北京大学数学物理方法典范课程教材二阶常微分方程
- 格式:ppt
- 大小:1.83 MB
- 文档页数:56
第三章 二階常微分方程式3.1 二階齊性常係數方程式二階線性微分方程式之通式如下式:(3.1) )()()(x r y x g y x f y =+′+′′式中,f 、g 及r 為x 之任意已知函數,若r (x )=0時,稱為二階齊性微分方程式:(3.2) 0)()(=+′+′′y x g y x f y 若f 及g 均為一常數(實數),則稱之為二階齊性常係數微分方程式:(3.3) 0=+′+′′by y a y 其解可藉其特性方程式(characteristic equation , 或補助方程式)求解:(3.4) 02=++b a λλ(3.4)式之兩根為:)4(2121b a a −+−=λ )4(2122b a a −−−=λ (3.5) 狀況1. λ有兩相異實根λ1,λ2,則其通解為:(3.6) x x e C e C y 2.121λλ+=狀況2. λ有兩共軛複數根λ1,λ2,故λ1,λ2可分別表成:iq p iq p −=+=21,λλ二式中p 及q 為實數且q ≠0,故其基本解系(basis)為:x iq p x iq p e y e y )(2)(1,−+==由Euler 公式:θθθθθθsin cos ,sin cos i e i e i i −=+=−故:)sin (cos )sin (cos 21qx i qx e y qx i qx e y px px −=+=因此: qx e y y iqx e y y px px sin )(21,cos )(212121=+=+ 上二函數之右端均為實數,故由齊性線性微分方程式之基本定理,可知上二式為(3.3)微分方程式之兩解,而且由於其商數並非常數,故之於任意區間內均為線性獨立,故其通解為:(3.7) )sin cos (qx B qx A e y px +=狀況3.λ有一重根,即λ1=λ2,或a 2-4b =0,b = (1/4)a 2代回(3.3)式而得:0412=+′+′′y a y a y (3.8) 其一解答為y 1=e -ax/2,應用參數變化法,令:)()()(212x u ex u x y y x a −== 代入(3.8)式:0)2()41(1111211=′′++′′++′+″y u ay y u y a ay y u 或: 0)(122=′′++−′−−y u ae aeu x a x a故:0=′′u 因u=x 為上式解答之一,故可得另一解為:)2(2a xey x −==λλ 因y 2/y 1=x 不為常數,故y 1及y 2於任何區間均為線性獨立,因此其通解為: )2()(21a e C C y x −=+=λλ (3.9)3.3生物膜擴散模式如圖3.2所示之生物膜處理污水示意圖,污水中之基質(substrate)濃度為S 0,經擴散層質傳至生物膜表面為S S ,若此擴散層質傳為整個處理程序之控制因素,則S S ≦0.2 S 0;而若生物分解作用為整個處理程序之控制條件時,S S ≦0.8 S 0,基質於膜中之分子擴散係數(moleculardiffusion coefficient)為D f ,膜中微生物細胞密度為X f ,若k 為基質S f 被微生物利用之最大速率,K S 為半速率係數。
Chapter 2 Second-Order Differential Equations2.1Preliminary Concepts常微分方程式之階數為2或者2以上,為高階常微分方程式(,,','')0F x y y y=3=''y xxy y e-=''cos()x-+=y xy y''4'2y x x x=-is a solution of()6cos(4)17sin(4)y y+= for all real x''1603=is a solution of()cos(ln())y x x x2''5'100x>-+= for0x y xy y++=R x y P x y Q x y S x()''()'()()++=''()'()()y p x y q x y f x2.2 Theory of Solutions of ''()'()()++=y p x y q x y f x''120y x-=''12=y x2⎰⎰===+y y x dx xdx x C'''()12623⎰⎰==+=++()'()(6)2y x y x dx x C dx x Cx KFor any choice of C and K, we can graph the integral curves 3=++as curves in the plane2y x Cx KIf initial conditions (0)3y=,'(0)1y=-y K==(0)33=++()23y x x CxC=-.y x x C'()6=+, this requites that 13y x x x=-+()23The curve passes (0,3) and has slope -1 at this point2.2.1 The Homogeneous Equation ()()"'0y p x y q x y ++= ◆ ''()'()()y p x y q x y f x ++=; 0()y x A =,0'()y x B =When()f x is zero, the resulting equation()()"'0y p x y q x y ++= is called homogeneous◆ A linear combination of solutions ()1y x and ()2y x()()1122c y x c y x +(Thm 2.2)Let ()1y x and ()2y x be solutions of ()()"'0y p x y q x y ++= on an interval I . Then any linear combination of these solutions is also a solution.