由P(衬底)指向N(沟道),由此可判断沟道类型。
符号中的三条断续线表示GS0 =U不存在导电沟道,它是判断增强型MOS管的特殊标志。
(a)结构示意图 (b)电路符号图4-1 N 沟道增强型MOS 管2.工作原理工作时,N 沟道增强型MOS 管的栅源电压GS u 和漏源电压DS u 均为正向电压,如图4-2所示。
场效应管及其基本放大电路3.2.3.1 场效应管( FET )1.场效应管的特色场效应管出生于 20 世纪 60 年月,它主要拥有以下特色:①它几乎仅靠半导体中的多半载流子导电,故又称为单级型晶体管。
②场效应管是利用输入回路的电场效应来控制输出回路的电流,并以此命名。
③输入回路的内阻高达 107 -1012Ω;此外还拥有噪声低、热稳固性好、抗辐射能力强、耗电小,体积小、重量轻、寿命长等特色,因此宽泛地应用于各样电子电路中。
场效应管分为结型和绝缘栅型两种不一样的构造,下边分别加以介绍。
2.结型场效应管⑴结型场效应管的符号和N 沟道结型场效应管的构造结型场效应管(JFET)有 N 沟道和 P 沟道两种种类,图3-62(a) 所示为它们的符号。
N沟道结型场效应管的构造如图 3-62(b) 所示。
它在同一块 N型半导体上制作两个高混杂的P 区,并将它们连结在一同,引出电极,称为栅极 G; N 型半导体的两头分别引出两个电极,一个称为漏极 D,一个称为源极 S。
P 区与 N 区交界面形成耗尽层,漏极与源极间的非耗尽层地区称为导电沟道。
(a) 符号(b)N 沟道管的构造表示图图 3-62 结型场效应管的符号和构造表示图⑵结型场效应管的工作原理为使 N沟道结型场效应管正常工作,应在其栅 - 源之间加负向电压(即U GS0),以保证耗尽层蒙受反向电压;在漏- 源之间加正向电压u DS , 以形成漏极电流i D。
下边经过栅-源电压 u GS和漏-源电压 u DS对导电沟道的影响,来说明管子的工作原理。
①当 u DS=0V(即D、S短路)时, u GS对导电沟道的控制作用ⅰ当 u GS=0V时,耗尽层很窄,导电沟道很宽,如图3-63(a)所示。
ⅱ当 u GS增大时,耗尽层加宽,沟道变窄(图(b) 所示),沟道电阻增大。
ⅲ当u GS增大到某一数值时,耗尽层闭合,沟道消逝(图(c) 所示) , 沟道电阻趋于无穷大,称此时u GS的值为夹断电压U GS( off )。