[Proof]: Let 1c and 2cbe real numbers. Substituting ()()()1122y x c y x c y x =+ into the differential equation, weobtain()()()()()()()()()()()()()11221122112211221122112211112222"'""''"'"'000c y c y p x c y c y q x c y c y c y c y c p x y c p x y c q x y c q x y c y p x y q x y c y p x y q x y +++++=+++++=+++++⎡⎤⎡⎤⎣⎦⎣⎦=+=because of the assumption that 1y and 2y areboth solutions.(Def 2.1) Linear Dependence, IndependenceTwo functions f and g are linearly dependent on an open interval I if, for some constant c , ()()f x cg x = for all x in I . If f and g are not linearly dependent on an open interval I , then they are said to be linearly independent on the intervalA simple test to tell whether two solutions of equation arelinearly independentDefine the Wronskian of solutions 1y and 2y to be()()()()1212''W x y x y x y y x =-. This is the 22⨯ determinant ()()()()()1212''y x y x W x y x y x =Ex27:()()()()()cos sin sin cos x x W x x x =-()()22cos sin 10x x =+=≠.(Thm 2.4)Let 1y and 2y be linearly independent solutions of()()"'0y p x y q x y ++= on an open interval I . Then, everysolution of this differential equation on I is a linear combination of 1y and 2y()()"'0y p x y q x y ++=; ()0y x A =, ()0'y x B =.()()101202y x c y x c A += ()()101202''y x c y x c B +=Cramer’s Rule()()()202010'Ay x By x c W x -=, ()()()101020'By x Ay x c W x -=2.2.2 The Nonhomogeneous Equation ''()'()()y p x y q x y f x ++= (Thm 2.5)1y and 2y be a fundamental set of solutions of''()'()0y p x y q x y ++= on an open interval I . Let p y be anysolution of equation ''()'()()y p x y q x y f x ++=. Then, for any solution ϕ of equation ''()'()()y p x y q x y f x ++=, there exist numbers 1c and 2c suchthat 1122p c y c y y ϕ=++ [Proof]: Since ϕ and p y are both solutions of equation''()'()()y p x y q x y f x ++=()''''''0p p p p q y py qy f f ϕϕϕ++-++=-=()()()'''0pppy p y q y ϕϕϕ-+-+-=p y ϕ- is a solution of '''0y py qy ++=. 1122p y c y c y ϕ-=+, 1122p c y c y y ϕ=++Exercise L :In each problem, (a) verify that 1y and 2y are solutions of the differential equation, (b) show that their Wronskian is not zero, (c) write the general solution of the differential equation, and (d) find the solution of the initial value problem. 1. ()()''90;30,'31y y y y ππ+=== ()()()()12cos 3,sin 3y x x y x x == {(b) ()()()()cos 3sin 333sin 33cos 3x x W x x ==-(c) ()()12cos 3sin 3y c x c x =+ (d) ()1sin 33y x =-}2. ()()''11'240;01,'04y y y y y ++=== ()()3812,x x y x e y x e --== {(b) 381138538xx xxxe e W e e e-----==--- (c) 3812x x y c e c e --=+ (d) 3812755x xy e e --=-}◆ 高階線性常微分方程式()()()()()()1110....'n n n y a x y a x y a x y R x --++++= 可根據其()R x 是否出現分成兩類()R x 不出現:稱其為齊性方程式(homogeneous equation ) ()R x 出現:稱其為非齊性方程式(nonhomogeneous equation )◆ 求解壹n 階線性非齊性O.D.E.()()()()()()1110....'n n n y a x y a x y a x y R x --++++=有三步驟 (1)求Homogeneous solution h y :()()()()()1110....'0n n n y a x y a x y a x y --++++=之通解 11....h n n y c y c y =++ (其中()1,,0n W y y ≠ ) (2)求Particular solution p y :()()()()()()1110....'n n n y a x y a x y a x y R x --++++= 之任一個特解p y(3) 原O.D.E.之通解為h p y y y =+常見高階線性O.D.E. 可分為3類: (1)高階線性常係數O.D.E.()()10....'n n a y a y a y R x +++=(2)高階等維線性O.D.E.()()10....'n n n a x y a xy a y R x +++=(3)高階一般變係數之線性O.D.E.()()()()()10....'n n a x y a x y a x y R x +++=2.4 The Constant Coefficient Homogeneous Linear Equation 常係數線性常微分方程式:首先考慮2n =時,即求解10'''0y a y a y ++=之通解1. 設解為mx y e =,則得'mx y me =,2''mx y m e =2. 將y ,'y ,''y 代入得:2100m a m a ++=(稱為characteristic equation, 特徵方程式)3. (1). 21040a a ->時,可得兩相異實根1m ,2m 11m x y e =,22m x y e =均為解 ()12,0m x m x W e e ≠ 1212m x m x y c e c e =+(2). 21040a a -=,兩實重根12m m = 11m x y e =要找到兩個滿足線性獨立之解故此時,缺少一個線性獨立解可令12m x y xe = 因()11,0m x m x W e xe ≠ ()112m x y c c x e =+(3). 21040a a -<時,兩共軛複根 1,2m m i αβ=± ()1i xy e αβ+=,()2i xy e αβ-=均為其解()()(),0i x i x W e e αβαβ+-≠ ()()12i xi xy c e c e αβαβ+-=+Ex28:求下列O.D.E之通解:'''4''-3'-180y y y y+= [解]:◆求任意特解()y x,方法有兩種:p(1) 待定係數法(2) 參數變易法◆待定係數法僅適用於常係數線性O.D.ER x之型式如下:待定係數法限制()A(常數),ax e,cos bx,sin bx,x之多項式(表二)()R x ()p y x 之假設型式k A ax eA ax e cos ax cos sin A axB ax + sin axcos sin A ax B ax + 10...n n a x a x a +++ 1-110...n n n n A x A x A x A -++++cos ax e bx or sin ax e bx(cos sin )ax e A bx B bx + 10(...)ax n n e a x a x a +++ 10(...)ax n n e A x A x A +++ 10cos (...)n n bx a x a x a +++10(...)cos n n A x A x A bx +++ 10(...)sin n n B x B x B bx ++++10cos (...)ax n n e bx a x a x a +++ 10(...)cos ax n n e A x A x A bx+++10(...)sin ax n n e B x B x B bx++++Ex29:求下列O.D.E 之通解:3''-'-2x y y y e = [解]:Ex30:求下列O.D.E之通解:''2'-34sin(2)+=y y y t [解]:[解]:1.設齊性解mx h y e ≡,代入得特徵方程式:2-560m m +=, ∴2,3m =故2312x x h y c e c e =+2.利用(表二),可令3x p y Ae = 得3'3x p y Ae =,3''9x p y Ae = 則代入原式得:33(9-5(3)6)x x A A A e e +=∴330 x x e e = (矛盾)故(表二)之假設方式不適用於本題之()p y x 的求解當()p y x 之假設項與()h y x 所含n 個線性獨立齊性解產生重複時,我們必須做修正結論:當使用待定係數法求p y 時,p y 之假設項中與h y 產生重複,則可乘以()m x (m 為正整數)於p y 之假設項中與h y 產生重複者,其中m 為使其不產生重複之最小正整數[解]:[解]:[解]:參數變易法 (Variation Parameter Method)利用此法求()(1)110()...()'()()n n n y a x y a x y a x y R x --++++=之特解p y ,其主要先決條件為原O.D.E 之相應齊性O.D.E.的n 個線性獨立解已經求得。